
hexbin
November 11, 2009

R topics documented:
ColorRamps . 2
erode.hexbin . 3
getHMedian . 4
gplot.hexbin . 5
grid.hexagons . 7
grid.hexlegend . 10
hboxplot . 12
hcell2xyInt . 13
hcell2xy . 14
hdiffplot . 15
hexbinplot . 17
hexbin . 20
hexGraphPaper . 22
hexList . 24
hexMA.loess . 25
hexplom . 26
hexpolygon . 27
hexTapply . 29
hexViewport . 30
hexVP.abline . 31
hexVP-class . 32
hsmooth-methods . 33
inout.hex . 33
list2hexList . 34
NHANES . 35
old-classes . 36
optShape . 36
panel.hexboxplot . 37
panel.hexgrid . 38
panel.hexloess . 39
plotMAhex . 40
pushHexport . 42
smooth.hexbin . 43

Index 45

1

2 ColorRamps

ColorRamps Color Ramps on Perceptually Linear Scales

Description

Functions for returning colors on perceptually linear scales, where steps correspond to ‘just de-
tectable differences’.

Usage

LinGray (n, beg=1, end=92)
BTC (n, beg=1, end=256)
LinOCS (n, beg=1, end=256)
heat.ob (n, beg=1, end=256)
magent (n, beg=1, end=256)
plinrain(n, beg=1, end=256)

Arguments

n number of colors to return from the ramp

beg begining of ramp, integer from 1-255

end end of ramp, integer from 1-255

Details

Several precalulated color ramps, that are on a perceptually linear color scale. A perceptually linear
color scale is a scale where each jump corresponds to a “just detectable difference” in color and the
scale is percieved as linear by the human eye (emprically determined).

When using the ramps, if beg is less than end the ramp will be reversed.

Value

returns an array of colors

Author(s)

Nicholas Lewin-Koh

References

Haim Levkowitz (1997) Color Theory and Modeling for Computer Graphics, Visualization, and
Multimedia Applications. Kluwer Academic Publishers, Boston/London/Dordrecht. http://
www.cs.uml.edu/~haim/ColorCenter/

See Also

rainbow, terrain.colors, rgb, hsv

http://www.cs.uml.edu/~haim/ColorCenter/
http://www.cs.uml.edu/~haim/ColorCenter/

erode.hexbin 3

Examples

h <- hexbin(rnorm(10000),rnorm(10000))
plot(h, colramp= BTY)
looks better if you shave the tails:
plot(h, colramp= function(n){LinOCS(n,beg=15,end=225)})

erode.hexbin Erosion of a Hexagon Count Image

Description

This erosion algorithm removes counts from hexagon cells at a rate proportional to the cells’ ex-
posed surface area. When a cell becomes empty, algorithm removes the emptied cell and notes the
removal order. Cell removal increases the exposure of any neighboring cells. The last cell removed
is a type of bivariate median.

Usage

erode(hbin, cdfcut = 0.5)
erode.hexbin(hbin, cdfcut = 0.5)

Arguments

hbin an object of class hexbin.

cdfcut number in (0,1) indicating the confidence level for the limits.

Details

The algorithm extracts high count cells with containing a given fraction (cdfcut) of the total counts.
The algorithm extracts all cells if cdfcut=0. The algorithm performs gray-level erosion on the
extracted cells. Each erosion cycle removes counts from cells. The counts removed for each cell
are a multiple of the cell’s exposed-face count. The algorithm choses the multiple so at least one
cell will be empty or have a count deficit on each erosion cycle. The erode vector contain an erosion
number for each cell. The value of erode is

6*erosion_cycle_ at_ cell_ removal - cell_deficit_at_removal

Cells with low values are eroded first. The cell with the highest erosion number is a candidate
bivariate median. A few ties in erode are common.

Value

An "erodebin" object (with all the slots from hbin) and additionally with high count cells and
a component erode that gives the erosion order.

See Also

hexbin, smooth.hexbin, hcell2xy, gplot.hexbin, grid.hexagons, grid.hexlegend

4 getHMedian

Examples

set.seed(153)
x <- rnorm(10000)
y <- rnorm(10000)
bin <- hexbin(x,y)

smbin <- smooth.hexbin(bin)
erodebin <- erode.hexbin(smbin, cdfcut=.5)
plot(erodebin)

bivariate boxplot
hboxplot(erodebin, main = "hboxplot(erodebin)")

show erosion order
plot(bin,style= "lat", minarea=1, maxarea=1,

legend=FALSE, border=gray(.7))

grid.hexagons(erodebin,style= "lat", minarea=1, maxarea=1,pen="green")
xy <- hcell2xy(erodebin)
grid.text(lab = as.character(erodebin@erode), xyx, xyy,

gp = gpar(col="white", cex=0.65))

getHMedian Get coordiantes of the median cell after the erode operation

Description

A method for a eroded hexbin object to extract the coordinates of the median cell. The median is
simply the cell with the highest erosion number or the last cell to be eroded.

Usage

getHMedian(ebin)

Arguments

ebin result of erode.hexbin().

Methods

ebin = "erodebin" ...

See Also

erode.hexbin

gplot.hexbin 5

Examples

set.seed(153)
x <- rnorm(10000)
y <- rnorm(10000)
bin <- hexbin(x,y)

smbin <- smooth.hexbin(bin)
erodebin <- erode.hexbin(smbin, cdfcut=.5)
getHMedian(erodebin)

gplot.hexbin Plotting Hexagon Cells with a Legend

Description

Plots Hexagons visualizing the counts in an hexbin object. Different styles are availables. Provides
a legend indicating the count representations.

Usage

gplot.hexbin(x, style = "colorscale", legend = 1.2, lcex = 1,
minarea = 0.04, maxarea = 0.8, mincnt = 1, maxcnt = max(x@count),
trans = NULL, inv = NULL, colorcut = seq(0, 1, length = min(17, maxcnt)),
border = NULL, density = NULL, pen = NULL,
colramp = function(n) LinGray(n,beg = 90,end = 15),
xlab = "", ylab = "", main = "", newpage = TRUE,
type = c("p", "l", "n"), xaxt = c("s", "n"), yaxt = c("s", "n"),
clip = "on", verbose = getOption("verbose"))

S4 method for signature 'hexbin, missing':
plot(x, style = "colorscale", legend = 1.2, lcex = 1,

minarea = 0.04, maxarea = 0.8, mincnt = 1, maxcnt = max(x@count),
trans = NULL, inv = NULL, colorcut = seq(0, 1, length = min(17, maxcnt)),
border = NULL, density = NULL, pen = NULL,
colramp = function(n) LinGray(n,beg = 90,end = 15),
xlab = "", ylab = "", main = "", newpage = TRUE,
type = c("p", "l", "n"), xaxt = c("s", "n"), yaxt = c("s", "n"),
clip = "on", verbose = getOption("verbose"))

Arguments

x an object of class hexbin.

style string specifying the style of hexagon plot, see grid.hexagons for the pos-
sibilities.

legend numeric width of the legend in inches of FALSE. In the latter case, or when 0,
no legend is not produced.

lcex characters expansion size for the text in the legend

minarea fraction of cell area for the lowest count

maxarea fraction of the cell area for the largest count

mincnt cells with fewer counts are ignored.

6 gplot.hexbin

maxcnt cells with more counts are ignored.

trans function specifying a transformation for the counts such as sqrt.

inv the inverse transformation of trans.

colorcut vector of values covering [0, 1] that determine hexagon color class boundaries
and hexagon legend size boundaries. Alternatively, an integer (<= maxcnt)
specifying the number of equispaced colorcut values in [0,1].

border, density, pen
color for polygon borders and filling of each hexagon drawn, passed to grid.hexagons.

colramp function accepting an integer n as an argument and returning n colors.

xlab, ylab x- and y-axis label.

main main title.

newpage should a new page start?.
type, xaxt, yaxt

strings to be used (when set to "n") for suppressing the plotting of hexagon
symbols, or the x- or y-axis, respectively.

clip either ’on’ or ’off’ are the allowed arguments, when on everything is clipped to
the plotting region.

verbose logical indicating if some diagnostic output should happen.

... all arguments of gplot.hexbin can also be used for the S4 plot method.

Details

This is the (S4) plot method for hexbin (and erodebin) objects (erodebin-class).

To use the standalone function gplot.hexbin() is deprecated. For style, minarea etc, see
the Details section of grid.hexagons’s help page.

The legend functionality is somewhat preliminary. Later versions may include refinements and
handle extreme cases (small and large) for cell size and counts.

Value

invisibly, a list with components

plot.vp the hexViewport constructed and used.

legend.vp if a legend has been produced, its viewport.

Author(s)

Dan Carr 〈dcarr@voxel.galaxy.gmu.edu〉, ported by Nicholas Lewin-Koh 〈kohnicho@comp.nus.edu.sg〉
and Martin Maechler.

References

see in grid.hexagons.

See Also

hexbin, hexViewport, smooth.hexbin, erode.hexbin, hcell2xy, hboxplot, hdiffplot.

grid.hexagons 7

Examples

1) simple binning of spherical normal:
x <- rnorm(10000)
y <- rnorm(10000)
bin <- hexbin(x,y)

Plot method for hexbin !
---- ------ --------
plot(bin)
nested lattice
plot(bin, style= "nested.lattice")

controlling the colorscheme
plot(bin, colramp=BTY, colorcut=c(0,.1,.2,.3,.4,.6,1))

2) A mixture distribution
x <- c(rnorm(5000),rnorm(5000,4,1.5))
y <- c(rnorm(5000),rnorm(5000,2,3))
bin <- hexbin(x,y)

pens <- cbind(c("#ECE2F0","#A6BDDB","#1C9099"),
c("#FFF7BC","#FEC44F","#D95F0E"))

plot(bin, style = "nested.lattice", pen=pens)
now really crazy
plot(bin, style = "nested.lattice", pen=pens,border=2,density=35)

lower resolution binning and overplotting with counts
bin <- hexbin(x,y,xbins=25)
P <- plot(bin, style="lattice", legend=FALSE,

minarea=1, maxarea=1, border="white")
##
pushHexport(P$plot.vp)
xy <- hcell2xy(bin)
to show points rather than counts :

grid.points(x,y,pch=18,gp=gpar(cex=.3,col="green"))
grid.text(as.character(bin@count), xyx,xyy,

gp=gpar(cex=0.3, col="red"),default.units="native")
popViewport()

Be creative, have fun!

grid.hexagons Add Hexagon Cells to Plot

Description

Plots cells in an hexbin object. The function distinquishes among counts using 5 different styles.
This function is the hexagon plotting engine from the plot method for hexbin objects.

Usage

grid.hexagons(dat, style = c("colorscale", "centroids", "lattice",
"nested.lattice", "nested.centroids", "constant.col"),

use.count=TRUE, cell.at=NULL,

8 grid.hexagons

minarea = 0.05, maxarea = 0.8, check.erosion = TRUE,
mincnt = 1, maxcnt = max(dat@count), trans = NULL,
colorcut = seq(0, 1, length = 17),
density = NULL, border = NULL, pen = NULL,
colramp = function(n){ LinGray(n,beg = 90, end = 15) },
def.unit= "native",
verbose = getOption("verbose"))

Arguments

dat an object of class hexbin, see hexbin.

style character string specifying the type of plotting; must be (a unique abbrevation)
of the values given in ‘Usage’ above.

use.count logical specifying if counts should be used.

cell.at numeric vector to be plotted instead of counts, must besame length as the num-
ber of cells.

minarea numeric, the fraction of cell area for the lowest count.

maxarea the fraction of the cell area for the largest count.
check.erosion

logical indicating only eroded points should be used for "erodebin" objects;
simply passed to hcell2xy, see its documentation.

mincnt numeric; cells with counts smaller than mincnt are not shown.

maxcnt cells with counts larger than this are not shown.

trans a transformation function (or NULL) for the counts, e.g., sqrt.

colorcut a vector of values covering [0, 1] which determine hexagon color class bound-
aries or hexagon size boundaries – for style = "colorscale" only.

density grid.polygon argument for shading. 0 causes the polygon not to be filled.
This is not implemented (for grid.polygon) yet.

border grid.polygon() argument. Draw the border for each hexagon.

pen colors for grid.polygon(). Determines the color with which the polygon
will be filled.

colramp function of an integer argument n returning n colors. n is determined

def.unit default unit to be used.

verbose logical indicating if some diagnostic output should happen.

Details

The six plotting styles have the following effect:

style="lattice" or "centroids": Plots the hexagons in different sizes based on counts.
The "lattice" version centers the hexagons at the cell centers whereas "centroids"
moves the hexagon centers close to the center of mass for the cells. In all cases the hexagons
will not plot outside the cell unless maxarea > 1. Counts are rescaled into the interval
[0,1] and colorcuts determine the class boundaries for sizes and counts. The pen argument for
this style should be a single color or a vector of colors of length(bin@count).

style="colorscale": Counts are rescaled into the interval [0,1] and colorcuts determines the
class boundaries for the color classes. For this style, the function passed as colramp is used
to define the n colors for the n+1 color cuts. The pen argument is ignored. See LinGray for
the default colramp and alternative “color ramp” functions.

grid.hexagons 9

style="constant.col": This is an even simpler alternative to "colorscale", using con-
stant colors (determined pen optionally).

style="nested.lattice" and "nested.centroids": Counts are partitioned into classes
by power of 10. The encoding nests hexagon size within powers of 10 color contours.
If the pen argument is used it should be a matrix of colors with 2 columns and either ceiling(log10(max(bin@count)))
or length(bin@count) rows. The default uses the R color palatte so that pens numbers
2-11 determine colors for completely filled cell Pen 2 is the color for 1’s, Pen 3 is the color for
10’s, etc. Pens numbers 12-21 determine the color of the foreground hexagons. The hexagon
size shows the relative count for the power of 10. Different color schemes give different effects
including 3-D illusions

Hexagon size encoding minarea and maxarea determine the area of the smallest and largest
hexagons plotted. Both are expressed fractions of the bin cell size. Typical values might be .04 and
1. When both values are 1, all plotted hexagons are bin cell size, if maxarea is greater than 1 than
hexagons will overlap. This is sometimes interesting with the lattice and centroid styles.

Count scaling

relcnt <- (trans(cnt)-trans(mincnt)) / (trans(maxcnt)-trans(mincnt))
area <- minarea + relcnt*maxarea

By default the transformation trans() is the identity function. The legend routine requires the
transformation inverse for some options.

Count windowing mincnt and maxcnt Only routine only plots cells with cnts in [mincnts, max-
cnts]

SIDE EFFECTS

Adds hexagons to the plot.

Author(s)

Dan Carr <dcarr@voxel.galaxy.gmu.edu>; ported and extended by Nicholas Lewin-Koh 〈nikko@hailmail.net〉.

References

Carr, D. B. (1991) Looking at Large Data Sets Using Binned Data Plots, pp. 7–39 in Computing
and Graphics in Statistics; Eds. A. Buja and P. Tukey, Springer-Verlag, New York.

See Also

hexbin, smooth.hexbin, erode.hexbin, hcell2xy, gplot.hexbin, hboxplot, hdiffplot,
grid.hexlegend

Examples

set.seed(506)
x <- rnorm(10000)
y <- rnorm(10000)

bin the points
bin <- hexbin(x,y)

Typical approach uses plot(<hexbin>) which controls the plot shape :
plot(bin, main = "Bivariate rnorm(10000)")

10 grid.hexlegend

but we can have more manual control:

A mixture distribution
x <- c(rnorm(5000),rnorm(5000,4,1.5))
y <- c(rnorm(5000),rnorm(5000,2,3))
hb2 <- hexbin(x,y)

Show color control and overplotting of hexagons
1) setup coordinate system:
P <- plot(hb2, type="n", main = "Bivariate mixture (10000)")# asp=1

2) add hexagons (in the proper viewport):
pushHexport(P$plot.vp)
grid.hexagons(hb2, style= "lattice", border = gray(.1), pen = gray(.6),

minarea = .1, maxarea = 1.5)
popViewport()

How to treat 'singletons' specially:
P <- plot(hb2, type="n", main = "Bivariate mixture (10000)")# asp=1
pushHexport(P$plot.vp)
grid.hexagons(hb2, style= "nested.centroids", mincnt = 2)# not the single ones
grid.hexagons(hb2, style= "centroids", maxcnt = 1, maxarea=0.04)# single points
popViewport()

grid.hexlegend Add a Legend to a Hexbin Plot

Description

Plots the legend for the plot method of hexbin. Provides a legend indicating the count repre-
sentations.

Usage

grid.hexlegend(legend, ysize, lcex, inner, style = ,
minarea = 0.05, maxarea = 0.8, mincnt = 1, maxcnt, trans = NULL,
inv = NULL, colorcut, density = NULL, border = NULL, pen = NULL,
colramp = function(n) { LinGray(n,beg = 90,end = 15) },
leg.unit = "native")

Arguments

legend positive number giving width of the legend in inches.

ysize height of legend in inches

lcex the characters expansion size for the text in the legend, see par(cex=).

inner the inner diameter of a hexagon in inches.

style the hexagon style; see grid.hexagons.
minarea, maxarea

fraction of the cell area for the lowest and largest count, respectively.

grid.hexlegend 11

mincnt, maxcnt
minimum and maximum count accepted in plot.

trans a transformation function for the counts such as sqrt.

inv the inverse transformation function.

colorcut numeric vector of values covering [0, 1] the determine hexagon color classes
boundaries and hexagon legend size boundaries.

border argument for polygon(). Draw the border for each hexagon.

density argument for polygon() filling. A 0 causes the polygon not to be filled.

pen color argument used for polygon(col = .). Determines the color with
which the polygon will be filled.

colramp function accepting an integer n as an argument and returning n colors.

leg.unit unit to use

Details

The plot method for hexbin objects calls this function to produce a legend by setting the graph-
ics parameters, so hex.legend itself is not a standalone function.

The legend function is preliminary. Later version will include refinements and handle extreme
cases (small and large) for cell size and counts.

See the Details section of grid.hexagons’s help page.

Value

This function does not return any value.

Author(s)

Dan Carr <dcarr@voxel.galaxy.gmu.edu>

ported by Nicholas Lewin-Koh <kohnicho@comp.nus.edu.sg>

References

see in grid.hexagons.

See Also

hexbin, grid.hexagons, smooth.hexbin, erode.hexbin, hcell2xy, gplot.hexbin,

Examples

Not a stand alone function; typically only called from plot.hexbin()
Not run:
grid.hexlegend(legend = 2, ysize = 1,lcex=8,inner=0.2,

maxcnt = 100, colorcut = c(0.5,0.5))
End(Not run)

12 hboxplot

hboxplot 2-D Generalization of Boxplot

Description

If bin is an eroded hexbin object, i.e., an erodebin object, hboxplot() plots the high counts
cells selected by erode(). By default, the high counts cells contain 50 percent of the counts so
analagous to the interquartile “range”. The function distinguishes the last cells eroded using color.
These cells correspond to one definition of the bivariate median.

Usage

hboxplot(bin, xbnds = NULL, ybnds = NULL,
density, border = c(0, grey(0.7)), pen = c(2, 3),
unzoom = 1.1, clip ="off", reshape = FALSE,
xlab = NULL, ylab = NULL, main = "")

Arguments

bin an object of class hexbin.

xbnds,ybnds global x- and y-axis plotting limits for multiple plots.
density, border

arguments for polygon() each of length two, the first for the median, the
second for the other cells.

pen colors (“pen numbers”) for polygon().

unzoom plot limit expansion factor when xbnds is missing.

clip either ’on’ or ’off’ are the allowed arguments, when on everything is clipped to
the plotting region.

reshape logical value to reshape the plot although xbnds and ybnds are present.
xlab, ylab, main

x- and y- axis labels and main title

Details

The density, border, and pen arguments correspond to the polygon function calls for plot-
ting two types of cells. The cell types, pen numbers and suggested colors are

TYPE PEN COLOR
cells of bin 2 light gray
last eroded cells of bin (median cells) 1 black

The erode components of the hexbin objects must be present for the medians cells to plot.

When xbnds is missing or reshape is true, the plot changes graphics parameters and resets them.
When xbnds is missing the function also zooms in based on the available data to provide increased
resolution.

The zoom used the hexagon cell centers. The unzoom argument backs off a bit so the whole hexagon
will fit in the plot.

hcell2xyInt 13

Hboxplot() is used as a stand alone function, for producing separate legends

Value

invisibly, the hexViewport() used internally. Used to add to the plot afterwards.

References

see in grid.hexagons.

See Also

hexbin, erode, hcell2xy, gplot.hexbin, grid.hexagons, grid.hexlegend

Examples

boxplot of smoothed counts
x <- rnorm(10000)
y <- rnorm(10000)

bin <- hexbin(x,y)
erodebin <- erode(smooth.hexbin(bin))

hboxplot(erodebin)
hboxplot(erodebin, density = c(32,7), border = c(2,4))
hp <- hboxplot(erodebin, density = c(-1,17),

main = "hboxplot(erode*(smooth*(.)))")
pushHexport(hp)
grid.points(x[1:10], y[1:10])# just non-sense to show the principle
popViewport()

hcell2xyInt Change cell ids to 2d integer coordinate system

Description

Transforms the cell representation of a a lattice into a 2d integer coordinate system.

Usage

hcell2xyInt(hbin, xbins=NULL, xbnds=NULL, ybnds=NULL, shape=NULL)

Arguments

hbin a object of class "hexbin", typically produced by hexbin(*).

xbins the number of bins partitioning the range of xbnds.

xbnds, ybnds horizontal and vertical limits of the binning region in x or y units respectively;
must be numeric vector of length 2.

shape the shape = yheight/xwidth of the plotting regions.

14 hcell2xy

Details

Takes a grid defined by either the hexbin parameters or dimen in a hexbin object and translates the
cell ids for the grid into 2d integer coordinates.

Value

An integer matrix with two columns, i and j representing the integer xy coordinates of the hexagon
grid.

i Integer coordiante of the rows, increases from bottom to top

j Integer coordiante of the columns, increases from left to right

Author(s)

Nicholas Lewin-Koh

See Also

hcell2xy

Examples

x<-rnorm(10000)
y<-rnorm(10000)
hbin<-hexbin(x,y)
ijInt<-hcell2xyInt(hbin)

hcell2xy Compute X and Y Coordinates for Hexagon Cells

Description

Computes x and y coordinates from hexagon cell id’s.

Usage

hcell2xy(hbin, check.erosion = TRUE)

Arguments

hbin a object of class "hexbin", typically produced by hexbin(*).
check.erosion

logical indicating if only the eroded points should be returned in the case where
hbin inherits from "erodebin" (see erodebin-class); is TRUE by de-
fault.

Details

The hexbin object hbin contains all the needed information. The purpose of this function is to
reduce storage. The cost is additional calculation.

hdiffplot 15

Value

A list with two components of the same length as bin$cell,

x

y

See Also

hexbin.

Examples

x <- rnorm(10000)
y <- rnorm(10000)
plot(x,y, pch=".")
hbin <- hexbin(x,y)
str(xys <- hcell2xy(hbin))
points(xys, cex=1.5, col=2) ; title("hcell2xy(hexbin(..))", col.main=2)

hdiffplot Plot of Domain and Median Differences of Two "hexbin" Objects

Description

Let bin1 and bin2 represent two hexbin objects with scaling, plot shapes, and bin sizes. This
plot distinguishes cells unique to bin1, cells in common, and cells unique to bin2 using color.
When the erode components are present, color also distinguishes the two erosion medians. An
arrow shows the vector from the median of bin1 to the median of bin2.

Usage

hdiffplot(bin1, bin2 = NULL, xbnds, ybnds,
focus = NULL,
col.control = list(medhex = "white", med.bord = "black",
focus = NULL, focus.border = NULL, back.col = "grey"),
arrows = TRUE, size = unit(0.1, "inches"), lwd = 2,
eps = 1e-6, unzoom = 1.08, clip="off", xlab = "", ylab = "",
main = deparse(mycall), ...)

Arguments

bin1, bin2 two objects of class hexbin.

xbnds,ybnds global x- and y-axis plotting limits. Used primarily for multiple comparison
plots.

focus a vector of integers specifying which hexbin objects should be treated as focal.
Excluded hexbins are treated as background.

col.control a list for detailed color control.

arrows a logical indicating wheter or not to draw arrows between the focal hexbin ob-
jects median cells.

16 hdiffplot

border border arguments to polygon

size arrow type size in inches.

eps distance criteria for distinct medians

unzoom plot limit expansion factor when xbnds is missing

clip either ’on’ or ’off’ are the allowed arguments, when on everything is clipped to
the plotting region.

lwd Line width for arrows, ignored when arrows=FALSE or when bins have no
erosion component

xlab label for x-axis

ylab label for y-axis

main main title for the plot; automatically constructed by default.

...

Details

The hexbin objects for comparison, bin1 and bin2, must have the same plotting limits and cell
size. The plot produces a comparison overlay of the cells in the two objects. If external global scal-
ing is not supplied, the algorithm determines plotting limits to increase resolution. For example, the
objects may be the result of the erode.hexbin() and include only high count cells containing
50 of the counts. The density, border, and pen arguments correspond to the polygon function calls
for plotting six types of cells. The cell types are respectively:

unique cells of bin1,
joint cells,
unique cells of bin2,
median cell of bin1,
median cell of bin2,
median cell if identical.

The erode components of the hexbin objects must be present for the medians to plot. The algo-
rithm select a single cell for the median if there are algorithmic ties.

The pen numbers for types of cells start at Pen 2. Pen 1 is presumed black. The suggested six
additional colors are light blue, light gray, light red, blue, red, and black. Carr (1991) shows an
example for black and white printing. That plot changes the six colors to light gray, dark gray,
white, black, black, and black. It changes the 4th, 5th, and 6th argument of border to TRUE. It also
changes 4th, 5th and 6th argument of density to 0. In other words cells in common do not show and
medians cells appear as outlines.

When xbnds is missing, the plot changes graphics parameters and resets them. The function also
zooms in based on the available data to provide increased resolution.

References

see in grid.hexagons.

See Also

hexbin, smooth.hexbin, erode.hexbin, hcell2xy, gplot.hexbin, hboxplot, grid.hexagons,
grid.hexlegend.

hexbinplot 17

Examples

Comparison of two bivariate boxplots
x1 <- rnorm(10000)
y1 <- rnorm(10000)
x2 <- rnorm(10000,mean=.5)
y2 <- rnorm(10000,mean=.5)
xbnds <- range(x1,x2)
ybnds <- range(y1,y2)

bin1 <- hexbin(x1,y1,xbnds=xbnds,ybnds=ybnds)
bin2 <- hexbin(x2,y2,xbnds=xbnds,ybnds=ybnds)
erodebin1 <- erode.hexbin(smooth.hexbin(bin1))
erodebin2 <- erode.hexbin(smooth.hexbin(bin2))

hdiffplot(erodebin1,erodebin2)

Compare *three* of them: --------------------

x3 <- rnorm(10000,mean=-1)
y3 <- rnorm(10000,mean=-.5)
xbnds <- range(x1,x2,x3)
ybnds <- range(y1,y2,y3)

bin1 <- hexbin(x1,y1,xbnds=xbnds,ybnds=ybnds)
bin2 <- hexbin(x2,y2,xbnds=xbnds,ybnds=ybnds)
bin3 <- hexbin(x3,y3,xbnds=xbnds,ybnds=ybnds)
erodebin1 <- erode.hexbin(smooth.hexbin(bin1))
erodebin2 <- erode.hexbin(smooth.hexbin(bin2))
erodebin3 <- erode.hexbin(smooth.hexbin(bin3))

bnlst <- list(b1=erodebin1, b2=erodebin2, b3=erodebin3)
hdiffplot(bnlst)

hexbinplot Trellis Hexbin Displays

Description

Display of hexagonally binned data, as implemented in the hexbin packge, under the Trellis
framework, with associated utilities. hexbinplot is the high level generic function, with the
"formula"method doing the actual work. prepanel.hexbinplot and panel.hexbinplot
are associated prepanel and panel functions. hexlegendGrob produces a suitable legend.

Usage

hexbinplot(x, data, ...)

S3 method for class 'formula':
hexbinplot(x, data = NULL,

prepanel = prepanel.hexbinplot,
panel = panel.hexbinplot,
groups = NULL,

18 hexbinplot

aspect = "xy",
trans = NULL,
inv = NULL,
colorkey = TRUE,
...,
maxcnt,
legend = NULL,
legend.width = TRUE,
subset)

prepanel.hexbinplot(x, y, type = character(0), ...)

panel.hexbinplot(x, y, ..., groups = NULL)

hexlegendGrob(legend = 1.2,
inner = legend / 5,
cex.labels = 1,
cex.title = 1.2,
style = "colorscale",
minarea = 0.05, maxarea = 0.8,
mincnt = 1, maxcnt,
trans = NULL, inv = NULL,
colorcut = seq(0, 1, length = 17),
density = NULL, border = NULL, pen = NULL,
colramp = function(n) { LinGray(n,beg = 90,end = 15) },
...,
vp = NULL,
draw = FALSE)

Arguments

x For hexbinplot, the object on which method dispatch is carried out.
For the "formula" methods, a formula describing the form of conditioning
plot. Formulas that are valid for xyplot are acceptable.
In panel.hexbinplot, the x variable.

y In panel.hexbinplot, the y variable.
data For the formula method, a data frame containing values for any variables in

the formula, as well as groups and subset if applicable (using groups
currently causes an error with the default panel function). By default, the envi-
ronment where the function was called from is used.

minarea, maxarea, mincnt, maxcnt, trans, inv, colorcut, density, border, pen, colramp, style
see gplot.hexbin

prepanel, panel, aspect
See xyplot. aspect="fill" is not allowed. The current default of "xy"
may not always be the best choice, often aspect=1 will be more reasonable.

colorkey logical, whether a legend should be drawn. Currently a legend can be drawn
only on the right.

legend.width, legend
width of the legend in inches when style is "nested.lattice" or "nested.centroids".
The name legend.width is used to avoid conflict with the standard trellis ar-
gument legend. It is possible to specify additional legends using the legend

hexbinplot 19

or key arguments as long as they do not conflict with the hexbin legend (i.e.,
are not on the right).

inner Inner radius in inches of hexagons in the legend when style is "nested.lattice"
or "nested.centroids".

cex.labels, cex.title
in the legend, multiplier for numeric labels and text annotation respectively

type character vector controlling additional augmentation of the display. A "g" in
type adds a reference grid, "r" adds a regression line (y on x), "smooth"
adds a loess smooth

draw logical, whether to draw the legend grob. Useful when hexlegendGrob is
used separately

vp grid viewport to draw the legend in

... extra arguments, passed on as appropriate. Arguments to gplot.hexbin,
xyplot, panel.hexbinplot and hexlegendGrob can be supplied to
the high level hexbinplot call.
panel.hexbinplot calls one of two (unexported) low-level functions de-
pending on whether groups is supplied (although specifying groups cur-
rently leads to an error). Arguments of the appropriate function can be supplied;
some important ones are

xbins: number of hexagons covering x values. The number of y-bins depends
on this, the aspect ratio, and xbnds and ybnds

xbnds, ybnds: Numeric vector specifying range of values that should be
covered by the binning. In a multi-panel display, it is not necessarily a
good idea to use the same bounds (which along with xbins and the as-
pect ratio determine the size of the hexagons) for all panels. For example,
when data is concentrated in small subregions of different panels, more de-
tail will be shown by using smaller hexagons covering those regions. To
control this, xbnds and ybnds can also be character strings "panel"
or "data" (which are not very good names and may be changed in fu-
ture). In the first case, the bounds are taken to be the limits of the panel, in
the second case, the limits of the data (packet) in that panel. Note that all
panels will have the same limits (enough to cover all the data) by default
if relation="free" in the standard trellis argument scales, but not
otherwise.

groups in hexbinplot, a grouping variable that is evaluated in data, and passed on
to the panel function.

subset an expression that is evaluated in evaluated in data to produce a logical vector
that is used to subset the data before being used in the plot.

Details

The panel function panel.hexbinplot creates a hexbin object from data supplied to it and
plots it using grid.hexagons. To make panels comparable, all panels have the same maxcnt
value, by default the maximum count over all panels. This default value can be calculated only if
the aspect ratio is known, and so aspect="fill" is not allowed. The default choice of aspect
ratio is different from the choice in hexbin (namely, 1), which may sometimes give better results
for multi-panel displays. xbnds and ybnds can be numeric range vectors as in hexbin, but they
can also be character strings specifying whether all panels should have the same bins. If they are
not, then bins in different panels could be of different sizes, in which case style="lattice"
and style="centroids" should be interpreted carefully.

20 hexbin

The dimensions of the legend and the size of the hexagons therein are given in absolute units
(inches) by legend.width and inner only when style is "nested.lattice" or "nested.centroids".
For other styles, the dimensions of the legend are determined relative to the plot. Specifically, the
height of the legend is the same as the height of the plot (the panel and strip regions combined),
and the width is the minimum required to fit the legend in the display. This is different in some
ways from the hexbin implementation. In particular, the size of the hexagons in the legend are
completely unrelated to the sizes in the panels, which is pretty much unavoidable because the sizes
need not be the same across panels if xbnds or ybnds is "data". The size of the hexagons
encode information when style is "lattice" or "centroids", consequently a warning is
issued when a legend is drawn with wither of these styles.

Value

hexbinplot produces an object of class "trellis". The update method can be used to
update components of the object and the print method (usually called by default) will plot it on
an appropriate plotting device. hexlegendGrob produces a "grob" (grid object).

Author(s)

Deepayan Sarkar 〈deepayan@stat.wisc.edu〉

See Also

hexbin, xyplot

Examples

mixdata <-
data.frame(x = c(rnorm(5000),rnorm(5000,4,1.5)),

y = c(rnorm(5000),rnorm(5000,2,3)),
a = gl(2, 5000))

hexbinplot(y ~ x, mixdata, aspect = 1,
trans = sqrt, inv = function(x) x^2)

hexbinplot(y ~ x | a, mixdata)
hexbinplot(y ~ x | a, mixdata, style = "lattice",

xbnds = "data", ybnds = "data")
hexbinplot(y ~ x | a, mixdata, style = "nested.centroids")
hexbinplot(y ~ x | a, mixdata, style = "nested.centroids",

border = FALSE, type = c("g", "smooth"))

hexbin Bivariate Binning into Hexagon Cells

Description

Creates a "hexbin" object. Basic components are a cell id and a count of points falling in each
occupied cell.

Basic methods are show(), plot() and summary(), but also erode.

Usage

hexbin(x, y, xbins = 30, shape = 1,
xbnds = range(x), ybnds = range(y),
xlab = NULL, ylab = NULL, IDs = FALSE)

hexbin 21

Arguments

x, y vectors giving the coordinates of the bivariate data points to be binned. Alter-
natively a single plotting structure can be specified: see xy.coords. NA’s are
allowed and silently omitted.

xbins the number of bins partitioning the range of xbnds.

shape the shape = yheight/xwidth of the plotting regions.

xbnds, ybnds horizontal and vertical limits of the binning region in x or y units respectively;
must be numeric vector of length 2.

xlab, ylab optional character strings used as labels for x and y. If NULL, sensible defaults
are used.

IDs logical indicating if the individual cell “IDs” should be returned, see also below.

Details

Returns counts for non-empty cells only. The plot shape must be maintained for hexagons to appear
with equal sides. Some calculations are in single precision.

Note that when plotting a hexbin object, the grid package is used. You must use its graphics (or
those from package lattice if you know how) to add to such plots.

Value

an S4 object of class "hexbin". It has the following slots:

cell vector of cell ids that can be mapped into the (x,y) bin centers in data units.

count vector of counts in the cells.

xcm The x center of mass (average of x values) for the cell.

ycm The y center of mass (average of y values) for the cell.

xbins number of hexagons across the x axis. hexagon inner diameter =diff(xbnds)/xbins
in x units

shape plot shape which is yheight(inches) / xwidth(inches)

xbnds x coordinate bounds for binning and plotting

ybnds y coordinate bounds for binning and plotting

dimen The i and j limits of cnt treated as a matrix cnt[i,j]

n number of (non NA) (x,y) points, i.e., sum(* @count).

ncells number of cells, i.e., length(* @count), etc

call the function call.

xlab, ylab character strings to be used as axis labels.

cID of class, "integer or NULL", only if IDs was true, an integer vector of
length n where cID[i] is the cell number of the i-th original point (x[i],
y[i]). Consequently, the cell and count slots are the same as the names
and entries of table(cID), see the example.

References

Carr, D. B. et al. (1987) Scatterplot Matrix Techniques for Large N . JASA 83, 398, 424–436.

22 hexGraphPaper

See Also

hcell2xy gplot.hexbin, grid.hexagons, grid.hexlegend.

Examples

set.seed(101)
x <- rnorm(10000)
y <- rnorm(10000)
(bin <- hexbin(x, y))
or
plot(hexbin(x, y + x*(x+1)/4),

main = "(X, X(X+1)/4 + Y) where X,Y ~ rnorm(10000)")

Using plot method for hexbin objects:
plot(bin, style = "nested.lattice")

hbi <- hexbin(y ~ x, xbins = 80, IDs= TRUE)
str(hbi)
tI <- table(hbi@cID)
stopifnot(names(tI) == hbi@cell,

tI == hbi@count)

NA's now work too:
x[runif(6, 0, length(x))] <- NA
y[runif(7, 0, length(y))] <- NA
hbN <- hexbin(x,y)
summary(hbN)

hexGraphPaper Create a Hexgon Grid

Description

Creates a hexagon grid that can be added to a plot created with grid graphics.

Usage

hexGraphPaper(hb, xbnds = NULL, ybnds = NULL, xbins = 30, shape = 1,
add = TRUE, fill.edges = 1, fill = 0, border = 1)

hgridcent(xbins, xbnds, ybnds, shape, edge.add = 0)

Arguments

hb a object of class "hexbin", typically produced by hexbin(*).

xbnds, ybnds horizontal and vertical limits of the binning region in x or y units respectively;
must be numeric vector of length 2.

xbins the number of bins partitioning the range of xbnds.

shape the shape = yheight/xwidth of the plotting regions.

add a logical value indicating whether or not to add the grid to the current plot.

fill.edges integer number of hexagons to add around the border

hexGraphPaper 23

fill the fill color for the hexagons

border the color of the border of the hexagons

edge.add offset (typically fill.edges above) used in hgridcent.

Details

If a hexbin object is given then the parameters xbins and shape are ignored. Different bounds can
still be specified. The fill.edges parameter should be an integer. fill.edges takes the
current grid and adds a layer of hexagons around the grid for each level of fill. So for example if
fill.edges= 2 than the dimensions of the grid would be (i,j)+4.

hgridcent() is the utility function computing the resulting list (see section “Value”).

WARNING! If using a hexVP be sure to set clip to "on", otherwise the hexagon grid will bleed
over the plot edges.

Value

Invisibly returns a list with th following components

x The x coordinates of the grid

y the y coordinates of the grid

dimen a vector of length 2 gining the rows and columns of the grid

dx the horizontal diameter of the hexagons

dy the vertical diameter of the hexagons

Author(s)

Nicholas Lewin-Koh

See Also

hcell2xy, hexpolygon, grid.hexagons

Examples

x <- rnorm(10000)
y <- rnorm(10000,x,x)
hbin <- hexbin(x,y)
hvp <- plot(hbin,type="n")
pushHexport(hvp$plot,clip="on")
hexGraphPaper(hbin,border=grey(.8))
grid.hexagons(hbin)

24 hexList

hexList Conditional Bivariate Binning into Hexagon Cells

Description

Creates a list of hexbin objects. Basic components are a cell id and a count of points falling in
each occupied cell. Basic methods are show(), plot() and summary(), but also erode.

Usage

hexList(x, y = NULL, given = NULL, xbins = 30, shape = 1,
xbnds = NULL, ybnds = NULL, xlab = NULL, ylab = NULL)

Arguments

x ~~Describe x here~~

y ~~Describe y here~~

given ~~Describe given here~~

xbins ~~Describe xbins here~~

shape ~~Describe shape here~~

xbnds ~~Describe xbnds here~~

ybnds ~~Describe ybnds here~~

xlab ~~Describe xlab here~~

ylab ~~Describe ylab here~~

Details

There is also a coerce method to produce hexbinList objects from lists.

Value

If it is a LIST, use

comp1 Description of ’comp1’

comp2 Description of ’comp2’

...

Author(s)

Nicholas Lewin-Koh

See Also

hexbin, hdiffplot

hexMA.loess 25

hexMA.loess Add Loess Fit to Hexplot

Description

Fit a loess line using the hexagon centers of mass as the x and y coordinates and the cell counts as
weights.

Usage

hexMA.loess(pMA, span = 0.4, col = "red", n = 200)
hexVP.loess(hbin, hvp = NULL, span = 0.4, col = "red", n = 200)

Arguments

hbin an object of class hexbin, see hexbin.

hvp A hexViewport object.

pMA the list returned by plotMAhex.

span the parameter alpha which controls the degree of smoothing.

col line color for the loess fit.

n number of points at which the fit should be evaluated.

Value

Returns invisibly the object associated with the loess fit.

Author(s)

Nicholas Lewin-Koh

See Also

hexVP.abline, plotMAhex, gplot.hexbin, hexViewport; loess

Examples

if(require(marray)){
data(swirl)
hb <- plotMAhex(swirl[,1], main = "M vs A plot with hexagons", legend=0)
hexVP.abline(hb$plot, h=0, col= gray(.6))
hexMA.loess(hb)

}

26 hexplom

hexplom Hexbin Plot Matrices

Description

hexplom draws Conditional Hexbin Plot Matrices. It is similar to splom, expect that the default
display is different. Specifically, the default display is created using panel.hexplom, which is
an alias for panel.hexbinplot.

Usage

hexplom(x, data, ...)

S3 method for class 'formula':
hexplom(x, data = NULL, ...)

S3 method for class 'data.frame':
hexplom(x, data = NULL, ..., groups = NULL, subset = TRUE)

S3 method for class 'matrix':
hexplom(x, data = NULL, ..., groups = NULL, subset = TRUE)

panel.hexplom(...)

Arguments

x The object on which method dispatch is carried out.
For the "formula" method, a formula describing the structure of the plot,
which should be of the form ~ x | g1 * g2 * ..., where x is a data
frame or matrix. Each of g1, g2, ... must be either factors or shingles.
The conditioning variables g1, g2, ... may be omitted.
For the data.frame and matrix methods, a data frame or matrix as appro-
priate.

data For the formula method, an optional data frame in which variables in the
formula (as well as groups and subset, if any) are to be evaluated. By
default, the environment where the function was called from is used.

groups, subset, ...
see splom. The non-standard evaluation of groups and subset only applies
in the formula method. Apart from arguments that apply to splom (many
of which are only documented in xyplot), additional arguments meant for
panel.hexplom (which is an alias for panel.hexbinplot) may also be
supplied. Such arguments may include ones that control details of the hexbin
calculations, documented in gplot.hexbin

Value

An object of class "trellis". The update method can be used to update components of the
object and the print method (usually called by default) will plot it on an appropriate plotting
device.

hexpolygon 27

Author(s)

Deepayan Sarkar 〈Deepayan.Sarkar@R-project.org〉, Nicholas Lewin-Koh 〈nikko@hailmail.net〉

See Also

splom, xyplot, hexbinplot, Lattice, panel.pairs

Examples

Simple hexplom
data(NHANES)
hexplom(~NHANES[,7:14], xbins=15)

With colors and conditioning
hexplom(~NHANES[,9:13] | Sex, data = NHANES,

xbins = 15, colramp = magent)

With custom panel function
hexplom(NHANES[,9:13], xbins = 20,colramp = BTY,

upper.panel = panel.hexboxplot)

hexpolygon Hexagon Coordinates and Polygon Drawing

Description

Simple ‘low-level’ function for computing and drawing hexagons. Can be used for ‘grid’ (package
grid) or ‘traditional’ (package graphics) graphics.

Usage

hexcoords(dx, dy = NULL, n = 1, sep = NULL)

hexpolygon(x, y, hexC = hexcoords(dx, dy, n = 1), dx, dy = NULL,
fill = 1, border = 0, hUnit = "native", ...)

Arguments

dx,dy horizontal and vertical width of the hexagon(s).

n number of hexagon “repeats”.

sep separator value to be put between coordinates of different hexagons. The default,
NULL doesn’t use a separator.

x,y numeric vectors of the same length specifying the hexagon centers around which
to draw.

hexC a list as returned from hexcoords(). Its component no.sep determines if
grid or traditional graphics are used. The default (via default of hexcoords)
is now to use grid graphics.

fill,border passed to grid.polygon (for grid).

28 hexpolygon

hUnit string or NULL determining in which units (x,y) values are.

... further arguments passed to polygon (for graphics).

Value

hexcoords() returns a list with components

x,y numeric vectors of length n × 6 (or n × 7 if sep is not NULL) specifying the
hexagon polygon coordinates (with sep appended to each 6-tuple).

no.sep a logical indicating if sep was NULL.

hexpolygon returns what its last grid.polygon(.) or polygon(.) call returns.

Author(s)

Martin Maechler, originally.

See Also

grid.hexagons which builds on these.

Examples

str(hexcoords(1, sep = NA)) # multiple of (6 + 1)
str(hexcoords(1, sep = NULL))# no separator -> multiple of 6

hexpolygon()s:
x <- runif(20, -2, 2)
y <- x + rnorm(20)

1) traditional 'graphics'
plot(x,y, asp = 1, "plot() + hexpolygon()")
hexpolygon(x,y, dx = 0.1, density = 25, col = 2, lwd = 1.5)

2) "grid" :

addBit <- function(bnds, f = 0.05) bnds + c(-f, f) * diff(bnds)
sc <- addBit(rxy <- range(x,y))# same extents (cheating asp=1)
grid.newpage()
pushViewport(plotViewport(.1+c(4,4,2,1), xscale = sc, yscale = sc))
grid.rect()
grid.xaxis()
grid.yaxis()
grid.points(x,y)
hexpolygon(x,y, hexcoords(dx = 0.1, sep=NULL), border = "blue", fill=NA)
popViewport()

hexTapply 29

hexTapply Apply function to data from each hexagon bin.

Description

A wrapper for tapply except that it operates with each hexagon bin being the category. The function
operates on the data associated on the points from each bin.

Usage

hexTapply(hbin, dat, FUN = sum, ..., simplify=TRUE)

Arguments

hbin a object of class "hexbin", typically produced by hexbin(*).

dat A vector of data the same length as hbin@cID

FUN the function to be applied. In the case of functions like +, %*%, etc., the function
name must be quoted. If FUN is NULL, tapply returns a vector which can be used
to subscript the multi-way array tapply normally produces.

... optional arguments to FUN.

simplify If FALSE, tapply always returns an array of mode "list". If TRUE (the
default), then if FUN always returns a scalar, tapply returns an array with the
mode of the scalar.

Details

This function is a wrapper for tapply, except that the cell id is always the categorical variable. This
function is specifically good for adding variables to the cAtt slot of a hexbin object or for plotting a
third variable in a hexagon plot. See below for examples.

Value

Returns a vector of the result of ’FUN’ as in tapply. See tapply for detailed description of
output.

Author(s)

Nicholas Lewin-Koh

See Also

tapply,hexbin

Examples

data(NHANES)
hbin<-hexbin(log(NHANES$Diet.Iron+1),log(NHANES$BMI),xbins=25,IDs=TRUE)
hvp<-plot(hbin)
mtrans<-hexTapply(hbin,NHANES$Transferin,median,na.rm=TRUE)
pushHexport(hvp$plot.vp)
grid.hexagons(hbin,style='lattice',pen=0,border='red',use.count=FALSE,

30 hexViewport

cell.at=mtrans)

hexViewport Compute a Grid Viewport for Hexagon / Hexbin Graphics

Description

Builds a grid viewport for hexagon or hexbin graphics. This builds on the concepts of the grid
package, see viewport.

Usage

hexViewport(x, offset = unit(0,"inches"), mar = NULL,
xbnds = NULL, ybnds = NULL, newpage = FALSE,
clip = "off", vp.name = NULL)

Arguments

x a hexbin object.

offset a unit object.

mar margins as units, of length 4 or 1.

xbnds, ybnds bounds for x- and y- plotting range; these default to the corresponding slots of
x.

newpage logical indicating if a new graphics page should be openend, i.e., grid.newpage().

clip simply passed to viewport().

vp.name name of viewport; defaults to random name.

Value

an S4 object of class "hexVP", see hexVP-class for more, with its main slot hexVp a viewport
for grid graphics.

See Also

viewport and the main “handlers” pushHexport and popViewport; further gplot.hexbin
and hboxplot which build on hexViewport.

Examples

set.seed(131)
x <- rnorm(7777)
y <- rt (7777, df=3)

lower resolution binning and overplotting with counts
bin <- hexbin(x,y,xbins=25)
P <- plot(bin)
xy <- hcell2xy(bin)
pushHexport(P$plot.vp)

hexVP.abline 31

i <- bin@count <= 3
grid.text(as.character(bin@count[i]), xy$x[i], xy$y[i],

default.units = "native")
grid.points(x[1:20],y[1:20]) # to show some points rather than counts
popViewport()

hexVP.abline Add a Straight Line to a HexPlot

Description

This function adds one or more straight lines through the current plot; it is the hexbin version of
abline().

Usage

hexVP.abline(hvp, a = NULL, b = NULL, h = numeric(0), v = numeric(0),
col = "black", lty = 1, lwd = 2, ...)

Arguments

hvp A hexViewport object that is currently on the active device

a,b the intercept and slope or if b is NULL, an lm object or a vector of length 2 with
c(intercept,slope)

h the y-value for a horizontal line.

v the x-value for a vertical line.
col, lty, lwd

line color, type and width.

... further graphical parameters.

Details

The first form specifies the line in intercept/slope form (alternatively a can be specified on its own
and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.

The coef form specifies the line by a vector containing the slope and intercept.

lm is a regression object which contains reg$coef. If it is of length 1 then the value is taken to
be the slope of a line through the origin, otherwise, the first 2 values are taken to be the intercept
and slope.

Author(s)

Nicholas Lewin-Koh

See Also

gplot.hexbin, hexViewport, hexMA.loess

32 hexVP-class

hexVP-class Formal class "hexVP" of a Hexagon Viewport

Description

Hexagon Viewports are “value-added” grid viewports (see viewport) where the extra slots con-
tain scaling and “embedding” information. A hexViewport is created my taking the available area
in the cuurent viewport on the graphics device and maximizing the amount of area with a fied aspect
ratio. The default when the shape parameter is 1, is a 1:1 aspect ratio in terms of the size of the
viewport, not the scale of the x and y axis. The plotting area is centered within the existing margins
and the maximum size determined. Extra area is then allocated to the margins. This viewport is
replicated twice, once with clipping set to "on" and once with clipping "off". This feature can be
used for toggling clipping on and off while editing the plot.

Objects from the Class

Objects are typically created by calls to hexViewport() or by low level calls of the form
new("hexVP", ...).

Slots

hexVp.off: Object of class "viewport" with clipping set to off, see viewport.

hexVp.off: Object of class "viewport", with the same dimensions and parameters as hexVp.off,
but with clipping set to on, see viewport.

mar: unit vector of four margins (typically in "lines").

fig: unit vector of two figure sizes (typically in "npc").

plt: unit vector of two figure sizes (typically in "npc").

xscale: numeric of length two specifying x-range.

yscale: numeric of length two specifying y-range.

Methods

These are methods accessing the slots of corresponding name.

getFig signature(hvp = "hexVP"): ...

getMargins signature(hvp = "hexVP"): ...

getPlt signature(hvp = "hexVP"): ...

getXscale signature(hvp = "hexVP"): ...

getYscale signature(hvp = "hexVP"): ...

Author(s)

Nicholas Lewin-Koh 〈kohnicho@comp.nus.edu.sg〉.

See Also

The constructor function hexViewport. hexbin, and its S4 plotting method, gplot.hexbin.

hsmooth-methods 33

Examples

example(hexViewport, echo=FALSE)
continued:
str(P$plot.vp)

hsmooth-methods Hexagon Bin Smoothing: Generic hsmooth() and Methods

Description

Methods for the generic function hsmooth in package hexbin: There is currently only the one for
hexbin objects.

Usage

S4 method for signature 'hexbin':
hsmooth(bin, wts)

Arguments

bin a hexbin object, or an extension such as erodebin-class.

wts weights vector, see smooth.hexbin

Methods

bin = "hexbin" is just the smooth.hexbin function (for back compatibility); see its documen-
tation, also for examples.

inout.hex Check points for inclusion

Description

Check which points are in hexagons with count <= mincnt.

Usage

inout.hex(hbin, mincnt)

Arguments

hbin an object of class hexbin.

mincnt Cutoff, id’s for counts less than mincnt are returned

Details

Check which points are in hexagons with count <= mincnt and returns the row ids for those points.
One can use the ids to plot low ount hexagons as points instead.

34 list2hexList

Value

A vector with the row ids of points which fall in hexagons with count less than or equal to mincnt

Author(s)

Nicholas Lewin-Koh

See Also

plotMAhex

list2hexList Convert list to hexList

Description

Converts a list of hexbin objects with same xbnds, ybnds, shape and xbins to a hexList object.

Usage

list2hexList(binlst)

Arguments

binlst A list of hexbin objects

Value

a hexList object

Author(s)

Nicholas Lewin-Koh

See Also

hexList,hdiffplot

NHANES 35

NHANES NHANES Data : National Health and Nutrition Examination Survey

Description

This is a somewhat large interesting dataset, a data frame of 15 variables (columns) on 9575 persons
(rows).

Usage

data(NHANES)

Format

This data frame contains the following columns:

Cancer.Incidence binary factor with levels No and Yes.

Cancer.Death binary factor with levels No and Yes.

Age numeric vector giving age of the person in years.

Smoke a factor with levels Current, Past, Nonsmoker, and Unknown.

Ed numeric vector of {0, 1} codes giving the education level.

Race numeric vector of {0, 1} codes giving the person’s race.

Weight numeric vector giving the weight in kilograms

BMI numeric vector giving Body Mass Index, i.e., Weight/Height^2 where Height is in me-
ters, and missings (61% !) are coded as 0 originally.

Diet.Iron numeric giving Dietary iron.

Albumin numeric giving albumin level in g/l.

Serum.Iron numeric giving Serum iron in µg/l.

TIBC numeric giving Total Iron Binding Capacity in µg/l.

Transferin numeric giving Transferin Saturation which is just 100*serum.iron/TIBC.

Hemoglobin numeric giving Hemoglobin level.

Sex a factor with levels F (female) and M (male).

Source

unknown

Examples

data(NHANES)
summary(NHANES)
Missing Data overview :
nNA <- sapply(NHANES, function(x)sum(is.na(x)))
cbind(nNA[nNA > 0])
Which are just these 6 :
Not run:
Diet.Iron 141
Albumin 252

36 optShape

Serum.Iron 1008
TIBC 853
Transferin 1019
Hemoglobin 759
End(Not run)

old-classes Class "unit" and "viewport" as S4 classes

Description

Package "hexbin" now uses S4 classes throughout and hence needs to setOldClass both "unit"
and "viewport" (which are S3 classes from the grid package), in order to be able to use those
in slots of its own classes.

Objects from the Class

A virtual Class: No objects may be created from it.

Extends

Class "oldClass", directly.

Methods

No methods defined with class "unit" in the signature.

optShape Optimal Shape Parameter for Hexbin Viewport

Description

Takes a viewport or a given height and width and returns the shape parameter that will fill the spec-
ified plotting region with the appropriately shaped hexagons. If margins are specified the margins
are subtracted from height and width before the shape parameter is specified.

Usage

optShape(vp, height = NULL, width = NULL, mar = NULL)

Arguments

vp a viewport object, optional see details

height the height of the plotting region, can be numeric or units

width The width of the plotting region, can be numeric or units

mar A four element numeric or units vector describing the margins in the order
c(bottom, left, top, right)

panel.hexboxplot 37

Value

a scalar numeric value specifiyng shape.

Warning

If a viewport is given as an argument it should already be pushed on the graphics device or it will
have null units and a meaningless shape parameter will be returned.

Author(s)

Nicholas Lewin-Koh

See Also

hexViewport, hexVP-class, hexbin

Examples

x <- rgamma(10000,.9)
m <- as.logical(rbinom(10000,1,.17))
x[m] <- -x[m]
y <- rnorm(x,abs(x))
vp <- plotViewport(xscale= range(x)+c(-.5,.5),

yscale= range(y)+c(-.5,.5),
default.units = "native")

grid.newpage()
pushViewport(vp)
grid.rect()
shape <- optShape(vp)
shape
hb <- hexbin(x,y,xbins=40,shape=shape)
grid.hexagons(hb,colramp=BTY)

panel.hexboxplot Boxplot for hexbin lattice plot

Description

A panel function to add a boxplot to a hexbin lattice plot.

Usage

panel.hexboxplot(x, y, xbins = 30,
xbnds = c("data", "panel"), ybnds = c("data", "panel"),
.prelim = FALSE, .cpl = current.panel.limits(),
.xlim = .cpl$xlim, .ylim = .cpl$ylim,
.aspect.ratio, type = character(0), cdfcut = 0.25,
shadow = 0.05, ..., check.erosion = TRUE)

38 panel.hexgrid

Arguments

x, y numeric vector or factor.

xbins the number of bins partitioning the range of xbnds.

xbnds, ybnds horizontal and vertical limits of the binning region in x or y units respectively;
must be numeric vector of length 2.

.prelim, .cpl, .xlim, .ylim, .aspect.ratio
for internal use.

type character vector controlling additional augmentation of the display. A "g" in
type adds a reference grid, an "hg" adds a hexagonal grid.

cdfcut number in (0,1) indicating the confidence level for the erosion limits. See erode.hexbin
for more information.

shadow number in (0,1) indicating the confidence level for the erosion limits of a boxplot
shadow. See erode.hexbin for more information.

... potential further arguments passed on.
check.erosion

logical indicating only eroded points should be used for "erodebin" objects;
simply passed to hcell2xy, see its documentation.

Value

There is no return value from this function. The results are plotted on the current active device.

Author(s)

Nicholas Lewin-Koh 〈nikko@hailmail.net〉

See Also

hexbinplot, panel.hexgrid, panel.boxplot

Examples

mixdata <-
data.frame(x = c(rnorm(5000),rnorm(5000,4,1.5)),

y = rep(1:2, 5000))
hexbinplot(y ~ x, mixdata, panel = panel.hexboxplot)

panel.hexgrid Hexagonal grid for a lattice plot

Description

A panel function to add a hexagonal grid to a lattice plot.

Usage

panel.hexgrid(h, border = grey(0.85))

panel.hexloess 39

Arguments

h an object of class hexbin.

border a color for the hexagon border colors

Value

There is no return value from this function. The results are plotted on the current active device.

Author(s)

Nicholas Lewin-Koh 〈nikko@hailmail.net〉

See Also

hexbinplot, hexGraphPaper

panel.hexloess Loess line for hexbin lattice plot

Description

A panel function to add a loess line to a hexbin lattice plot.

Usage

panel.hexloess(bin, w = NULL, span = 2/3, degree = 1, family = c("symmetric", "gaussian"), evaluation = 50,
lwd = add.line$lwd, lty = add.line$lty, col, col.line = add.line$col, ...)

Arguments

bin an object of class hexbin.

w optional counts for object bin.

span smoothness parameter for loess.

degree degree of local polynomial used.

family if "gaussian" fitting is by least-squares, and if "symmetric" a re-descending
M-estimator is used.

evaluation number of points at which to evaluate the smooth curve.

lwd line weight graphical parameter.

lty line type graphical parameter.

col same as col.line.

col.line line color graphical parameter.

... optional arguments to loess.control.

Value

There is no return value from this function. The results are plotted on the current active device.

40 plotMAhex

Author(s)

Nicholas Lewin-Koh 〈nikko@hailmail.net〉

See Also

hexbinplot, panel.hexgrid, loess.smooth, loess.control, panel.loess

plotMAhex MA-plot using hexagon bins

Description

Creates an MA-plot using hexagons with color/glyph coding for control spots.

Usage

plotMAhex(MA, array = 1, xlab = "A", ylab = "M",
main = colnames(MA)[array], xlim = NULL, ylim = NULL,
status = NULL, values, pch, col, cex, nbin = 40,
zero.weights = FALSE, style = "colorscale", legend = 1.2,
lcex = 1, minarea = 0.04, maxarea = 0.8, mincnt = 2,
maxcnt = NULL, trans = NULL, inv = NULL, colorcut = NULL,
border = NULL, density = NULL, pen = NULL,
colramp = function(n) { LinGray(n, beg = 90, end = 15) },
newpage = TRUE, type = c("p", "l", "n"),
xaxt = c("s", "n"), yaxt = c("s", "n"),
verbose = getOption("verbose"))

Arguments

MA an RGList, MAList or MArrayLM object, or any list with components M con-
taining log-ratios and A containing average intensities. Alternatively a matrix,
Affybatch or ExpressionSet object.

array integer giving the array to be plotted. Corresponds to columns of M and A.
xlab, ylab, main

character strings giving label for x-axis, y-axis or main tile of the plot.

xlim, ylim numeric vectors of length 2 giving limits for x-axis (or y-axis respectively), de-
faulting to min and max of the data.

status character vector giving the control status of each spot on the array, of same
length as the number of rows of MA$M. If omitted, all points are plotted in the
default color, symbol and size.

values character vector giving values of status to be highlighted on the plot. Defaults
to unique values of status. Ignored if there is no status vector.

pch vector or list of plotting characters. Default to integer code 16. Ignored is there
is no status vector.

col numeric or character vector of colors, of the same length as values. Defaults
to 1:length(values). Ignored if there is no status vector.

plotMAhex 41

cex numeric vector of plot symbol expansions, of the the same length as values.
Defaults to 0.2 for the most common status value and 1 for the others. Ignored
if there is no status vector.

nbin ~~Describe nbin here~~

zero.weights logical, should spots with zero or negative weights be plotted?

style string specifying the style of hexagon plot, see grid.hexagons for the pos-
sibilities.

legend numeric width of the legend in inches of FALSE. In the latter case, or when 0,
no legend is not produced.

lcex characters expansion size for the text in the legend.

minarea fraction of cell area for the lowest count.

maxarea fraction of the cell area for the largest count.

mincnt cells with fewer counts are ignored.

maxcnt cells with more counts are ignored.

trans function specifying a transformation for the counts such as sqrt.

inv the inverse transformation of trans.

colorcut vector of values covering [0, 1] that determine hexagon color class boundaries
and hexagon legend size boundaries. Alternatively, an integer (<= maxcnt)
specifying the number of equispaced colorcut values in [0,1].

border, density, pen
color for polygon borders and filling of each hexagon drawn, passed to grid.hexagons.

colramp function accepting an integer n as an argument and returning n colors.

newpage should a new page start?
type, xaxt, yaxt

strings to be used (when set to "n") for suppressing the plotting of hexagon
symbols, or the x- or y-axis, respectively.

verbose logical indicating if some diagnostic output should happen.

Details

An MA-plot is a plot of log-intensity ratios (M-values) versus log-intensity averages (A-values). If
MA is an RGList or MAList then this function produces an ordinary within-array MA-plot. If MA
is an MArrayLM object, then the plot is an fitted model MA-plot in which the estimated coefficient
is on the y-axis and the average A-value is on the x-axis.

If MA is a matrix or ExpressionSet object, then this function produces a between-array MA-
plot. In this case the A-values in the plot are the average log-intensities across the arrays and the
M-values are the deviations of the log-intensities for the specified array from the average. If there
are more than five arrays, then the average is computed robustly using medians. With five or fewer
arrays, it is computed by means.

The status vector is intended to specify the control status of each spot, for example "gene",
"ratio control", "house keeping gene", "buffer" and so on. The vector is usually computed using the
function controlStatus from package limma and a spot-types file. However the function may
be used to highlight any subset of spots.

The arguments values, pch, col and cex can be included as attributes to status instead of
being passed as arguments to plotMA.

See points for possible values for pch, col and cex.

42 pushHexport

Value

A plot is created on the current graphics device. and a list with the following items is returned
invisibly:

plot.vp the hexViewport constructed and used.

legend.vp if a legend has been produced, its viewport.

hbin a hexbin object built with A as the x coordinate and M as the y coordinate.

Author(s)

Nicholas Lewin-Koh, adapted from code by Gordon Smyth

References

See http://www.statsci.org/micrarra/refs/maplots.html

See Also

plotMA from package limma, and gplot.hexbin.

Examples

if(require(marray)){
data(swirl)
hb <- plotMAhex(swirl[,1],newpage=FALSE,

main = "M vs A plot with hexagons", legend=0)
hexVP.abline(hb$plot.vp,h=0,col=gray(.6))
hexMA.loess(hb)

}

pushHexport Push a Hexagon Viewport ("hexVP")

Description

Push a Hexagon Viewport ("hexVP", see hexVP-class) on to the tree of (grid) viewports, calling
pushViewport.

Usage

pushHexport(hvp, clip = "off")

Arguments

hvp a hexagon viewport, i.e., an object of class "hexVP", see hexVP-class, typi-
cally produced by hexViewport(..).

clip which viewport to push, either ’on’ or ’off’ are the allowed arguments, see de-
tails.

http://www.statsci.org/micrarra/refs/maplots.html

smooth.hexbin 43

Details

A hexagon viewport ("hexVP") object has slots for two replicate viewports one with clipping
turned on and one with clipping off. This allows toggling the clipping option.

See Also

the underlying pushViewport from the grid package.

smooth.hexbin Hexagon Bin Smoothing

Description

Given a "hexbin" (hexagon bin) object, compute a discrete kernel smoother that covers seven
cells, namely a center cell and its six neighbors. With two iterations the kernel effectively covers
1+6+12=19 cells.

Usage

smooth.hexbin(bin, wts=c(48,4,1))

Arguments

bin object of class "hexbin", typically resulting from hexbin() or erode,hexbin-
method.

wts numeric vector of length 3 for relative weights of the center, the six neighbor
cells, and twelve second neighbors.

Details

This discrete kernel smoother uses the center cell, immediate neighbors and second neighbors to
smooth the counts. The counts for each resulting cell is a linear combination of previous cell counts
and weights. The weights are

1 center cell, weight = wts[1]
6 immediate neighbors weight = wts[2]
12 second neighbors weight =wts[3]

If a cell, its immediate and second neighbors all have a value of max(cnt), the new maximum
count would be max(cnt)*sum(wts). It is possible for the counts to overflow.

The domain for cells with positive counts increases. The hexbin slots xbins, xbnds, ybnds, and
dimen all reflect this increase. Note that usually dimen[2] = xbins+1.

The intent was to provide a fast, iterated, immediate neighbor smoother. However, the current
hexbin plotting routines only support shifting even numbered rows to the right. Future work can

(1) add a shift indicator to hexbin objects that indicates left or right shifting.
(2) generalize plot.hexbin() and hexagons()
(3) provide an iterated kernel.

With wts[3]=0, the smoother only uses the immediate neighbors. With a shift indicator the

44 smooth.hexbin

domain could increase by 2 rows (one bottom and on top) and 2 columns (one left and one right).
However the current implementation increases the domain by 4 rows and 4 columns, thus reducing
plotting resolution.

Value

an object of class "smoothbin", extending class "hexbin", see hexbin. The object includes
the additional slot wts.

References

see grid.hexagons and hexbin.

See Also

hexbin, erode.hexbin, hcell2xy, gplot.hexbin, hboxplot, grid.hexagons, grid.hexlegend.

Examples

x <- rnorm(10000)
y <- rnorm(10000)
bin <- hexbin(x,y)
show the smooth counts in gray level
smbin <- smooth.hexbin(bin)
plot(smbin, main = "smooth.hexbin(.)")

Compare the smooth and the origin
smbin1 <- smbin
smbin1@count <- as.integer(ceiling(smbin@count/sum(smbin@wts)))
plot(smbin1)
smbin2 <- smooth.hexbin(bin,wts=c(1,0,0)) # expand the domain for comparability
plot(smbin2)

Index

∗Topic aplot
grid.hexagons, 6
grid.hexlegend, 9
hexGraphPaper, 21
hexMA.loess, 24
hexpolygon, 26
hexViewport, 29
hexVP.abline, 30

∗Topic classes
hexVP-class, 31
old-classes, 35

∗Topic color
ColorRamps, 1

∗Topic datasets
NHANES, 34

∗Topic dplot
hcell2xyInt, 12
hexbin, 19
hexbinplot, 16
hexGraphPaper, 21
hexList, 23
hexpolygon, 26
hexTapply, 28
optShape, 35
pushHexport, 41

∗Topic hplot
erode.hexbin, 2
gplot.hexbin, 4
hboxplot, 11
hdiffplot, 14
hexplom, 25
hexViewport, 29
panel.hexboxplot, 36
panel.hexgrid, 37
panel.hexloess, 38
plotMAhex, 39

∗Topic manip
hcell2xy, 13

∗Topic methods
getHMedian, 3
hsmooth-methods, 32

∗Topic misc
hcell2xyInt, 12

hexList, 23
inout.hex, 32
list2hexList, 33
smooth.hexbin, 42

∗Topic utilities
hexTapply, 28

abline, 30

BTC (ColorRamps), 1
BTY (ColorRamps), 1

coerce, 23
coerce,list,hexbinList-method

(hexList), 23
ColorRamps, 1
controlStatus, 40

erode, 11, 12, 19, 23
erode (erode.hexbin), 2
erode,hexbin-method, 42
erode,hexbin-method

(erode.hexbin), 2
erode.hexbin, 2, 3, 4, 6, 8, 10, 15, 37, 43
erodebin-class, 13, 32
erodebin-class, 5
erodebin-class (erode.hexbin), 2

function, 5, 40

getFig,hexVP-method
(hexVP-class), 31

getHMedian, 3
getHMedian,erodebin-method

(getHMedian), 3
getMargins,hexVP-method

(hexVP-class), 31
getPlt,hexVP-method

(hexVP-class), 31
getXscale,hexVP-method

(hexVP-class), 31
getYscale,hexVP-method

(hexVP-class), 31
gplot.hexbin, 3, 4, 8, 10, 12, 15, 17, 18,

21, 24, 25, 29–31, 41, 43

45

46 INDEX

grid.hexagons, 3–5, 6, 10, 12, 15, 18, 21,
22, 27, 40, 43

grid.hexlegend, 3, 8, 9, 12, 15, 21, 43
grid.newpage, 29
grid.polygon, 7, 26, 27

hboxplot, 6, 8, 11, 15, 29, 43
hcell2xy, 3, 6–8, 10, 12, 13, 13, 15, 21, 22,

37, 43
hcell2xy,hexbin-method

(hcell2xy), 13
hcell2xyInt, 12
hdiffplot, 6, 8, 14, 23, 33
heat.ob (ColorRamps), 1
hexbin, 2–15, 19, 19, 21, 23, 24, 28, 29, 31,

32, 36, 42, 43
hexbin-class (hexbin), 19
hexbinList-class (hexList), 23
hexbinplot, 16, 26, 37–39
hexcoords (hexpolygon), 26
hexGraphPaper, 21, 38
hexlegendGrob (hexbinplot), 16
hexList, 23, 33
hexMA.loess, 24, 30
hexplom, 25
hexpolygon, 22, 26
hexTapply, 28
hexViewport, 5, 6, 12, 24, 29, 30, 31, 36,

41
hexVP-class, 36
hexVP-class, 29, 31, 41
hexVP.abline, 24, 30
hexVP.loess (hexMA.loess), 24
hgridcent (hexGraphPaper), 21
hsmooth (hsmooth-methods), 32
hsmooth,hexbin-method

(hsmooth-methods), 32
hsmooth-methods, 32
hsv, 2

inout.hex, 32
integer or NULL-class (hexbin), 19

Lattice, 26
LinGray, 8
LinGray (ColorRamps), 1
LinOCS (ColorRamps), 1
list, 23
list2hexList, 33
loess, 24
loess.control, 38, 39
loess.smooth, 39

magent (ColorRamps), 1

NA, 20
names, 20
NHANES, 34

old-classes, 35
optShape, 35

panel.boxplot, 37
panel.hexbinplot, 25
panel.hexbinplot (hexbinplot), 16
panel.hexboxplot, 36
panel.hexgrid, 37, 37, 39
panel.hexloess, 38
panel.hexplom (hexplom), 25
panel.loess, 39
panel.pairs, 26
par, 9
plinrain (ColorRamps), 1
plot, 5
plot,hexbin,missing-method

(gplot.hexbin), 4
plotMA, 41
plotMAhex, 24, 33, 39
points, 40
polygon, 10, 11, 27
popViewport, 29
prepanel.hexbinplot (hexbinplot),

16
print, 25
pushHexport, 29, 41
pushViewport, 41, 42

rainbow, 2
rgb, 2

setOldClass, 35
show, 19, 23
show,hexbin-method (hexbin), 19
smooth.hexbin, 3, 6, 8, 10, 15, 32, 42
smoothbin-class (smooth.hexbin),

42
splom, 25, 26
sqrt, 7, 10
summary, 19, 23
summary,hexbin-method (hexbin), 19

tapply, 28
terrain.colors, 2

unit, 7, 29, 31
unit-class (old-classes), 35
update, 25

viewport, 5, 29, 31, 41

INDEX 47

viewport-class (old-classes), 35

xy.coords, 20
xyplot, 17–19, 25, 26

	ColorRamps
	erode.hexbin
	getHMedian
	gplot.hexbin
	grid.hexagons
	grid.hexlegend
	hboxplot
	hcell2xyInt
	hcell2xy
	hdiffplot
	hexbinplot
	hexbin
	hexGraphPaper
	hexList
	hexMA.loess
	hexplom
	hexpolygon
	hexTapply
	hexViewport
	hexVP.abline
	hexVP-class
	hsmooth-methods
	inout.hex
	list2hexList
	NHANES
	old-classes
	optShape
	panel.hexboxplot
	panel.hexgrid
	panel.hexloess
	plotMAhex
	pushHexport
	smooth.hexbin
	Index

