
graph
November 11, 2009

R topics documented:
acc-methods . 2
addEdge . 3
addNode . 4
adj-methods . 5
apoptosisGraph . 6
attrData-class . 7
attrDataItem-methods . 8
attrDefaults-methods . 9
aveNumEdges . 9
biocRepos . 10
boundary . 11
buildRepDepGraph . 12
calcProb . 13
calcSumProb . 13
clearNode . 14
clusterGraph-class . 15
clusteringCoefficient-methods . 16
combineNodes . 17
DFS . 18
distGraph-class . 19
duplicatedEdges . 20
edgeDataDefaults-methods . 21
edgeData-methods . 22
edgeMatrix . 22
edgeWeights . 24
fromGXL-methods . 25
graph2SparseM . 27
graphAM-class . 28
graph-class . 30
graphExamples . 32
graphNEL-class . 32
graphRendering . 34
integrinMediatedCellAdhesion . 35
inEdges . 36
internal . 37
isAdjacent-methods . 37
isDirected-methods . 37

1

2 acc-methods

leaves . 38
listEdges . 38
MAPKsig . 39
Coercions between matrix and graph representations 40
mostEdges . 42
multiGraph-class . 43
nodeDataDefaults-methods . 44
nodeData-methods . 44
numNoEdges . 45
pancrCaIni . 45
randomEGraph . 46
randomGraph . 47
randomNodeGraph . 48
removeEdge . 49
removeNode . 50
renderInfo-class . 51
reverseEdgeDirections . 53
graph.par . 54
simpleEdge-class . 54
Standard labeling of edges with integers . 55
subGraph . 56
toDotR-methods . 57
ugraph . 58
validGraph . 59
write.tlp . 60

Index 61

acc-methods Methods for Accessibility Lists

Description

This generic function takes an object that inherits from the graph class and a node in that graph
and returns a vector containing information about all other nodes that are accessible from the given
node. The methods are vectorized so that index can be a vector.

Usage

S4 method for signature 'graph, character':
acc(object, index)
S4 method for signature 'clusterGraph, character':
acc(object, index)

Arguments

object An instance of the appropriate graph class.

index A character vector specifying the nodes for which accessibilty information is
wanted.

addEdge 3

Value

The methods should return a named list of integer vectors. The names of the list correspond to the
names of the supplied nodes. For each element of the list the returned vector is named. The names
of the vector elements correspond to the nodes that are accessible from the given node. The values
in the vector indicate how many edges are between the given node and the node in the return vector.

Methods

object = graph An object of class graph.

object = clusterGraph An instance of the clusterGraph class.

index A character vector of indices corresponding to nodes in the graph.

Examples

set.seed(123)
gR3 <- randomGraph(LETTERS[1:10], M<-1:2, p=.5)
acc(gR3, "A")
acc(gR3, c("B", "D"))

addEdge addEdge

Description

A function to add an edge to a graph.

Usage

addEdge(from, to, graph, weights)

Arguments

from The node the edge starts at

to The node the edge goes to.

graph The graph that the edge is being added to.

weights A vector of weights, one for each edge.

Details

Both from and to can be vectors. They need not be the same length (if not the standard rules for
replicating the shorter one are used). Edges are added to the graph between the supplied nodes.

The weights are given for each edge.

The implementation is a bit too oriented towards the graphNEL class and will likely change in the
next release to accomodate more general graph classes.

If the graph is undirected then the edge is bidirectional (and only needs to be added once). For
directed graphs the edge is directional.

Value

A new instance of a graph object with the same class as graph but with the indicated edges added.

4 addNode

Author(s)

R. Gentleman

See Also

addNode,removeEdge, removeNode

Examples

V <- LETTERS[1:4]
edL2 <- vector("list", length=4)
names(edL2) <- V
for(i in 1:4)
edL2[[i]] <- list(edges=c(2,1,2,1)[i], weights=sqrt(i))

gR2 <- new("graphNEL", nodes=V, edgeL=edL2, edgemode="directed")

gX <- addEdge("A", "C", gR2, 1)

gR3 <- randomEGraph(letters[10:14], .4)
gY <- addEdge("n", "l", gR3, 1)

addNode addNode

Description

Add one or more nodes to a graph.

Usage

addNode(node, object, edges)

Arguments

node A character vector of node names.

object A graph

edges A named list of edges.

Details

The supplied nodes are added to the set of nodes of the object.

If edges are provided then their must be the same number as there are nodes and the must be in
the same order. The elements of the edges list are vectors. They can be character vectors of node
labels for nodes in object and if so then they are added with unit weights. If the vector is numeric
then it must be named (with labels corresponding to nodes in the object) and the values are taken
to be the edge weights.

When the object is a distGraph then the edges must be supplied and they must contain
appropriate distances for all nodes both those in object and those supplied.

adj-methods 5

Value

A new graph of the same class as object with the supplied node added to the set of nodes.

Author(s)

R. Gentleman

See Also

removeNode, removeEdge, addEdge

Examples

V <- LETTERS[1:4]
edL1 <- vector("list", length=4)
names(edL1) <- V
for(i in 1:4)

edL1[[i]] <- list(edges=c(2,1,4,3)[i], weights=sqrt(i))
gR <- new("graphNEL", nodes=V, edgeL=edL1)
gX <- addNode("X", gR)

set.seed(123)
g1 <- randomGraph(letters[1:10], 1:4, p=.3)
g2 <- addNode("z", g1, edges=list(c("a", "h", "g")))

adj-methods Methods for finding the adjacency list for selected nodes.

Description

This generic function takes an object that inherits from the graph class and a node in that graph
and returns a vector containing information about all other nodes that are adjacent to the given node.
This means that they are joined to the given node by an edge. The accessibility list, acc is the list
of all nodes that can be reached from a specified node.

Value

The methods return vector of nodes that are adjacent to the specified node.

Methods

object = graph An object that inherits from glass graph

index An index (could be multiple) which can be either the integer offset for the node(s) or their
labels.

See Also

acc-methods

6 apoptosisGraph

Examples

set.seed(123)
gR3 <- randomGraph(LETTERS[1:4], M<-1:2, p=.5)
adj(gR3, "A")
adj(gR3, c(2,3))

apoptosisGraph KEGG apoptosis pathway graph

Description

A graph representing the apoptosis pathway from KEGG, as well as a data.frame of attributes for
use in plotting the graph with Rgraphviz and a list to compare the nodes with their respective
LocusLink IDs.

Usage

data(apopGraph)

Details

The apopGraph data set contains three objects:

The first is apopGraph, which is an object of class graph-NEL and represents the hsa04210
graph from KEGG.

The second is apopAttrs, which is a data.frame with two columns, and a row for every node
in apopGraph. The first column lists what color the node is represented with on the KEGG site.
The second column lists the type of the node - either genesym or text. Most nodes are of type
genesym as they represent genes, but some of the nodes in the KEGG graph were not genes and
thus those nodes are of type text.

The third, apopLocusLink is a named list where the names correspond to the node names in
apopGraph. The values of the list are the LocusLink IDs that correspond to that node in the
KEGG graph.

Source

http://www.genome.ad.jp/kegg/pathway/hsa/hsa04210.html

Examples

data(apopGraph)
if (require("Rgraphviz") & interactive())
plot(apopGraph)

http://www.genome.ad.jp/kegg/pathway/hsa/hsa04210.html

attrData-class 7

attrData-class Class "attrData"

Description

A container class to manage generic attributes. Supports named attributes with default values with
methods for vectorized access.

Objects from the Class

Objects can be created by calls of the form new("attrData", defaults). The defaults
argument should be a named list containing the initial attribute names and default values.

Slots

data: Where custom attribute data is stored

defaults: A named list of known attribute names and defualt values.

Methods

attrDataItem<- signature(self = "attrData", x = "character", attr = "character"):
...

attrDataItem signature(self = "attrData", x = "character", attr = "missing"):
...

attrDataItem signature(self = "attrData", x = "character", attr = "character"):
...

attrDefaults<- signature(self = "attrData", attr = "character", value =
"ANY"): ...

attrDefaults<- signature(self = "attrData", attr = "missing", value = "list"):
...

attrDefaults signature(self = "attrData", attr = "missing"): ...

attrDefaults signature(self = "attrData", attr = "character"): ...

initialize signature(.Object = "attrData"): ...

names return the names of the stored attributes

names<- set the names of the stored attributes

removeAttrDataItem signature(self="attrData", x="character", value="NULL"):
Remove the data associated with the key specified by x.

Author(s)

Seth Falcon

8 attrDataItem-methods

Examples

defaultProps <- list(weight=1, color="blue", friends=c("Bob", "Alice"))
adat <- new("attrData", defaults=defaultProps)

Get all defaults
attrDefaults(adat)

Or get only a specific attribute
attrDefaults(adat, attr="color")

Update default weight
attrDefaults(adat, attr="weight") <- 500

Add new attribute
attrDefaults(adat, attr="length") <- 0

Asking for the attributes of an element you haven't customized
returns the defaults
attrDataItem(adat, x=c("n1", "n2"), attr="length")

You can customize values
attrDataItem(adat, x=c("n1", "n2"), attr="length") <- 5

What keys have been customized?
names(adat)

attrDataItem-methods
Get and set attributes values for items in an attrData object

Description

The attrDataItem method provides get/set access to items stored in a attrData-class
object.

Usage

attrDataItem(self, x, attr)
attrDataItem(self, x, attr) <- value

Arguments

self A attrData-class instance

x A character vector of item names

attr A character vector of length 1 giving the attribute name to get/set. Note that
the attribute name must have already been defined for the attrData object
via attrDefaults. If missing, return a list of all attributes for the specified
nodes.

attrDefaults-methods 9

value An R object to set as the attribute value for the specified items. If the object has
length one or does not have a length method defined, it will be assigned to all
items in x. If the length of value is the same as x, the corresponding elements
will be assigned. We will add an argument to indicate that the value is to be
taken as-is for those cases where the lengths are the same coincidentally.

attrDefaults-methods
Get and set the default attributes of an attrData object

Description

The attrDefaults method provides access to a attrData-class object’s default attribute
list. The default attribute list of a attrData-class object defines what attributes can be cus-
tomized for individual data elements by defining attribute names and default values.

Usage

attrDefaults(self, attr)
attrDefaults(self, attr) <- value

Arguments

self A attrData-class instance

attr A character vector of length 1 giving the name of an attribute. Can be
missing.

value An R object that will be used as the default value of the specified attribute, or a
named list of attribute name/default value pairs if attr is missing.

aveNumEdges Calculate the average number of edges in a graph

Description

aveNumEdges divides the number of edges in the graph by the number of nodes to give the average
number of edges.

Usage

aveNumEdges(objgraph)

Arguments

objgraph the graph object

Value

A double representing the average number of edges will be returned.

10 biocRepos

Author(s)

Elizabeth Whalen

See Also

numEdges, mostEdges, numNoEdges

Examples

set.seed(124)
g1 <- randomGraph(1:10, letters[7:12], p=.6)
aveNumEdges(g1)

biocRepos A graph representing the Bioconductor package repository

Description

This graph is a rendition of the Bioconductor package repository and represents the dependency
graph of that repository. An edge between two package denotes a dependency on the ’to’ package
by the ’from’ package.

Usage

data(biocRepos)

Source

This graph was generated by the function buildRepDepGraph.

See Also

buildRepDepGraph

Examples

data(biocRepos)
An example of usage will be here soon

boundary 11

boundary Returns the Boundary between a Graph and a SubGraph

Description

The boundary of a subgraph is the set of nodes in the original graph that have edges to nodes in the
subgraph. The function boundary computes the boundary and returns it as a list whose length is
the same length as the number of nodes in the subgraph.

Usage

boundary(subgraph, graph)

Arguments

graph the original graph from which the boundary will be created

subgraph can either be the vector of the node labels or the subgraph itself.

Details

The boundary of a subgraph is the set of nodes in the graph which have an edge that connects them
to the specified subgraph but which are themselves not elements of the subgraph.

For convenience users can specify the subgraph as either a graph or a vector of node labels.

Value

This function returns a named list of length equal to the number of nodes in subgraph. The
elements of the list correspond to the nodes in the subgraph. The elements are lists of the nodes
in graph which share an edge with the respective node in subgraph.

Author(s)

Elizabeth Whalen and R. Gentleman

See Also

subGraph, graph-class

Examples

set.seed(123)
g1 <- randomGraph(letters[1:10], 1:4, p=.3)
##both should be "a"
boundary(c("g", "i"), g1)

12 buildRepDepGraph

buildRepDepGraph Functionality to manage repository dependency graphs

Description

These functions can be used to represent and manipulate dependency graphs for a specified package
repository.

Usage

buildRepDepGraph(repository, depLevel = c("Depends", "Suggests"))
pkgInstOrder(pkg, repGraph)

Arguments

repository A URL to a CRAN style repository

depLevel One of Depends or Suggests, detailing the level of dependencies to search.
The Suggests value includes everything in Depends.

pkg The package to get the installation order for

repGraph A graph object representing a repository, as from buildRepDepGraph

Value

For buildRepDepGraph, a graph representing the dependency structure of the specified reposi-
tory, where an edge from node A to node B represents a dependency on B by A.

For pkgInstOrder, a vector is returned, listing the appropriate order one would take to install
all of the necessary packages to install the specified package. That is, it makes sure that at every
step, any package being installed does not depend on one that has not yet been installed. This order
can then be used with functions such as install.packages.

Author(s)

Jeff Gentry

Examples

if("FIXME"=="Jeff, we can't assume that we're always online - wh") {
repos <- getOption("repositories")["BIOC"] ## Get BIOC repos
buildRepDepGraph(repos)

}

calcProb 13

calcProb Calculate the hypergeometric probability of the subgraph’s number of
edges.

Description

calcProb calculates the probability of having the number of edges found in the subgraph given
that it was made from origgraph. The hypergeometric distribution is used to calculate the prob-
ability (using the pdf).

Usage

calcProb(subgraph, origgraph)

Arguments

subgraph subgraph made from the original graph

origgraph original graph object from which the subgraph was made

Value

The probability of the subgraph’s number of edges is returned.

Author(s)

Elizabeth Whalen

See Also

calcSumProb

Examples

#none right now

calcSumProb Calculate the probability that a subgraph has an unusual number of
edges.

Description

For any graph a set of nodes can be used to obtain an induced subgraph (see subGraph). An
interesting question is whether that subgraph has an unusually large number of edges. This function
computes the probability that a random subgraph with the same number of nodes has more edges
than the number observed in the presented subgraph. The appropriate probability distribution is the
hypergeometric.

Usage

calcSumProb(sg, g)

14 clearNode

Arguments

sg subgraph made from the original graph

g original graph object from which the subgraph was made

Details

The computation is based on the following argument. In the original graph there are n nodes and
hence N = n ∗ (n − 1)/2 edges in the complete graph. If we consider these N nodes to be of
two types, corresponding to those that are either in our graph, g, or not in it. Then we think of
the subgraph which has say m nodes and M = m ∗ (m − 1)/2 possible edges as representing M
draws from an urn containing N balls of which some are white (those in g) and some are black. We
count the number of edges in the subgraph and use a Hypergeomtric distribution to ask whether our
subgraph is particularly dense.

Value

The probability of having greater than or equal to the subgraph’s number of edges is returned.

Author(s)

Elizabeth Whalen

See Also

calcProb

Examples

set.seed(123)
V <- letters[14:22]
g1 <- randomEGraph(V, .2)

sg1 <- subGraph(letters[c(15,17,20,21,22)], g1)
calcSumProb(sg1, g1)

clearNode clearNode

Description

This function removes all edges to or from the specified node in the graph.

Usage

clearNode(node, object)

Arguments

node a node

object a graph

clusterGraph-class 15

Details

All edges to and from node are removed. node can be a vector.

Value

A new instance of the graph with all edges to and from the specified node(s) removed.

Author(s)

R. Gentleman

See Also

removeNode, removeEdge

Examples

V <- LETTERS[1:4]
edL3 <- vector("list", length=4)
for(i in 1:4)

edL3[[i]] <- list(edges=(i%%4)+1, weights=i)
names(edL3) <- V
gR3 <- new("graphNEL", nodes=V, edgeL=edL3, "directed")
g4 <- clearNode("A", gR3)

clusterGraph-class Class "clusterGraph"

Description

A cluster graph is a special sort of graph for clustered data. Each cluster forms a completely con-
nected subgraph. Three are no edges between clusters.

Objects from the Class

Objects can be created by calls of the form new("clusterGraph", ...).

Slots

clusters: Object of class "list" a list of the labels of the elements, one element of the list for
each cluster.

Extends

Class "graph", directly.

16 clusteringCoefficient-methods

Methods

connComp signature(object = "clusterGraph"): find the connected components;
simply the clusters in this case.

acc signature(object = "clusterGraph"): find the accessible nodes from the sup-
plied node.

adj signature(object = "clusterGraph"): find the adjacent nodes to the supplied
node.

nodes signature(object = "clusterGraph"): return the nodes.

nodes<- signature(object="clusterGraph", value="character"): replace the
node names with the new labels given in value.

numNodes signature(object = "clusterGraph"): return the number of nodes.

edgeWeights Return a list of edge weights in a list format similar to the edges method.

edgeL signature(graph = "clusterGraph"): A method for obtaining the edge list.

coerce signature(from = "clusterGraph", to = "matrix"): Convert the clusterGraph
to an adjacency matrix. Currently, weights are ignored. The conversion assumes no self-loops.

Author(s)

R. Gentleman

See Also

graph-class, distGraph-class

Examples

cG1 <- new("clusterGraph", clusters=list(a=c(1,2,3), b=c(4,5,6)))
cG1
acc(cG1, c("1", "2"))

clusteringCoefficient-methods
Clustering coefficient of a graph

Description

This generic function takes an object that inherits from the graph class. The graph needs to have
edgemode=="undirected". If it has edgemode=="directed", the function will return
NULL.

Usage

S4 method for signature 'graph':
clusteringCoefficient(object, selfLoops=FALSE)

Arguments

object An instance of the appropriate graph class.

selfLoops Logical. If true, the calculation takes self loops into account.

combineNodes 17

Details

For a node with n adjacent nodes, if selfLoops is FALSE, the clustering coefficent is N/(n*(n-
1)), where N is the number of edges between these nodes. The graph may not have self loops. If
selfLoops is TRUE, the clustering coefficent is N/(n*n), where N is the number of edges between
these nodes, including self loops.

Value

A named numeric vector with the clustering coefficients for each node. For nodes with 2 or more
edges, the values are between 0 and 1. For nodes that have no edges, the function returns the value
NA. For nodes that have exactly one edge, the function returns NaN.

Author(s)

Wolfgang Huber http://www.dkfz.de/mga/whuber

Examples

set.seed(123)
g1 <- randomGraph(letters[1:10], 1:4, p=.3)
clusteringCoefficient(g1)
clusteringCoefficient(g1, selfLoops=TRUE)

combineNodes combineNodes

Description

A function to combine, or collapse, a specified set of nodes in a graph.

Usage

combineNodes(nodes, graph, newName, ...)
S4 method for signature 'character, graphNEL,
character':
combineNodes(nodes, graph, newName, collapseFun=sum)

Arguments

nodes A set of nodes that are to be collapsed.

graph The graph containing the nodes

newName The name for the new, collapsed node.

collapseFun Function or character giving the name of a function used to collapse the edge
weights after combining nodes. The default is to sum up the weights, but mean
would be a useful alternative.

... Additional arguments for the generic

Details

The nodes specified are reduced to a single new node with label given by newName. The in and
out edges of the set of nodes are all made into in and out edges for the new node.

http://www.dkfz.de/mga/whuber

18 DFS

Value

An new instance of a graph of the same class as graph is returned. This new graph has the specified
nodes reduced to a single node.

Author(s)

R. Gentleman

See Also

inEdges, addNode

Examples

V <- LETTERS[1:4]
edL1 <- vector("list", length=4)
names(edL1) <- V
for(i in 1:4)
edL1[[i]] <- list(edges=c(2,1,4,3)[i], weights=sqrt(i))

gR <- new("graphNEL", nodes=V, edgeL=edL1, edgemode="directed")
gR <- addNode("M", gR)
gR <- addEdge("M", "A", gR, 1)
gR <- addEdge("B", "D", gR, 1)
gX <- combineNodes(c("B","D"), gR, "X")

gR <- addNode("K", gR)
gR <- addEdge(c("K","K"), c("D", "B"), gR, c(5,3))
edgeWeights(combineNodes(c("B","D"), gR, "X"))$K
edgeWeights(combineNodes(c("B","D"), gR, "X", mean))$K

DFS Depth First Search

Description

This function implements algorithm 4.2.1 of Gross and Yellen. The input is a graph and a node
to start from. It returns a standard vertex labeling of graph. This is a vector with elements
corresponding to the nodes of graph and with values that correspond to point in the depth first
search the node is visited.

Usage

DFS(object, node, checkConn=TRUE)

Arguments

object An instance of the graph class.

node A character indicating the starting node.

checkConn A logical indicating whether the connectivity of the graph should be checked.

distGraph-class 19

Details

This function implements algorithm 4.2.1 of Gross and Yellen. Specific details are given there.

It requires that the graph be connected. By default, this is checked, but since the checking can be
expensive it is optional.

A faster and mostly likely better implementation of depth first searching is given by dfs in the
RBGL package.

Value

A vector with names given by the nodes of graph whose values are 0 to one less than the number
of nodes. These indices indicate the point at which the node will be visited.

Author(s)

R. Gentleman

References

Graph Theory and its Applications, J. Gross and J. Yellen.

See Also

boundary

Examples

RNGkind("Mersenne-Twister")
set.seed(123)
g1 <- randomGraph(letters[1:10], 1:4, p=.3)
RNGkind()
DFS(g1, "a")

distGraph-class Class "distGraph"

Description

A class definition for graphs that are based on distances.

Objects from the Class

Objects can be created by calls of the form new("distGraph", ...).

Slots

Dist: Object of class "dist" that forms the basis for the edge weights used in the distGraph.

Extends

Class "graph", directly.

20 duplicatedEdges

Methods

show signature(object = "distGraph"): a print method

Dist signature(object = "distGraph"): return the dist object.

adj signature(object = "distGraph"): find the nodes adjacent to the supplied node.

nodes signature(object = "distGraph"): return the nodes in the graph.

numNodes signature(object = "distGraph"): return the number of nodes.

threshold signature(object = "distGraph", k, value): set all distances that are
larger than the supplied threshold, k, to the supplied value. The default is value is zero (and
so is appropriate for similarities, rather than distances).

initialize signature(object = "distGraph"): initialize a distGraph instance.

edgeWeights Return a list of edge weights in a list format similar to the edges method.

edgeL signature(graph = "distGraph"): A method for obtaining the edge list.

Author(s)

R. Gentleman

References

Shamir’s paper and Butte et al

See Also

graph-class, clusterGraph-class

Examples

set.seed(123)
x <- rnorm(26)
names(x) <- letters
library(stats)
d1 <- dist(x)
g1 <- new("distGraph", Dist=d1)

duplicatedEdges duplicatedEdges

Description

A multigraph is a graph where edges between nodes can be represented several times. For some
algorithms this causes problems. duplicatedEdges tests an instance of the graphNEL class
to see if it has duplicated edges and returns TRUE if it does and FALSE otherwise.

Usage

duplicatedEdges(graph)

Arguments

graph An instance of the class graphNEL

edgeDataDefaults-methods 21

Details

It would be nice to handle other types of graphs.

Value

A logical, either TRUE if the graph has duplicated edges or FALSE it not.

Author(s)

R. Gentleman

See Also

connComp, ugraph

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,

edgeDataDefaults-methods
Get and set default attributes for the edges of a graph

Description

Set default values for attributes associated with the edges of a graph.

Usage

edgeDataDefaults(self, attr)
edgeDataDefaults(self, attr) <- value

Arguments

self A graph-class instance

attr A character vector of length one giving the name of the attribute

value An R class to use as the default value for the specified attribute

22 edgeMatrix

edgeData-methods Get and set attributes for the edges of a graph object

Description

Attributes of the edges of a graph can be accessed using edgeData. The attributes must be defined
using edgeDataDefaults. You can ommit the from or to argument to retrieve attribute values
for all edges to (respectively, from) a given node.

Usage

edgeData(self, from, to, attr)
edgeData(self, from, to, attr) <- value

Arguments

self A graph-class instance

from A character vector of node names

to A character vector of node names

attr A character vector of length one specifying the name of a node attribute

value An R object to store as the attribute value

edgeMatrix Compute an Edge Matrix or weight vector for a Graph

Description

For our purposes an edge matrix is a matrix with two rows and as many columns as there are edges.
The entries in the first row are the index of the node the edge is from, those in the second row
indicate the node the edge is to.

If the graph is “undirected” then the duplicates option can be used to indicate whether recipro-
cal edges are wanted. The default is to leave them out. In this case the notions of from and to are
not relevant.

Usage

edgeMatrix(object, duplicates=FALSE)
eWV(g, eM, sep = ifelse(edgemode(g) == "directed", "->",

"--"), useNNames=FALSE)
pathWeights(g, p, eM=NULL)

edgeMatrix 23

Arguments

object An object that inherits from graph.

g An object that inherits from graph.

duplicates Whether or not duplicate edges should be produced for “undirected” graphs.

eM An edge matrix

sep a character string to concatenate node labels in the edge label

useNNames a logical; if TRUE, node names are used in the edge label; if FALSE, node
indices are used

p a vector of node names constituting a path in graph g

... arguments passed to edgeMatrix.

Details

Implementations for graphNEL, clusterGraph and distGraph are available.

Value

edgeMatrix returns a matrix with two rows, from and to, and as many columns as there are edges.
Entries indicate the index in the node vector that corresponds to the appropriate end of the edge.

eWV uses the edge matrix to create an annotated vector of edge weights.

pathWeights returns an annotated vector of edge weights for a specified path in a graph.

Note

A path through an undirected graph may have several representations as a named vector of edges.
Thus in the example, when the weights for path b-a-i are requested, the result is the pair of weights
for edges a–b and a–i, as these are the edge labels computed for graph g1.

Author(s)

R. Gentleman

See Also

edges

Examples

set.seed(123)
g1 <- randomGraph(letters[1:10], 1:4, p=.3)
edgeMatrix(g1)
g2 <- new("clusterGraph", clusters=list(a=c(1,2,3), b=c(4,5,6)))
em2 <- edgeMatrix(g2)
eWV(g1, edgeMatrix(g1))
eWV(g1, edgeMatrix(g1), useNNames=TRUE)
pathWeights(g1, c("b", "a", "i"))

24 edgeWeights

edgeWeights Retrieve the edge weights of a graph

Description

A generic function that returns the edge weights of a graph. If index is specified, only the weights
for the edges from the specified nodes are returned. The user can control which edge attribute is
interpreted as the weight, see the Details section.

Usage

edgeWeights(object, index, ..., attr = "weight", default = 1, type.checker = is.numeric)

Arguments

object A graph, any object that inherits from the graph class.

index If supplied, a character or numeric vector of node names or indices.

... Unused.

attr The name of the edge attribute to use as a weight. You can view the list of
defined edge attributes and their default values using edgeDataDefaults.
The default attribute name is "weight", see the Details section.

default The value to use if object has no edge attribute named by the value of attr.
The default is the value 1 (double).

type.checker A function that will be used to check that the edge weights are of the correct
type. This function should return TRUE if the input vector is of the right type
and FALSE otherwise. The default is to check for numeric edge weights using
is.numeric. If no type checking is desired, specify NULL.

Details

If index is suppled, then edge weights from these nodes to all adjacent nodes are returned. If
index is not supplied, then the edge weights for all nodes are returned. The value for nodes
without any outgoing edges will be a zero-length vector of the appropriate mode.

The edgeWeights method is a convenience wrapper around edgeData, the general-purpose
way to access edge attribute information for a graph instance. In general, edge attributes can be
arbitary R objects. However, for edgeWeights to make sense, the values must be vectors of
length not more than one.

By default, edgeWeights looks for an edge attribute with name "weight" and, if found, uses
these values to construct the edge weight list. You can make use of attributes stored under a different
name by providing a value for the attr argument. For example, if object is a graph instance
with an edge attribute named "WTS", then the call edgeWeights(object, attr="WTS")
will attempt to use those values.

The function specified by type.checker will be given a vector of edge weights; if the return
value is not TRUE, then an error will be signaled indicating that the edge weights in the graph are
not of the expected type. Type checking is skipped if type.checker is NULL.

If the graph instance does not have an edge attribute with name given by the value of the attr
argument, default will be used as the weight for all edges. Note that if there is an attribute
named by attr, then its default value will be used for edges not specifically customized. See
edgeData and edgeDataDefaults for more information.

fromGXL-methods 25

Because of their position after the ..., no partial matching is performed for the arguments attr,
default, and type.checker.

Value

A named list of named edge weight vectors. The names on the list are the names of the nodes
specified by index, or all nodes if index was not provided. The names on the weight vectors are
node names to identify the edge to which the weight belongs.

Author(s)

R. Gentleman and S. Falcon

See Also

nodes edges edgeData edgeDataDefaults is.numeric is.integer is.character

Examples

V <- LETTERS[1:4]
edL2 <- vector("list", length=4)
names(edL2) <- V
for(i in 1:4)
edL2[[i]] <- list(edges=c(2,1,2,1)[i], weights=sqrt(i))

gR2 <- new("graphNEL", nodes=V, edgeL=edL2, edgemode="directed")
edgeWeights(gR2, "C")
edgeWeights(gR2)
edgeWeights(gR2, attr="foo", default=5)
edgeData(gR2, attr="weight")
edgeData(gR2, from="C", attr="weight")

fromGXL-methods Methods for GXL manipulations in package graph

Description

GXL http://www.gupro.de/GXL is "an XML sublanguage designed to be a standard ex-
change format for graphs". This document describes tools in the graph package for importing GXL
data to R and for writing graph data out as GXL.

Value

fromGXL currently returns a graphNEL when possible. This function is based on xmlEventParse
with handlers defined in the function NELhandler. The dump() element of this
handler should emit information on all children of nodes and edges; the asGraph-
NEL() element will return a graphNEL object with weights if child <attr>
with name attribute "weights" is present for each edge element.

toGXL for an input of class "graphNEL", returns an object of class c("XMLInternalDOM",
"XMLOutputStream"); see the example for how to convert this to a text stream
encoding XML

dumpGXL returns an R list with all the node, edge, and named attribute information speci-
fied in the GXL stream

validateGXL returns silently (invisibly returns the parsed tree) for a DTD-compliant stream,
or is otherwise very noisy

http://www.gupro.de/GXL

26 fromGXL-methods

Methods

fromGXL con = connection: returns a graphNEL based on a parsing of the GXL stream on the
connection

dumpGXL con = connection: returns an R list based on a parsing of the GXL stream on the
connection

validateGXL con = connection: checks the GXL stream against its DTD

toGXL object = graphNEL: creates an XMLInternalDOM representing the graph in GXL

Note

At present, toGXL does not return a validating GXL stream because XML package does not prop-
erly handle the dtd and namespaces arguments to xmlTree. This is being repaired. To fix the stream,
add <!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.1.dtd"> as
second record in the output.

Some structures in a graphNEL and some tags in GXL may not be handled at this time.

Author(s)

Vince Carey <stvjc@channing.harvard.edu>

Examples

sf <- file(system.file("GXL/simpleExample.gxl", package="graph"))
show(fromGXL(sf))
print(dumpGXL(sf))
close(sf)
#validateGXL(sf)
bad <- file(system.file("GXL/c2.gxl", package="graph"))
here's how you can check if the GXL is well-formed, if
you have a libxml2-based version of R XML package
#
try(validateGXL(bad))
#
gR <- new("graphNEL", nodes=letters[1:4], edgeL=list(
a=list(edges=4), b=list(edges=3), c=list(edges=c(2,1)), d=list(edges=1)),
edgemode="directed")

#
following requires that you are using XML bound with recent libxml2
#
#an <- as.numeric
#if (an(libxmlVersion()$major)>=2 && an(libxmlVersion()$minor)>=4)
since toGXL returns an XML object, we need to attach the XML
package.
library("XML")
cat(saveXML(toGXL(gR)$value()))
wtd <- file(system.file("GXL/kmstEx.gxl", package="graph"))
wtdg <- fromGXL(wtd)
close(wtd)
print(edgeWeights(wtdg))

graph2SparseM 27

graph2SparseM Coercion methods between graphs and sparse matrices

Description

These functions provide coercions between objects that inherit from the graph class to sparse
matrices from the SparseM package.

Usage

graph2SparseM(g, useweights=FALSE)
sparseM2Graph(sM, nodeNames, edgemode=c("directed", "undirected"))

Arguments

g An instance of the graph class.

useweights A logical value indicating whether to use the edge weights in the graph as values
in the sparse matrix.

sM A sparse matrix.

nodeNames A character vector of the node names.

edgemode Specifies whether the graph to be created should have directed (default) or undi-
rected edges. If undirected, the input matrix sM must be symmetric.

Details

A very simple coercion from one representation to another.

Currently it is presumed that the matrix is square. For other graph formats, such as bipartite graphs,
some improvements will be needed; patches are welcome.

Value

graph2SparseM takes as input an instance of a subclass of the graph class and returns a sparse
matrix.

sparseM2Graph takes a sparse matrix as input and returns an instance of the graphNEL class.
By default, the graphNEL returned will have directed edges.

Author(s)

R. Gentleman

See Also

graph-class, graphNEL-class, and for other conversions, aM2bpG and ftM2adjM

28 graphAM-class

Examples

set.seed(123)
g1 <- randomGraph(letters[1:10], 1:4, p=.3)
s1 <- graph2SparseM(g1, useweights=TRUE)
g2 <- sparseM2Graph(s1, letters[1:10], edgemode="undirected")
consistency check
stopifnot(all.equal(g1, g2))

graphAM-class Class "graphAM"

Description

A graph class where node and edge information is represented as an adjacency matrix. The adja-
cency matrix is square and element adjMat[i, j] is one if there is an edge from node i to node
j and zero otherwise.

Details

The non-zero matrix values can be used to initialize an edge attribute. If this is desired, use the
values argument in the call to new and provide a list with a single named element. The name
determines the attributes and the value provides the default value for that attribute.

Objects from the Class

Objects can be created by calls of the form new("graphAM", adjMat, edgemode, values).

Slots

adjMat: An adjacency "matrix" describing the graph structure. The colnames of the matrix
will be used as node names for the graph if present.

edgemode: A "character" vector specifying whether the graph is "directed" or "undirected".

edgeData: Storage for edge attributes.

nodeData: Storage for node attributes.

Extends

Class "graph", directly.

Methods

addEdge signature(from = "character", to = "character", graph = "graphAM",
weights = "missing"): ...

addNode signature(object = "graphAM", nodes = "character"): ...

clearNode signature(node = "character", object = "graphAM"): ...

coerce signature(from = "graphAM", to = "graphNEL"): ...

coerce signature(from = "graphAM", to = "matrix"): In converting to a matrix,
if an edge attribute named "weight" is defined, the non-zero elements of the matrix will con-
tain the corresponding attribute value. For more flexible matrix conversion, see toMatrix.

graphAM-class 29

coerce signature(from = "matrix", to = "graphAM"): This coerce method exists
for symmetry. In most cases, creating a new graphAM instance using new gives one more
control over the resulting graph.

edges signature(object = "graphAM", which = "missing"): ...

edges signature(object = "graphAM", which = "character"): ...

initialize signature(.Object = "graphAM"): ...

inEdges signature(node = "character", object = "graphNEL"): Return the in-
coming edges for the specified nodes. See inEdges.

isAdjacent signature(object = "graphAM", from = "character", to = "character"):
...

nodes<- signature(object = "graphAM", value = "character"): ...

nodes signature(object = "graphAM"): ...

numEdges signature(graph = "graphAM"): ...

numNodes signature(object = "graphAM"): ...

removeEdge signature(from = "character", to = "character", graph = "graphAM"):
...

removeNode signature(node = "character", object = "graphAM"): ...

Author(s)

Seth Falcon

See Also

graph-class, graphNEL-class

Examples

mat <- rbind(c(0, 0, 1, 1),
c(0, 0, 1, 1),
c(1, 1, 0, 1),
c(1, 1, 1, 0))

rownames(mat) <- colnames(mat) <- letters[1:4]
g1 <- new("graphAM", adjMat=mat)
stopifnot(identical(mat, as(g1, "matrix")), validObject(g1))

now with weights:
mat[1,3] <- mat[3,1] <- 10
gw <- new("graphAM", adjMat=mat, values=list(weight=1))

consistency check:
stopifnot(identical(mat, as(gw, "matrix")),

validObject(gw),
identical(gw, as(as(gw, "graphNEL"), "graphAM")))

30 graph-class

graph-class Class "graph"

Description

A virtual class that all graph classes should extend.

Details

degree returns either a named vector (names correspond to the nodes in the graph) containing
the degree for undirected graphs or a list with two components, inDegree and outDegree for
directed graphs.

connComp returns a list of the connected components. Each element of this list contains the labels
of all nodes in that component.

For a directed graph or digraph the underlying graph is the graph that results from removing all
direction from the edges. This can be achieved using the function ugraph.

A weakly connected component of a digraph is one that is a connected component of the underlying
graph. This is the default for connComp. A digraph is strongly connected if every two vertices
are mutually reachable. A strongly connected component of a digraph, D, is a maximal strongly
connected subdigraph of D. See the RBGL package for an implementation of Trajan’s algorithm to
find strongly connected components (strongComp).

In the graph implementation of connCompweak connectivity is used. If the argument to connComp
is a directed graph then ugraph is called to create the underlying undirected graph and that is
used to compute connected components. Users who want different behavior are encouraged to use
RBGL.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

edgeData: An attrData instance for edge attributes.

nodeData: An attrData instance for node attributes.

graphData: A list for graph-level attributes. Only mandatory list item is edgemode which
indicates whether edges are "directed" or "undirected"

Methods

nodes return a character vector containing the names of the nodes of the graph

nodes<- rename the nodes of the graph

show signature(object = "graph"):A print method for the graph.

acc signature(object = "graph"): find all nodes accessible from the specified node.

complement signature(x = "graph"): compute the complement of the supplied graph.
The complement is defined with respect to the complete graph on the nodes in x. Currently
this returns an object of class graphNEL.

connComp signature(object = "graph"): find the connected components of a graph.

graph-class 31

degree signature(object = "graph", Nodes = "missing"): find the degree of
a node (number of coincident edges).

degree signature(object = "graph", Nodes = "ANY"): as above.

dfs signature(object = "graph"): execute a depth first search on a graph starting with
the specified node.

edges signature(object="graph", which="character"): return the edges indicated
by which. which can be missing in which case all edges are returned or it can be a character
vector with the node labels indicating the nodes whose edge lists are wanted.

edgeDataDefaults Get and set default attributes for the edges in the graph.

edgeData Get and set attributes for edges in the graph

edgemode signature(object="graph"): return the edgemode for the graph. Currently
this can be either directed or undirected.

edgemode<- signature(object="graph", value="character"): set the edgemode
for the graph. Currently this can be either directed or undirected.

edgeWeights Return a list of edge weights in a list format similar to the edges method.

intersection signature(x = "graph", y = "graph"): compute the intersection of the
two supplied graphs. They must have identical nodes. Currently this returns an object of class
graphNEL. With edge weights of 1 for any matching edge.

isAdjacent signature(from="character", to="character"): Determine if edges
exists between nodes.

isConnected signature(object = "graph"): A boolean that details if a graph is fully
connected or not.

isDirected Return TRUE if the graph object has directed edges and FALSE otherwise.

join signature(x = "graph", y = "graph"): returns the joining of two graphs. Nodes
which are shared by both graphs will have their edges merged. Note that edgeWeights for the
resulting graph are all set to 1. Users wishing to preserve weights in a join operation must
perform addEdge operations on the resulting graph to restore weights.

nodes<- A generic function that allows different implementations of the graph class to reset the
node labels

nodeDataDefaults Get/set default attributes for nodes in the graph.

nodeData Get/set attributes for nodes in the graph.

numEdges signature(object = "graph"): compute the number of edges in a graph.

numNodes signature(object = "graph"): compute the number of nodes in a graph.

plot Please see the help page for the plot.graph method in the Rgraphviz package

union signature(x = "graph", y = "graph"): compute the union of the two supplied
graphs. They must have identical nodes. Currently this returns an object of class graphNEL.

edgeNames signature(object = "graph"): Returns a vector of the edge names for this
graph, using the format tail~head, where head is the name of the tail node and head is
the name of the head node.

updateGraph signature(object = "graph"): Updates old instances of graph objects.

Author(s)

R. Gentleman and E. Whalen.

32 graphNEL-class

References

Graph Theory and its Applications, J. Gross and J. Yellen.

See Also

graphNEL-class, graphAM-class, distGraph-class.

Examples

set.seed(123)
g1 <- randomGraph(letters[1:10], 1:4, p= 0.3)
numEdges(g1)
edgeNames(g1)
edges(g1)
edges(g1, c("a","d")) # those incident to 'a' or 'd'

graphExamples A List Of Example Graphs

Description

This data set contains a list of example graphNEL objects, which can then be used for plotting.

Usage

data(graphExamples)

Source

Various sources, primarily from randomGraph and randomEGraph

Examples

data(graphExamples)
a <- graphExamples[[1]]
a

graphNEL-class Class "graphNEL"

Description

This is a class of graphs that are represented in terms of nodes and an edge list. This is a suitable
representation for a graph with a large number of nodes and relatively few edges.

graphNEL-class 33

Details

The graphNEL class provides a very general structure for representing graphs. It will be rea-
sonably efficient for lists with relatively more nodes than edges. Although this representation can
support multi-edges, such support is not implemented and instances of graphNEL are assumed to
be simple graphs with at most one edge between any pair of nodes.

The edgeL is a named list of the same length as the node vector. The names are the names of the
nodes. Each element of edgeL is itself a list. Each element of this (sub)list is a vector (all must be
the same length) and each element represents an edge to another node. The sublist named edges
holds index values into the node vector. And each such entry represents an edge from the node
which has the same name as the component of edgeL to the node with index provided. Another
component that is often used is named weights. It represents edge weights. The user can specify
any other edge attributes (such as types etc). They are responsible for any special handling that
these might require.

For an undirected instance all edges are reciprocated (there is an edge from A to B and from B
to A).

Note that the reason for using indices to represent the to end of a node is so that we can easily
support permutation of the node labels as a way to generate randomizations of the graph.

Objects from the Class

Objects can be created by calls of the form new("graphNEL", nodes, edgeL, edgemode).

nodes A character vector of node labels.

edgeL A named list either in the format returned by the edges method or a list of lists where
each inner list has an element named edges and optionally an element named weights. If
weights is present, it must be the same length as the edges element.

edgemode Either "directed" or "undirected".

Slots

nodes: Object of class "vector".

edgeL: Object of class "list". The edgeL must be the same length as nodes. The elements
of this vector correspond to the same element in nodes. The elements are themselves lists. If
the node has any edges then this list will have an element named edges. This will eventually
change. Since edge weights are now stored in the edge attributes construct, we do not need
the extra level of list.

Extends

Class "graph", directly.

Methods

adj signature(object = "graphNEL"): A method for finding nodes adjacent to the su-
plied node.

edgeL signature(graph = "graphNEL"): A method for obtaining the edge list.

edgeWeights signature(object = "graphNEL"): A method for obtaining the edge weights.

edges signature(object = "graphNEL"): A method for obtaining the edges.

inEdges signature(node = "character", object = "graphNEL"): Return the in-
coming edges for the specified nodes. See inEdges.

34 graphRendering

nodes signature(object = "graphNEL"): A method for obtaining the nodes.

numNodes signature(object = "graphNEL"):A method for determining how many nodes
are in the graph.

subGraph signature(snodes="character", graph = "graphNEL"):A method for
obtaining the induced subgraph based on the set of supplied nodes and the supplied graph.

plot Please see the help page for plot.graphNEL in the Rgraphviz package

graph2graphviz signature(object = "graphNEL"): A method that will convert a graphNEL
object into a matrix suitable for interaction with Rgraphviz. Not intended to be called di-
rectly. This function will insure that no NA’s (or other undesired values) are in the graph, or
created by coersion.

nodes<- signature(object="graphNEL", value="character"): A method for re-
placing the nodes in a graph object. It checks to be sure the values are the right length and
unique.

coerce signature(from = "graphNEL", to = "graphAM"): Called via as, the method
converts to an adjacency matrix representation. See graphAM-class.

Author(s)

R. Gentleman

See Also

graphAM-class, distGraph-class, clusterGraph-class

Examples

set.seed(123)
V <- LETTERS[1:4]
edL <- vector("list", length=4)
names(edL) <- V
for(i in 1:4)

edL[[i]] <- list(edges=5-i, weights=runif(1))
gR <- new("graphNEL", nodes=V, edgeL=edL)
edges(gR)
edgeWeights(gR)

graphRendering How to render a graph

Description

FIXME: Need content

integrinMediatedCellAdhesion 35

integrinMediatedCellAdhesion
KEGG Integrin Mediated Cell Adhesion graph

Description

A graph representing the integrin-mediated cell adhesion pathway from KEGG, as well as a list of
attributes for use in plotting the graph with Rgraphviz.

Usage

data(integrinMediatedCellAdhesion)

Details

The integrinMediatedCellAdhesion data set contains two objects:

The first is IMCAGraph, which is an object of class graph-NEL and represents the hsa04510
graph from KEGG.

The second is IMCAAttrs, which is a list of four elements. The first element, defAttrs
corresponds to the attrs arguments of agopen and plot.graph. The second element is
nodeAttrs which corresponds to the nodeAttrs argument in the same two functions from
Rgraphviz. The third element, subGList corresponds to the subGList argument in those
functions. Lastly, the fourth element, LocusLink provides a named list where the names are the
nodes and the values are vectors of LocusLink ID values which correspond to those nodes.

The values from defAttrs, nodeAttrs and subGList in the IMCAAttrs list are part of an
ongoing attempt by Bioconductor to provide the set of options to most accurately recreate the actual
visual image of the pathway from the KEGG site using Rgraphviz. Users may try out their own
combination of attributes and settings for their own needs, but these represent our own efforts at as
closely recreating the image as possible.

Source

http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html

Examples

data(integrinMediatedCellAdhesion)
if (require("Rgraphviz") & interactive())
plot(IMCAGraph, attrs=IMCAAttrs$defAttrs,

nodeAttrs=IMCAAttrs$nodeAttrs, subGList=IMCAAttrs$subGList)

http://www.genome.ad.jp/kegg/pathway/hsa/hsa04510.html

36 inEdges

inEdges Generic Method inEdges

Description

Returns a list of all incoming edges for the specified nodes.

Usage

inEdges(node, object)

Arguments

node character vector of node names

object a graph object

Details

If no node argument is specified, inEdges returns the incoming edges for all nodes in the graph.

For an undirected graph, inEdges returns all edges for the specified nodes.

Value

A list with length matching the length of node. If node was missing, a list containing an element
for each node in the graph.

Each list element contains a character vector of node names giving the nodes that have outgoing
edges to the node given by the name of the list element.

Author(s)

R. Gentleman

See Also

removeNode, clearNode

Examples

V <- LETTERS[1:4]
edL3 <- vector("list", length=4)
for(i in 1:4)
edL3[[i]] <- list(edges=(i%%4)+1, weights=i)

names(edL3) <- V
gR3 <- new("graphNEL", nodes=V, edgeL=edL3, "directed")
inEdges(c("A", "B"), gR3)

internal 37

internal Variables used for internal purposes

Description

The nullgraphID variable is used to store a default identifier. This should not be used by users.

Author(s)

Saikat DebRoy

isAdjacent-methods Determine if nodes share an edge in a graph

Description

For a given subclass of graph-class, returns TRUE if the graph contains an edge from node
specified by from to the node specified by to.

The appropriate logical vector will be returned as long as from and to have the same length and
contain nodes in the graph object specified by object.

Usage

isAdjacent(object, from, to, ...)

Arguments

object An instance of a subclass of graph-class.

from A character vector of nodes in the graph.

to A character vector of nodes in the graph

... May be used by methods called on subclasses of graph

isDirected-methods Determine if a graph has directed or undirected edges

Description

The edges of a graph-class object are either directed or undirected. This function returns TRUE
if the edges are directed and FALSE otherwise.

Usage

isDirected(object)

Arguments

object A graph-class instance

38 listEdges

leaves Find the leaves of a graph

Description

A leaf of an undirected graph is a node with degree equal to one. A leaf of a directed graph is defined
with respect to in-degree or out-degree. The leaves of a directed graph with respect to in-degree
(out-degree) are those nodes with in-degree (out-degree) equal to zero.

Usage

leaves(object, degree.dir)

Arguments

object A graph object

degree.dir One of "in" or "out". This argument is ignored when object is undirected
and required otherwise. When degree.dir="in" (degree.dir="out"),
nodes have no in coming (out going) edges will be returned.

Value

A character vector giving the node labels of the leaves.

Author(s)

Seth Falcon

Examples

data(graphExamples)
graphExamples[[1]]
leaves(graphExamples[[1]])

data(apopGraph)
leaves(apopGraph, "in")
leaves(apopGraph, "out")

listEdges List the Edges of a Graph

Description

A list where each element contains all edges between two nodes, regardless of orientation. The
list has names which are node pairs, in lexicographic order, and elements all edges between those
nodes.

Usage

listEdges(object, dropNULL=TRUE)

MAPKsig 39

Arguments

object An instance of the graphNEL-class class.

dropNULL Should those node pairs with no edges be dropped from the returned list.

Details

The function is currently only implemented for graphs of the graphNEL-class. The edges in
the returned list are instances of the simpleEdge-class.

Value

A named list of simpleEdge-class objects.

Author(s)

R. Gentleman

See Also

simpleEdge-class, edges

Examples

set.seed(123)
V <- LETTERS[1:4]
edL <- vector("list", length=4)
names(edL) <- V
toE <- LETTERS[4:1]
for(i in 1:4)

edL[[i]] <- list(edges=5-i, weights=runif(1))
gR <- new("graphNEL", nodes=V, edgeL=edL)
listEdges(gR)

MAPKsig A graph encoding parts of the MAPK signaling pathway

Description

A graph encoding parts of the MAPK signaling pathway

Usage

data(MAPKsig)

Format

The format is: Formal class ’graphNEL’ [package "graph"] with edgemode "directed".

40 Coercions between matrix and graph representations

Source

The KEGG pancreatic cancer pathway was visually inspected on 17 Sept 2007, and the subgraph
associated with MAPK signaling was isolated. The HUGO names for each symbol in the KEGG
visualization were obtained and checked for existance on hgu95av2. Some abbreviated terms for
processes are also included as nodes.

Examples

data(MAPKsig)
if (require(Rgraphviz)) {

nat = rep(FALSE, length(nodes(MAPKsig)))
names(nat) = nodes(MAPKsig)
plot(MAPKsig, nodeAttrs=list(fixedsize=nat))
}

Coercions between matrix and graph representations
Coercions between matrix and graph representations

Description

A collection of functions and methods to convert various forms of matrices into graph objects.

Usage

aM2bpG(aM)
ftM2adjM(ft, W=NULL, V=NULL, edgemode="directed")
ftM2graphNEL(ft, W=NULL, V=NULL, edgemode="directed")
S4 method for signature 'graphNEL, matrix':
coerce(g,m)
S4 method for signature 'matrix, graphNEL':
coerce(m,g)

Arguments

ft An nx2 matrix containing the from/to representation of graph edges.

W An optional vector of edge weights.

V An optional vector of node names.

aM An affiliation matrix for a bipartite graph.

edgemode Character. Specifies if the resulting graph is to be directed or undirected.

g Object of class graphNEL.

m Matrix.

Coercions between matrix and graph representations 41

Details

In the functions ftM2adjM and ftM2graphNEL, a from/to matrix ft is converted into an
adjacency matrix or a graphNEL object respectively. In ft, the first column represents the
from nodes and the second column the to nodes.

To have unconnected nodes, use the V argument (see below). The edgemode parameter can be
used to specify if the desired output is a directed or undirected graph.

The same edge must not occur twice in the from/to matrix. If edgemode is undirected, the
edge (u,v) and (v,u) must only be specified once.

W is an optional vector of edge weights. The order of the edge weights in the vector should corre-
spond to the order of the edges recorded in ft. If it is not specified, edge weights of 1 are assigned
by default.

V is an optional vector of node names. All elements of ft must be contained in V, but not all
names in V need to be contained in ft. If V is not specified, it is set to all nodes represented in ft.
Specifying V is most useful for creating a graph that includes nodes with degree 0.

aM is an affiliation matrix as frequently used in social networks analysis. The rows of aM represent
actors, and the columns represent events. An entry of "1" in the ith row and jth column represents
affiliation of the ith actor with the jth event. Weighted entries may also be used. aM2bpG returns
a graphNEL object with nodes consisting of the set of actors and events, and directed (possibly
weighted) edges from the actors to their corresponding events. If plotted using Rgraphviz and
the dot layout, the bipartite structure of the graph returned by aM2bpG should be evident.

An adjacency matrix can be coerced into a graphNEL using the as method. If the matrix is a
symmetric matrix, then the resulting graph will be undirected, otherwise it will be directed.

Value

For ftM2graphNEL and aM2bpG, an object of class graphNEL. For ftM2adjM, a matrix (the
adjacency matrix representation).

Author(s)

Denise Scholtens, Wolfgang Huber

Examples

From-To matrix

From <- c("A","A","C","C")
To <- c("B","C","B","D")
L <- cbind(From,To)

W <- 1:4
M1 <- ftM2adjM(L, W, edgemode="directed")
M2 <- ftM2adjM(L, W, edgemode="undirected")
stopifnot(all(M1+t(M1)==M2))

G1 <- ftM2graphNEL(L, W, edgemode="directed")
G2 <- ftM2graphNEL(L, W, edgemode="undirected")

Adjacency matrix

From <- matrix(runif(100), nrow=10, ncol=10)

42 mostEdges

From <- (From+t(From)) > pi/4
rownames(From) <- colnames(From) <- LETTERS[1:10]

To <- as(From,"graphNEL")
Back <- as(To,"matrix")

stopifnot(all(From == Back))

mostEdges Find the node in a graph with the greatest number of edges

Description

mostEdges finds the node that has the most edges in the graph. This is the node with the highest
degree.

Usage

mostEdges(objGraph)

Arguments

objGraph the graph object

Value

index the index of the node with the most edges

id the node value with the most edges; may be affy id, locus link id, or genename
depending on the node type

maxLen the number of edges for that node

Author(s)

Elizabeth Whalen

See Also

numEdges, aveNumEdges, numNoEdges

Examples

set.seed(123)
g1 <- randomGraph(11:30, letters[20:26], p=.4)
mostEdges(g1)

multiGraph-class 43

multiGraph-class Class "multiGraph"

Description

A collection of classes to model multigraphs. These include the multiGraph class as well as classes
to contain edge sets.

Objects from the Class

Objects can be created from the multiGraph class, the edgeSet class is virtual, and particular
variants should be used.

Slots

These slots are for the multiGraph class.

nodes The names of the nodes.

edgeL A list of edge lists.

nodeData An instance of the attrData class.

graphData A list.

These slots are for the edgeSet class, or one of its sublcasses.

edgeData An instance of the attrData class.

edgemode A character vector, one of directed, or undirected.

edgeL A list of the edges (graphNEL)

adjMat An adjacency martix (graphAM)

Methods

show Print a multigraph.

isDirected A vector indicating which of the edgeSets is directed.

nodes Retrieve the node names

numNodes Return the number of nodes

edges Return either all edges, or a subset of them, depending on the arguments supplied.

numEdges Return a vector with the number of edges, for each edge set.

44 nodeData-methods

nodeDataDefaults-methods
Get and set default attributes for the nodes of a graph

Description

You can associate arbitrary attributes with the nodes of a graph. Use nodeDataDefaults to
specify the set of attributes that describe nodes. Each attribute must have a default value. You can
set the attribute for a particular node or set of nodes using nodeData.

Usage

nodeDataDefaults(self, attr)
nodeDataDefaults(self, attr) <- value

Arguments

self A graph-class instance

attr A character vector of length one giving the name of an attribute

value An R object to set as the default value for the given attribute

nodeData-methods Get and set attributes for the nodes of a graph object

Description

Attributes of the nodes of a graph can be accessed using nodeData. The attributes must be defined
using nodeDataDefaults. You can ommit the n argument to retrieve attributes for all nodes in
the graph. You can ommit the attr argument to retrieve all attributes.

Usage

nodeData(self, n, attr)
nodeData(self, n, attr) <- value

Arguments

self A graph-class instance

n A character vector of node names

attr A character vector of length one specifying the name of a node attribute

value An R object to store as the attribute value

numNoEdges 45

numNoEdges Calculate the number of nodes that have an edge list of NULL

Description

numNoEdges calculates the number of nodes that have an edge list of NULL (i.e. no edges).

Usage

numNoEdges(objGraph)

Arguments

objGraph the graph object

Value

An integer representing the number of NULL edge lists in the graph.

Author(s)

Elizabeth Whalen

See Also

numEdges, aveNumEdges, mostEdges

Examples

set.seed(999)
g1 <- randomEGraph(letters, .01)
numNoEdges(g1)

pancrCaIni A graph encoding parts of the pancreatic cancer initiation pathway

Description

A graph encoding parts of the pancreatic cancer initiation pathway

Usage

data(pancrCaIni)

Format

The format is: Formal class ’graphNEL’ [package "graph"] with edgemode "directed".

46 randomEGraph

Source

The KEGG pancreatic cancer pathway was visually inspected on 17 Sept 2007 and a subgraph was
isolated. The HUGO names for each symbol in the KEGG visualization were obtained and checked
for existance on hgu95av2. Some abbreviated terms for processes are also included as nodes.

Examples

data(pancrCaIni)
if (require(Rgraphviz)) {

nat = rep(FALSE, length(nodes(pancrCaIni)))
names(nat) = nodes(pancrCaIni)
plot(pancrCaIni, nodeAttrs=list(fixedsize=nat))
}

randomEGraph Random Edge Graph

Description

A function to create random graphs according to a random edge model. The user supplies the set
of nodes for the graph as V and either a probability, p, that is used for each edge or the number of
edges, edges they want to have in the resulting graph.

Usage

randomEGraph(V, p, edges)

Arguments

V The nodes for the graph.

p The probability of an edge being selected.

edges The number of edges wanted.

Details

The user must specify the set of nodes and either a probability for edge selection or the number
of edges wanted, but not both. Let nV denote the number of nodes. There are choose(nV, 2)
edges in the complete graph. If p is specified then a biased coin (probability of heads being p) is
tossed for each edge and if it is heads that edge is selected. If edges is specified then that many
edges are sampled without replacement from the set of possible edges.

Value

An object of class graphNEL-class that contains the nodes and edges.

Author(s)

R. Gentleman

See Also

randomGraph

randomGraph 47

Examples

set.seed(123)
V <- letters[14:22]
g1 <- randomEGraph(V, .2)

g2 <- randomEGraph(V, edges=30)

randomGraph Random Graph

Description

This function generates a random graph according to a model that involves a latent variable. The
construction is to randomly assign members of the set M to the nodes, V. An edge is assigned
between two elements of V when they both have the same element of M assigned to them. An object
of class graphNEL is returned.

Usage

randomGraph(V, M, p, weights=TRUE)

Arguments

V The nodes of the graph.

M A set of values used to generate the graph.

p A value between 0 and 1 that indicates the probability of selecting an element
of M

weights A logical indicating whether to use the number of shared elements of M as
weights.

Details

The model is quite simple. To generate a graph, G, the user supplies the list of nodes, V and a set
of values M which will be used to create the graph. For each node in V a logical vector with length
equal to the length of M is generated. The probability of a TRUE at any position is determined by p.
Once valus from M have been assigned to each node in V the result is processed into a graph. This
is done by creating an edge between any two elements of V that share an element of M (as chosen
by the selection process).

The sizes of V and M and the values of p determine how dense the graph will be.

Value

An object of class graphNEL-class is returned.

Author(s)

R. Gentleman

See Also

randomEGraph, randomNodeGraph

48 randomNodeGraph

Examples

set.seed(123)
V <- letters[1:10]
M <- 1:4
g1 <- randomGraph(V, M, 0.2)
numEdges(g1) # 16, in this case
edgeNames(g1)# "<from> ~ <to>" since undirected

randomNodeGraph Generate Random Graph with Specified Degree Distribution

Description

randomNodeGraph generates a random graph with the specified degree distribution. Self-loops
are allowed. The resultant graph is directed (but can always be coerced to be undirected).

Usage

randomNodeGraph(nodeDegree)

Arguments

nodeDegree A named integer vector specifying the node degrees.

Details

The input vector must be named, the names are taken to be the names of the nodes. The sum must
be even (there is a theorem that says we require that to construct a graph). Self-loops are allowed,
although patches to the code that make this a switchable parameter would be welcome.

Value

An instance of the graphNEL class. The graph is directed.

Author(s)

R. Gentleman

References

Random Graphs as Models of Networks, M. E. J. Newman.

See Also

randomGraph, randomEGraph

Examples

set.seed(123)
c1 <- c(a = 1, b = 1, c = 2, d = 4)

(g1 <- randomNodeGraph(c1))
stopifnot(validObject(g1))

removeEdge 49

removeEdge removeEdge

Description

A function to remove the specified edges from a graph.

Usage

removeEdge(from, to, graph)

Arguments

from from edge labels

to to edge labels

graph a graph object

Details

A new graph instance is returned with the edges specified by corresponding elements of the from
and to vectors removed. If from and to are not the same length, one of them should have length
one. All edges to be removed must exist in graph.

Value

A new instance of a graph with the same class as graph is returned with the specified edges
removed.

Author(s)

R. Gentleman

See Also

addNode,addEdge,removeNode

Examples

V <- LETTERS[1:4]
edL1 <- vector("list", length=4)
names(edL1) <- V
for(i in 1:4)
edL1[[i]] <- list(edges=c(2,1,4,3)[i], weights=sqrt(i))

gR <- new("graphNEL", nodes=V, edgeL=edL1)

gX <- removeEdge("A", "B", gR)

set.seed(123)
g <- randomEGraph(V=letters[1:5],edges=5)
g2 <- removeEdge(from=c("a","b"), to=c("d","c"), g)

50 removeNode

removeNode removeNode

Description

A function to remove a node from a graph. All edges to and from the node are also removed.

Usage

removeNode(node, object)

Arguments

node The label of the node to be removed.

object The graph to remove the node from.

Details

The specified node is removed from the graph as are all edges to and from that node. A new instance
of the same class as object with the specified node(s) is returned.

Note, node can be a vector of labels, in which case all nodes are removed.

This is similar to subGraph.

Value

A new instance of a graph of the same class as object but with all specified nodes removed.

Author(s)

R. Gentleman

See Also

removeEdge, addEdge, addNode,subGraph

Examples

V <- LETTERS[1:4]
edL2 <- vector("list", length=4)
names(edL2) <- V
for(i in 1:4)
edL2[[i]] <- list(edges=c(2,1,2,1)[i], weights=sqrt(i))

gR2 <- new("graphNEL", nodes=V, edgeL=edL2, edgemode="directed")
gX <- removeNode("C", gR2)

renderInfo-class 51

renderInfo-class Class "renderInfo"

Description

A container class to manage graph rendering attributes.

Objects from the Class

Objects can be created by calls of the form new("renderInfo") or by using the initializer
.renderInfoPrototype.

Slots

pars: List of default rendering attributes with two items nodes and edges. When not set further
down the parameter hierarchy, these defaults will be used for all nodes/edges in the graph.

nodes: Named list of attributes specific to nodes.

edges: Named list of attributes specific to edges.

graph: Named list of graph-wide attributes.

Each item of nodes and edges can take arbitrary vectors, the only restriction is that they have to
be of either length 1 or length equal to the number of nodes or edges, respectively.

pars and graph can take arbitrary skalars, the latter for both edges and nodes.

Methods

The following are functions rather than methods and build the API to control the graphical output of
a graph when it is plotted using renderGraph. Please see graphRendering for more details.

parRenderInfo, parRenderInfo<- getter and setter for items of slot pars

nodeRenderInfo, nodeRenderInfo<- getter and setter for items of slot nodes

edgeRenderInfo, edgeRenderInfo<- getter and setter for items of slot edges

graphRenderInfo, graphRenderInfo<- getter and setter for items of slot graph

The getters all take two arguments: g is a graph object and name is a character giving the name of
one of the item in the respective slot. When name is missing this will give you the whole list.

The setters are a bit more complex: nodeRenderInfo<- and edgeRenderInfo<- can take

named list of named vectors where the names have to match the node or edge names. Items in
the vector that don’t match a valid edge or node name will be silently ignored. For undirected
edges the order of head nodes and tail nodes in edge names is ignored, i.e. a~b is equivalent
to codeb~a

named list of skalars which will set all the attribute for all edges or nodes in the graph parRenderInfo<-will
only take a list with items nodes, edges and graph. The content of these list items can be
arbitrary named vectors. parRenderInfo<-takes an arbitrary list

Available rendering parameters for nodes are:

col: the color of the line drawn as node border. Defaults to black.

52 renderInfo-class

lty: the type of the line drawn as node border. Defaults to solid. Valid values are the same as for
the R’s base graphic parameter lty.

lwd: the width of the line drawn as node border. Defaults to 1. Note that the underlying low level
plotting functions do not support vectorized lwd values. Instead, only the first item of the
vector will be used.

fill: the color used to fill a node. Defaults to transparent.

textCol: the font color used for the node labels. Defaults to black.

fontsize: the font size for the node labels in points. Defaults to 14. Note that the fontsize will be
automatically adjusted to make sure that all labels fit their respective nodes. You may want to
increase the node size by supplying the appropriate layout parameters to Graphviz in order to
allow for larger fontsizes.

cex: Expansion factor to further control the fontsize. As default, this parameter is not set, in which
case the fontsize will be clipped to the node size. This mainly exists to for consistency with
the base graphic parameters and to override the clipping of fontsize to nodesize.

Available rendering parameters for edges are:

col: the color of the edge line. Defaults to black.

lty: the type of the edge line. Defaults to solid. Valid values are the same as for the R’s base
graphic parameter lty.

lwd: the width of the edge line. Defaults to 1.

textCol: the font color used for the edge labels. Defaults to black.

fontsize: the font size for the edge labels in points. Defaults to 14.

cex: Expansion factor to further control the fontsize. This mainly exists to be consistent with the
base graphic parameters.

Author(s)

Deepayan Sarkar, Florian Hahne

Examples

g <- randomGraph(letters[1:4], 1:3, p=0.8)
nodeRenderInfo(g) <- list(fill=c("a"="red", "b"="green"))
edgeRenderInfo(g) <- list(lwd=3)
edgeRenderInfo(g) <- list(lty=3, col="red")
parRenderInfo(g) <- list(edges=list(lwd=2, lty="dashed"),
nodes=list(col="gray", fill="gray"))
nodeRenderInfo(g)
edgeRenderInfo(g, "lwd")
edgeRenderInfo(g, c("lwd", "col"))
parRenderInfo(g)

reverseEdgeDirections 53

reverseEdgeDirections
Reverse the edges of a directed graph

Description

Return a new directed graph instance with each edge oriented in the opposite direction relative to
the corresponding edge in the input graph.

Usage

reverseEdgeDirections(g)

Arguments

g A graph subclass that can be coerced to graphAM

Details

WARNING: this doesn’t handle edge attributes properly. It is a preliminary implementation and
subject to change.

Value

A graphNEL instance

Author(s)

S. Falcon

Examples

g <- new("graphNEL", nodes=c("a", "b", "c"),
edgeL=list(a=c("b", "c"), b=character(0), c=character(0)),
edgemode="directed")

stopifnot(isAdjacent(g, "a", "b"))
stopifnot(!isAdjacent(g, "b", "a"))

grev <- reverseEdgeDirections(g)
stopifnot(!isAdjacent(grev, "a", "b"))
stopifnot(isAdjacent(grev, "b", "a"))

54 simpleEdge-class

graph.par Graphical parameters and other settings

Description

Functions providing an interface to persistent graphical parameters and other settings used in the
package.

Usage

graph.par(...)
graph.par.get(name)

Arguments

... either character strings naming parameters whose values are to be retrieved, or
named arguments giving values that are to be set.

name character string, giving a valid parameter name.

Details

graph.par works sort of like par, but the details are yet to be decided.

graph.par.get(name) is equivalent to graph.par(name)[[1]]

Value

In query mode, when no parameters are being set, graph.par returns a list containing the cur-
rent values of the requested parameters. When called with no arguments, it returns a list with all
parameters. When a parameter is set, the return value is a list containing previous values of these
parameters.

Author(s)

Deepayan Sarkar, 〈deepayan.sarkar@r-project.org〉

See Also

par

simpleEdge-class Class "simpleEdge".

Description

A simple class for representing edges in graphs.

Objects from the Class

Objects can be created by calls of the form new("simpleEdge", ...).

Standard labeling of edges with integers 55

Slots

edgeType: Object of class "character"; the type of the edge.

weight: Object of class "numeric"; the edge weight.

directed: Object of class "logical"; is the edge directed.

bNode: Object of class "character"; the beginning node.

eNode: Object of class "character"; the ending node.

Methods

No methods defined with class "simpleEdge" in the signature.

Note

All slots are length one vectors (this is not currently checked for). If the edge is not directed
there is no real meaning to the concepts of beginning node or ending node and these should not be
interpreted as such.

Author(s)

R. Gentleman

Examples

new("simpleEdge", bNode="A", eNode="D")

Standard labeling of edges with integers
Standard labeling of edges with integers

Description

Functions to convert between from-to representation and standard labeling of the edges for undi-
rected graphs with no self-loops.

Usage

ftM2int(ft)
int2ftM(i)

Arguments

i Numeric vector.

ft Numeric nx2 or 2xn matrix.

Details

A standard 1-based node labeling of a graph G=(V,E) is a one-to-one mapping between the integers
from 1 to |V| and the nodes in V. A standard 1-based edge labeling of an undirected graph G=(V,E)
with no self-loops is the one-to-one mapping between the integers from 1 to |V| choose 2 = |V|*(|V|-
1)/2 such that the edge labeled 1 is between nodes 2 and 1, the edge labeled 2 is between nodes 3
and 1, the edge labeled 3 is between nodes 3 and 2, and so on.

56 subGraph

Value

For ftM2int, a numeric vector of length n. For int2ftM, a length(i) x 2 matrix.

Author(s)

Wolfgang Huber

Examples

nNodes <- 200
nEdges <- choose(nNodes, 2)
i <- 1:nEdges
ft <- int2ftM(i)
ft[1:6,]
stopifnot(all(ft[,1]>ft[,2])) ## always from higher to lower
stopifnot(!any(duplicated(paste(ft[,1], ft[,2]))))
stopifnot(ft[nEdges, 1]==nNodes, ft[nEdges, 2]==nNodes-1)

j <- ftM2int(ft)
stopifnot(all(i==j))

subGraph Create a Subgraph

Description

Given a set of nodes and a graph this function creates and returns subgraph with only the supplied
nodes and any edges between them.

Usage

subGraph(snodes, graph)

Arguments

snodes A character vector of node labels.

graph A graph object, it must inherit from the graph class.

Details

The returned subgraph is a copy of the graph. Implementations for Implementations for graphNEL,
distGraph and clusterGraph.

Value

A graph of the same class as the graph argument but with only the supplied nodes.

Author(s)

R. Gentleman

toDotR-methods 57

See Also

nodes,edges

Examples

set.seed(123)
x <- rnorm(26)
names(x) <- letters
library(stats)
d1 <- dist(x)
g1 <- new("distGraph", Dist=d1)
subGraph(letters[1:5], g1)

toDotR-methods Methods for Function toDotR, using R to generate a dot serialization

Description

There are two basic methods of generating dot (http://www.graphviz.org) language se-
rializations of R graph-class structures. First, using the toDot methods of the Rgraphviz
package, the native graphviz agraph-associated methods can be employed to create the dot serializa-
tion. Second, with the methods described here, R functions can be used to perform the serialization
directly from the graph data structure, without Rgraphviz.

Methods

G = "graphNEL", outDotFile = "character", renderList = "list", optList = "list" create dot lan-
guage descriptionof graph

G = "graphNEL", outDotFile = "character", renderList = "missing", optList = "missing" create
dot language descriptionof graph

G = "graphNEL", outDotFile = "character", renderList = "missing", optList = "list" create dot
language descriptionof graph

G = "graphNEL", outDotFile = "missing", renderList = "missing", optList = "missing" create
dot language descriptionof graph

G = "graphNEL", outDotFile = "missing", renderList = "missing", optList = "list" create dot
language descriptionof graph

G = "graphNEL", outDotFile = "missing", renderList = "character", optList = "missing" create
dot language descriptionof graph

G = "graphNEL", outDotFile = "missing", renderList = "list", optList = "list" create dot lan-
guage descriptionof graph

G = "graphNEL", outDotFile = "missing", renderList = "list", optList = "missing" create dot
language descriptionof graph

G = "compoundGraph", outDotFile = "character", renderList = "list", optList = "missing"
create dot language descriptionof graph

G = "compoundGraph", outDotFile = "character", renderList = "list", optList = "list" create
dot language descriptionof graph

G = "compoundGraph", outDotFile = "missing", renderList = "list", optList = "missing" create
dot language descriptionof graph

http://www.graphviz.org

58 ugraph

See Also

toDot-methods

Examples

example(randomGraph)
tmp <- tempfile()
toDotR(g1, tmp)
readLines(tmp)
unlink(tmp)

ugraph Underlying Graph

Description

For a directed graph the underlying graph is the graph that is constructed where all edge orientation
is ignored. This function carries out such a transformation on graphNEL instances.

Usage

ugraph(graph)

Arguments

graph a graph object.

Details

If graph is already undirected then it is simply returned.

If graph is a multi-graph (has multiple edges) an error is thrown as it is unclear how to compute
the underlying graph in that context.

The method will work for any graph subclass for which an edgeMatrix method exists.

Value

An instance of graphNEL with the same nodes as the input but which is undirected.

Author(s)

R. Gentleman

References

Graph Theory and its Applications, J. Gross and J. Yellen.

See Also

connComp edgeMatrix

validGraph 59

Examples

V <- letters[1:4]
edL2 <- vector("list", length=4)
names(edL2) <- V
for(i in 1:4)
edL2[[i]] <- list(edges=c(2,1,2,1)[i], weights=sqrt(i))

gR2 <- new("graphNEL", nodes=V, edgeL=edL2, edgemode="directed")

ugraph(gR2)

validGraph Test whether graph object is valid

Description

validGraph is a validating function for a graph object.

Usage

validGraph(object, quietly=FALSE)

Arguments

object a graph object to be tested

quietly TRUE or FALSE indicating whether output should be printed.

Value

If the graph object is valid, TRUE is returned otherwise FALSE is returned. If object is not a
valid graph and quietly is set to FALSE then descriptions of the problems are printed.

Author(s)

Elizabeth Whalen

See Also

graph-class

Examples

testGraph<-new("graphNEL")
testGraph@nodes<-c("node1","node2","node3")
validGraph(testGraph)

60 write.tlp

write.tlp Write a graph object in a file in the Tulip format

Description

Write a graph object in a file in the Tulip format.

Usage

write.tlp(graph, filename)

Arguments

graph a graph object

filename Name of the output file

Details

The Tulip format is used by the program Tulip.

Author(s)

Laurent Gautier <laurent@cbs.dtu.dk>

References

http://www.tulip-software.org/

Index

∗Topic classes
attrData-class, 5
clusterGraph-class, 14
distGraph-class, 18
graph-class, 28
graphAM-class, 26
graphNEL-class, 31
multiGraph-class, 41
renderInfo-class, 49
simpleEdge-class, 52

∗Topic datasets
apoptosisGraph, 5
biocRepos, 9
graphExamples, 30
integrinMediatedCellAdhesion,

33
∗Topic graphs

buildRepDepGraph, 10
Coercions between matrix and

graph representations, 38
graph-class, 28
graphAM-class, 26
randomGraph, 45
randomNodeGraph, 46
Standard labeling of edges

with integers, 53
∗Topic internal

internal, 35
∗Topic manip

addEdge, 2
addNode, 3
aveNumEdges, 8
boundary, 9
calcProb, 11
calcSumProb, 12
clearNode, 13
combineNodes, 16
DFS, 17
duplicatedEdges, 19
edgeMatrix, 21
edgeWeights, 22
graph2SparseM, 25
inEdges, 34

listEdges, 36
mostEdges, 40
numNoEdges, 43
randomEGraph, 44
randomNodeGraph, 46
removeEdge, 47
removeNode, 48
reverseEdgeDirections, 51
subGraph, 54
ugraph, 56
validGraph, 57
write.tlp, 58

∗Topic methods
acc-methods, 1
adj-methods, 4
attrDataItem-methods, 7
attrDefaults-methods, 7
clusteringCoefficient-methods,

15
edgeData-methods, 20
edgeDataDefaults-methods, 20
fromGXL-methods, 24
isAdjacent-methods, 35
isDirected-methods, 35
nodeData-methods, 42
nodeDataDefaults-methods, 42
toDotR-methods, 55

∗Topic models
fromGXL-methods, 24
MAPKsig, 37
pancrCaIni, 43

∗Topic utilities
graph.par, 52

[.dist (distGraph-class), 18

acc, 4
acc (acc-methods), 1
acc,clusterGraph,character-method

(acc-methods), 1
acc,clusterGraph-method

(acc-methods), 1
acc,graph,character-method

(acc-methods), 1
acc,graph-method (acc-methods), 1

61

62 INDEX

acc-methods, 4
acc-methods, 1
addEdge, 2, 4, 47, 48
addEdge,character,character,graphAM,missing-method

(graphAM-class), 26
addEdge,character,character,graphNEL,missing-method

(graphNEL-class), 31
addEdge,character,character,graphNEL,numeric-method

(graphNEL-class), 31
addNode, 2, 3, 16, 47, 48
addNode,character,distGraph,list-method

(addNode), 3
addNode,character,graphAM,missing-method

(graphAM-class), 26
addNode,character,graphNEL,list-method

(addNode), 3
addNode,character,graphNEL,missing-method

(addNode), 3
addNode,character,graphNEL-method

(graphNEL-class), 31
adj (adj-methods), 4
adj,clusterGraph-method

(clusterGraph-class), 14
adj,distGraph-method

(distGraph-class), 18
adj,graphNEL-method

(graphNEL-class), 31
adj-methods, 4
agopen, 33
aM2bpG, 26
aM2bpG (Coercions between matrix

and graph
representations), 38

apopAttrs (apoptosisGraph), 5
apopGraph (apoptosisGraph), 5
apopLocusLink (apoptosisGraph), 5
apoptosisGraph, 5
attrData-class, 7, 8
attrData-class, 5
attrDataItem

(attrDataItem-methods), 7
attrDataItem,attrData,character,character-method

(attrData-class), 5
attrDataItem,attrData,character,missing-method

(attrData-class), 5
attrDataItem-methods, 7
attrDataItem<-

(attrDataItem-methods), 7
attrDataItem<-,attrData,character,character-method

(attrData-class), 5
attrDataItem<-methods

(attrDataItem-methods), 7

attrDefaults, 7
attrDefaults

(attrDefaults-methods), 7
attrDefaults,attrData,character-method

(attrData-class), 5
attrDefaults,attrData,missing-method

(attrData-class), 5
attrDefaults-methods, 7
attrDefaults<-

(attrDefaults-methods), 7
attrDefaults<-,attrData,character,ANY-method

(attrData-class), 5
attrDefaults<-,attrData,missing,list-method

(attrData-class), 5
attrDefaults<-methods

(attrDefaults-methods), 7
aveNumEdges, 8, 40, 43

biocRepos, 9
boundary, 9, 17
buildRepDepGraph, 9, 10
bzfile-class (fromGXL-methods), 24

calcProb, 11, 12
calcSumProb, 11, 12
clearNode, 13, 34
clearNode,character,graphAM-method

(graphAM-class), 26
clearNode,character,graphNEL-method

(graphNEL-class), 31
clusterGraph-class, 19, 32
clusterGraph-class, 14
clusteringCoefficient

(clusteringCoefficient-methods),
15

clusteringCoefficient,graph
(clusteringCoefficient-methods),
15

clusteringCoefficient,graph-method
(clusteringCoefficient-methods),
15

clusteringCoefficient-methods, 15
coerce (graphNEL-class), 31
coerce,clusterGraph,matrix-method

(clusterGraph-class), 14
coerce,graphAM,graphNEL-method

(graphAM-class), 26
coerce,graphAM,matrix-method

(graphAM-class), 26
coerce,graphNEL,generalGraph-method

(graphNEL-class), 31
coerce,graphNEL,graphAM-method

(graphNEL-class), 31

INDEX 63

coerce,graphNEL,matrix-method
(Coercions between matrix
and graph
representations), 38

coerce,matrix,graphAM-method
(graphAM-class), 26

coerce,matrix,graphNEL-method
(Coercions between matrix
and graph
representations), 38

Coercions between matrix and
graph representations, 38

colnames, 27
combineNodes, 16
combineNodes,character,graphNEL,character-method

(combineNodes), 16
complement (graph-class), 28
complement,graph-method

(graph-class), 28
connComp, 19, 56
connComp (graph-class), 28
connComp,clusterGraph-method

(clusterGraph-class), 14
connComp,graph-method

(graph-class), 28
connection-class

(fromGXL-methods), 24

degree (graph-class), 28
degree,graph,ANY-method

(graph-class), 28
degree,graph,missing-method

(graph-class), 28
DFS, 17
dfs, 17
DFS,graph,character-method (DFS),

17
dfs,graph-method (graph-class), 28
Dist (distGraph-class), 18
Dist,distGraph-method

(distGraph-class), 18
distGraph-class, 14, 30, 32
distGraph-class, 18
dumpGXL (fromGXL-methods), 24
dumpGXL,connection-method

(fromGXL-methods), 24
dumpGXL-methods

(fromGXL-methods), 24
duplicatedEdges, 19

edgeData, 23
edgeData (edgeData-methods), 20

edgeData,graph,character,character,character-method
(graph-class), 28

edgeData,graph,character,character,missing-method
(graph-class), 28

edgeData,graph,character,missing,character-method
(graph-class), 28

edgeData,graph,missing,character,character-method
(graph-class), 28

edgeData,graph,missing,missing,character-method
(graph-class), 28

edgeData,graph,missing,missing,missing-method
(graph-class), 28

edgeData-methods, 20
edgeData<- (edgeData-methods), 20
edgeData<-,graph,character,character,character-method

(graph-class), 28
edgeData<-,graph,character,missing,character-method

(graph-class), 28
edgeData<-,graph,missing,character,character-method

(graph-class), 28
edgeData<-methods

(edgeData-methods), 20
edgeDataDefaults, 20, 23
edgeDataDefaults

(edgeDataDefaults-methods),
20

edgeDataDefaults,graph,character-method
(graph-class), 28

edgeDataDefaults,graph,missing-method
(graph-class), 28

edgeDataDefaults-methods, 20
edgeDataDefaults<-

(edgeDataDefaults-methods),
20

edgeDataDefaults<-,graph,character,ANY-method
(graph-class), 28

edgeDataDefaults<-,graph,character-method
(graph-class), 28

edgeDataDefaults<-,graph,missing,list-method
(graph-class), 28

edgeDataDefaults<-methods
(edgeDataDefaults-methods),
20

edgeL (graphNEL-class), 31
edgeL,clusterGraph-method

(clusterGraph-class), 14
edgeL,distGraph-method

(distGraph-class), 18
edgeL,graph-method (graph-class),

28
edgeL,graphNEL-method

(graphNEL-class), 31

64 INDEX

edgeMatrix, 21, 56
edgeMatrix,clusterGraph-method

(edgeMatrix), 21
edgeMatrix,distGraph-method

(edgeMatrix), 21
edgeMatrix,graphAM-method

(edgeMatrix), 21
edgeMatrix,graphNEL-method

(edgeMatrix), 21
edgemode (graph-class), 28
edgemode,edgeSet-method

(multiGraph-class), 41
edgemode,graph-method

(graph-class), 28
edgemode<- (graph-class), 28
edgemode<-,graph,character-method

(graph-class), 28
edgeNames (graph-class), 28
edgeNames,graph-method

(graph-class), 28
edgeRenderInfo

(renderInfo-class), 49
edgeRenderInfo<-

(renderInfo-class), 49
edges, 22, 23, 37, 55
edges (graphNEL-class), 31
edges,clusterGraph,character-method

(clusterGraph-class), 14
edges,clusterGraph,missing-method

(clusterGraph-class), 14
edges,distGraph,character-method

(distGraph-class), 18
edges,distGraph,missing-method

(distGraph-class), 18
edges,edgeSetAM,character-method

(multiGraph-class), 41
edges,edgeSetNEL,character-method

(multiGraph-class), 41
edges,graphAM,character-method

(graphAM-class), 26
edges,graphAM,missing-method

(graphAM-class), 26
edges,graphNEL,character-method

(graphNEL-class), 31
edges,graphNEL,missing-method

(graphNEL-class), 31
edges,multiGraph,character-method

(multiGraph-class), 41
edges,multiGraph,missing-method

(multiGraph-class), 41
edgeSet-class (multiGraph-class),

41

edgeSetAM-class
(multiGraph-class), 41

edgeSetNEL-class
(multiGraph-class), 41

edgeWeights, 22
edgeWeights,clusterGraph,ANY-method

(clusterGraph-class), 14
edgeWeights,clusterGraph-method

(clusterGraph-class), 14
edgeWeights,distGraph,ANY-method

(distGraph-class), 18
edgeWeights,distGraph-method

(distGraph-class), 18
edgeWeights,graph,character-method

(graph-class), 28
edgeWeights,graph,missing-method

(graph-class), 28
edgeWeights,graph,numeric-method

(graph-class), 28
edgeWeights,graphNEL-method

(graphNEL-class), 31
eWV (edgeMatrix), 21

file-class (fromGXL-methods), 24
fromGXL (fromGXL-methods), 24
fromGXL,connection-method

(fromGXL-methods), 24
fromGXL-methods, 24
ftM2adjM, 26
ftM2adjM (Coercions between

matrix and graph
representations), 38

ftM2graphNEL (Coercions between
matrix and graph
representations), 38

ftM2int (Standard labeling of
edges with integers), 53

graph-class, 10, 14, 19, 20, 26, 27, 35, 55,
57

graph-class, 28
graph.par, 52
graph2SparseM, 25
graphAM-class, 30, 32
graphAM-class, 26, 32
graphExamples, 30
graphNEL, 24
graphNEL-class, 26, 27, 30, 37, 44, 45
graphNEL-class, 31
graphRenderInfo

(renderInfo-class), 49
graphRenderInfo<-

(renderInfo-class), 49

INDEX 65

graphRendering, 32, 49
GXL (fromGXL-methods), 24
gxlTreeNEL (fromGXL-methods), 24
gzfile-class (fromGXL-methods), 24

IMCA
(integrinMediatedCellAdhesion),
33

IMCAAttrs
(integrinMediatedCellAdhesion),
33

IMCAGraph
(integrinMediatedCellAdhesion),
33

inEdges, 16, 27, 32, 34
inEdges,character,graphAM-method

(graphAM-class), 26
inEdges,character,graphNEL-method

(graphNEL-class), 31
inEdges,graphAM,missing-method

(graphAM-class), 26
inEdges,graphNEL,missing-method

(graphNEL-class), 31
inEdges,missing,graphAM-method

(graphAM-class), 26
inEdges,missing,graphNEL-method

(graphNEL-class), 31
initialize (graphNEL-class), 31
initialize,attrData-method

(attrData-class), 5
initialize,distGraph-method

(distGraph-class), 18
initialize,graphAM-method

(graphAM-class), 26
initialize,graphNEL-method

(graphNEL-class), 31
int2ftM (Standard labeling of

edges with integers), 53
integrinMediatedCellAdhesion, 33
internal, 35
intersection (graph-class), 28
intersection,graph,graph-method

(graph-class), 28
intersection2 (graph-class), 28
intersection2,graph,graph-method

(graph-class), 28
is.character, 23
is.integer, 23
is.numeric, 23
isAdjacent (isAdjacent-methods),

35
isAdjacent,graph,character,character-method

(graph-class), 28

isAdjacent,graphAM,character,character-method
(graphAM-class), 26

isAdjacent-methods, 35
isConnected (graph-class), 28
isConnected,graph-method

(graph-class), 28
isDirected (isDirected-methods),

35
isDirected,edgeSet-method

(multiGraph-class), 41
isDirected,graph-method

(graph-class), 28
isDirected,multiGraph-method

(multiGraph-class), 41
isDirected-methods, 35

join (graph-class), 28
join,graph,graph-method

(graph-class), 28

leaves, 36
leaves,graph-method (leaves), 36
listEdges, 36

MAPKsig, 37
mostEdges, 8, 40, 43
multiGraph-class, 41

names,attrData-method
(attrData-class), 5

names<-,attrData,character-method
(attrData-class), 5

NELhandler (fromGXL-methods), 24
nodeData, 42
nodeData (nodeData-methods), 42
nodeData,graph,character,character-method

(graph-class), 28
nodeData,graph,character,missing-method

(graph-class), 28
nodeData,graph,missing,character-method

(graph-class), 28
nodeData,graph,missing,missing-method

(graph-class), 28
nodeData-methods, 42
nodeData<- (nodeData-methods), 42
nodeData<-,graph,character,character-method

(graph-class), 28
nodeData<-,graph,missing,character-method

(graph-class), 28
nodeData<-methods

(nodeData-methods), 42
nodeDataDefaults, 42

66 INDEX

nodeDataDefaults
(nodeDataDefaults-methods),
42

nodeDataDefaults,graph,character-method
(graph-class), 28

nodeDataDefaults,graph,missing-method
(graph-class), 28

nodeDataDefaults-methods, 42
nodeDataDefaults<-

(nodeDataDefaults-methods),
42

nodeDataDefaults<-,graph,character,ANY-method
(graph-class), 28

nodeDataDefaults<-,graph,character-method
(graph-class), 28

nodeDataDefaults<-,graph,missing,list-method
(graph-class), 28

nodeDataDefaults<-methods
(nodeDataDefaults-methods),
42

nodeRenderInfo
(renderInfo-class), 49

nodeRenderInfo<-
(renderInfo-class), 49

nodes, 23, 55
nodes (graphNEL-class), 31
nodes,clusterGraph-method

(clusterGraph-class), 14
nodes,distGraph-method

(distGraph-class), 18
nodes,edgeSetAM-method

(multiGraph-class), 41
nodes,graph-method (graph-class),

28
nodes,graphAM-method

(graphAM-class), 26
nodes,graphNEL-method

(graphNEL-class), 31
nodes,multiGraph-method

(multiGraph-class), 41
nodes<- (graphNEL-class), 31
nodes<-,clusterGraph,character-method

(clusterGraph-class), 14
nodes<-,graph,character-method

(graph-class), 28
nodes<-,graphAM,character-method

(graphAM-class), 26
nodes<-,graphNEL,character-method

(graphNEL-class), 31
nullgraphID (internal), 35
numEdges, 8, 40, 43
numEdges (graph-class), 28

numEdges,edgeSetAM-method
(multiGraph-class), 41

numEdges,graph-method
(graph-class), 28

numEdges,graphAM-method
(graphAM-class), 26

numEdges,multiGraph-method
(multiGraph-class), 41

numNodes (graph-class), 28
numNodes,clusterGraph-method

(clusterGraph-class), 14
numNodes,distGraph-method

(distGraph-class), 18
numNodes,graph-method

(graph-class), 28
numNodes,graphAM-method

(graphAM-class), 26
numNodes,graphNEL-method

(graphNEL-class), 31
numNodes,multiGraph-method

(multiGraph-class), 41
numNoEdges, 8, 40, 43

pancrCaIni, 43
par, 52
parRenderInfo (renderInfo-class),

49
parRenderInfo<-

(renderInfo-class), 49
pathWeights (edgeMatrix), 21
pkgInstOrder (buildRepDepGraph),

10
plot.graph, 33

randomEGraph, 30, 44, 45, 46
randomGraph, 30, 44, 45, 46
randomNodeGraph, 45, 46
removeAttrDataItem<-

(attrData-class), 5
removeAttrDataItem<-,attrData,character,NULL-method

(attrData-class), 5
removeEdge, 2, 4, 13, 47, 48
removeEdge,character,character,graphAM-method

(graphAM-class), 26
removeEdge,character,character,graphNEL-method

(graphNEL-class), 31
removeNode, 2, 4, 13, 34, 47, 48
removeNode,character,graphAM-method

(graphAM-class), 26
removeNode,character,graphNEL-method

(graphNEL-class), 31
renderGraph, 49
renderInfo-class, 49

INDEX 67

reverseEdgeDirections, 51

show (graph-class), 28
show,clusterGraph-method

(clusterGraph-class), 14
show,distGraph-method

(distGraph-class), 18
show,edgeSet-method

(multiGraph-class), 41
show,graph-method (graph-class),

28
show,multiGraph-method

(multiGraph-class), 41
simpleEdge-class, 37
simpleEdge-class, 52
sparseM2Graph (graph2SparseM), 25
Standard labeling of edges with

integers, 53
strongComp, 28
subGraph, 10, 12, 48, 54
subGraph,character,clusterGraph-method

(subGraph), 54
subGraph,character,distGraph-method

(subGraph), 54
subGraph,character,graphNEL-method

(subGraph), 54

threshold (distGraph-class), 18
threshold,distGraph-method

(distGraph-class), 18
toDot, 55
toDot-methods, 56
toDotR (toDotR-methods), 55
toDotR,graphNEL,character,list,list-method

(toDotR-methods), 55
toDotR,graphNEL,character,missing,list-method

(toDotR-methods), 55
toDotR,graphNEL,character,missing,missing-method

(toDotR-methods), 55
toDotR,graphNEL,missing,character,missing-method

(toDotR-methods), 55
toDotR,graphNEL,missing,list,list-method

(toDotR-methods), 55
toDotR,graphNEL,missing,list,missing-method

(toDotR-methods), 55
toDotR,graphNEL,missing,missing,list-method

(toDotR-methods), 55
toDotR,graphNEL,missing,missing,missing-method

(toDotR-methods), 55
toDotR-methods, 55
toGXL (fromGXL-methods), 24
toGXL,graphNEL-method

(graphNEL-class), 31

toGXL-methods (fromGXL-methods),
24

ugraph, 19, 28, 56
ugraph,graph-method (ugraph), 56
ugraphOld (ugraph), 56
union (graph-class), 28
union,graph,graph-method

(graph-class), 28
updateGraph (graph-class), 28
updateGraph,graph-method

(graph-class), 28
url-class (fromGXL-methods), 24

validateGXL (fromGXL-methods), 24
validateGXL,connection-method

(fromGXL-methods), 24
validGraph, 57

write.tlp, 58

xmlEventParse, 24

	acc-methods
	addEdge
	addNode
	adj-methods
	apoptosisGraph
	attrData-class
	attrDataItem-methods
	attrDefaults-methods
	aveNumEdges
	biocRepos
	boundary
	buildRepDepGraph
	calcProb
	calcSumProb
	clearNode
	clusterGraph-class
	clusteringCoefficient-methods
	combineNodes
	DFS
	distGraph-class
	duplicatedEdges
	edgeDataDefaults-methods
	edgeData-methods
	edgeMatrix
	edgeWeights
	fromGXL-methods
	graph2SparseM
	graphAM-class
	graph-class
	graphExamples
	graphNEL-class
	graphRendering
	integrinMediatedCellAdhesion
	inEdges
	internal
	isAdjacent-methods
	isDirected-methods
	leaves
	listEdges
	MAPKsig
	Coercions between matrix and graph representations
	mostEdges
	multiGraph-class
	nodeDataDefaults-methods
	nodeData-methods
	numNoEdges
	pancrCaIni
	randomEGraph
	randomGraph
	randomNodeGraph
	removeEdge
	removeNode
	renderInfo-class
	reverseEdgeDirections
	graph.par
	simpleEdge-class
	Standard labeling of edges with integers
	subGraph
	toDotR-methods
	ugraph
	validGraph
	write.tlp
	Index

