
ChemmineR
November 11, 2009

R topics documented:
cluster.sizestat . 1
cluster.visualize . 2
cmp.cluster . 4
cmp.duplicated . 6
cmp.parse1 . 7
cmp.parse . 8
cmp.search . 9
cmp.similarity . 11
db.explain . 12
db.subset . 13
sdf.subset . 14
sdf.visualize . 15

Index 17

cluster.sizestat generate statistics on sizes of clusters

Description

’cluster.sizestat’ is used to do simple statistics on sizes of clusters generated by ’cmp.cluster’. It
will return a dataframe which maps a cluster size to the number of clusters with that size. It is often
used along with ’cluster.visualize’.

Usage

cluster.sizestat(cls, cluster.result=1)

Arguments

cls The clustering result returned by ’cmp.cluster’
cluster.result

If multiple cutoff values are used in clustering process, this argument tells which
cutoff value is to be considered here.

1

2 cluster.visualize

Details

’cluster.sizestat’ depends on the format that is returned by ’cmp.cluster’ - it will treat the first column
as the indecies, and the second column as the cluster sizes of effective clustering. Because of this,
when multiple cutoffs are used when ’cmp.cluster’ is called, ’cluster.sizestat’ will only consider
the clustering result of the first cutoff. If you want to work on an alternative cutoff, you have to
manually reorder/remove columns.

Value

Returns a data frame of two columns.

cluster size This column lists cluster sizes

count This column lists number of clusters of a cluster size

Author(s)

Y. Eddie Cao

See Also

cmp.cluster, cluster.visualize

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
cluster it
clusters <- cmp.cluster(db, cutoff=0.65)
statistics on sizes of clusters
sizestat <- cluster.sizestat(clusters)

cluster.visualize visualize clustering result using multi-dimensional scaling

Description

’cluster.visualize’ takes clustering result returned by ’cmp.cluster’ and generate multi-dimensional
scaling plot for visualization purpose.

Usage

cluster.visualize(db, cls, size.cutoff, distmat=NULL, color.vector=NULL, non.interactive="", cluster.result=1, dimensions=2, quiet=FALSE, ...)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

cls The clustering result returned by ’cmp.cluster’.

size.cutoff The cutoff size for clusters considered in this visualization. Clusters of size
smaller than the cutoff will not be considered.

distmat A distance matrix that corresponds to the ’db’. If not provided, it will be com-
puted on-the-fly in an efficient manner.

cluster.visualize 3

color.vector Colors to be used in the plot. If the number of colors in the vector is not enough
for the plot, colors will be reused. If not provided, color will be generated and
randomly sampled from ’rainbow’.

non.interactive
If provided, will enable the non-interactive mode, and the plot will be in an eps
file named after this value.

cluster.result
Used to select the clustering result if multiple clustering results are present in
’cls’.

dimensions Dimensionality to be used in visualization. See details.

quiet Whether to supress the progress bar.

... Further arguments will be passed to ’cmp.similarity’ to calculate similarity ma-
trix.

Details

’cluster.visualize’ internally calls the ’cmdscale’ function to generate a set of points in 2-D for the
compounds in selected clusters. Note that for compounds in clusters smaller than the cutoff size,
they will not be considered in this calculation - their entries in ’distmat’ will be discarded if ’distmat’
is provided, and distances involving them will not be computed if ’distmat’ is not provided.

To determine the value for ’size.cutoff’, you can use ’cluster.sizestat’ to see the size distribution of
clusters.

Because ’cmp.cluster’ function allows you to perform multiple clustering processes simultaneously
with different cutoff values, the ’cls’ parameter may point to a data frame containing multiple
clustering results. The user can use ’cluster.result’ to specify which result to use. By default, this
is set to 1, and the first clustering result will be used in visualization. Whatever the value is, in
interactive mode (described below), all clustering result will be displayed when a compound is
selected in the interactive plot.

If the colors provided in ’color.vector’ are not enough to distinguish clusters by colors, the function
will silently reuse the colors, resulting multiple clusters colored in the same color. We suggest you
use ’cluster.sizestat’ to see how many clusters will be selected using your ’size.cutoff’, or simply
provide no ’color.vector’.

If ’non.interative’ is not set, the final plot is interactive. You will be able to select points by clicking
them. When you click on any point, information about the compound represented by that point will
be displayed. This includes the cluster ID, cluster size, compound index in the SDF and compound
name if any. You can then perform another selection. To exit this process, right click on X11 device
or press ESC in non-X11 device (Quartz and Windows).

By default, ’dimensions’ is set to 2, and the built-in ’plot’ function will be used for plotting. If you
need to do 3-Dimensional plotting, set ’dimensions’ to 3, and pass the returned value to 3D plot
utilities, such as ’scatterplot3d’ or ’rggobi’. This package does not perform 3D plot on its own.

Value

This function returns a data frame of MDS coordinates and clustering result. This value can be
passed to 3D plot utilities such as ’scatterplot3d’ and ’rggobi’.

Author(s)

Y. Eddie Cao

4 cmp.cluster

See Also

cmp.parse, cmp.cluster, cluster.sizestat

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
cluster it, with 2 cutoffs
clusters <- cmp.cluster(db, cutoff=c(0.65, 0.5))
stat on sizes
sizestat <- cluster.sizestat(clusters)
visualize it, using a cutoff of 3, write to file 'test.eps'
coord <- cluster.visualize(db, clusters, 3, non.interactive="test.eps")
Not run:
visualize it in interactive mode, using a cutoff of 3 and the 2nd clustering result
coord <- cluster.visualize(db, clusters, cluster.result=2, 3)
3D visualization, with scatterplot3d
coord <- cluster.visualize(db, clusters, 3, dimensions=3)
library(scatterplot3d)
scatterplot3d(coord)
End(Not run)

cmp.cluster cluster compounds using a descriptor database

Description

’cmp.cluster’ uses compound descriptors in a database and clusters these compounds based on their
pairwise distances. ’cmp.cluster’ uses single linkage to measure distance between clusters when it
merges clusters. ’cmp.cluster’ accepts both a single cutoff and a cutoff vector. By using a cutoff
vector, it can generate the same result as hierachical clustering.

Usage

cmp.cluster(db, cutoff, is.similarity = TRUE, save.distances = FALSE,
use.distances = NULL, quiet = FALSE, ...)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

cutoff The clustering cutoff. Can be a single value or a vector. The cutoff gives the
maximum distance between two compounds in order to group them in the same
clsuter.

is.similarity
Set when the cutoff supplied is a similarity cutoff. This cutoff is the mimumum
similarity value between two compounds such that they will be grouped in the
same cluster.

save.distances
whether to save distance for future clustering. See details below.

use.distances
Supply pre-computed distance matrix.

cmp.cluster 5

quiet Whether to supress the progress information.

... Further arguments to be passed to ’cmp.similarity’ to calculate similarities if
necessary.

Details

’cmp.cluster’ will compute distance on the fly if ’use.distances’ is not set. Furthermore, if ’save.distances’
is not set, the distance will never be stored and distance between any two compounds is guaranteed
not to be computed twice. Using this method, ’cmp.cluster’ can deal with large database, when
a distance matrix in memory is not feasible. The speed of this cluster function should be slowed
because of using this transient distance value.

When ’save.distances’ is set, ’cmp.cluster’ will be forced to compute the distance matrix and save
it in memory before doing clustering. This is useful when you need to do further clustering in the
future and do not want the distance to be re-computed then. Set ’save.distances’ to TRUE if you
only want to force the clustering to use this 2-step approach; otherwise, set it to the filename under
which you want the distance matrix to be saved. After you save it, when you need to reuse the
distance matrix, you can ’load’ it, and supply to ’cmp.cluster’ via the ’use.distances’ argument.

’cmp.cluster’ supports vector of cutoffs. When you have multiple cutoffs, ’cmp.cluster’ still guaran-
tees that pairwise distances will never be recomputed, and no copy of distances is kept in memory.
It is guaranteed to be as fast as calling ’cmp.cluster’ with a single cutoff that results in the longest
processing time, plus some small overhead linear in that processing time.

Value

Returns a data frame. Besides a variable giving compound ID, each of the other variables in the
data frame will either give the cluster IDs of compounds under some clustering cutoff, or the size
of clusters that the compounds belong to. When N cutoffs are given, in total 2*N+1 variables will
be generated, with N of them giving the cluster ID of each compound under each of the N cutoffs,
and the other N of them giving the cluster size under each of the N cutoffs. The rows are sorted by
the cluster sizes.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.similarity

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
cluster it
clusters <- cmp.cluster(db, cutoff=0.65)
cluster using multiple cutoffs
clusters <- cmp.cluster(db, cutoff=c(0.5, 0.85))
or save the distance before clustering:
clusters <- cmp.cluster(db, cutoff=0.65, save.distances="distmat.rda")
later, you can load the matrix and pass it to do clustering. Load will load
the variable 'distmat' that contains the distance matrix
load("distmat.rda")
clusters <- cmp.cluster(db, cutoff=0.60, use.distances=distmat)

6 cmp.duplicated

cmp.duplicated quickly detect compound duplication in a descriptor database

Description

’cmp.duplicated’ detects duplicated compounds from a descriptor database generated by ’cmp.parse’.
Two compounds are said to duplicate each other when their descriptors are the same.

Usage

cmp.duplicated(db, sort = FALSE)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

sort Whether to sort the descriptors for a compound. See details.

Details

’cmp.duplicated’ will take the descriptors in the descriptor database, concatenate all descriptors for
the same compound into a string, and use this string as the identification of a compound. If two
compounds share the same identification string, they are said to duplicate each other.

In most cases the method will identify the duplicates correctly. However, users have to be aware
that the atom pair algorithm will treat isomers, conformers and other smaller structural variants as
identical compounds. If it is important to retain those variants in the data set then the function
’cmp.duplicated’ should not be used. The support of InChI stings will overcome this limitation in
the future.

’cmp.duplicated’ assume the the database passed in as argument to follow the format generated by
’cmp.parse’. That is, ’db’ is a list, ’dbdescdb′isalist, andeachentryof ′dbdescdb’ is an array of
numeric values that give descriptors for one compound.

By default, ’cmp.duplicated’ will assume the descriptors for a compound is already sorted. That is
each entry in ’db$descdb’ is a sorted array. This is true for database generated by ’cmp.parse’. If
you generate the database using some other tools, you might want to enable sorting.

Value

Returns a logic array, telling whether a compound in the database is a duplication of a compound
appearing before this one. For example, if the i-th element of the array is TRUE, it means that the
i-th compound in the database is a duplication of a compound listed before this compound in the
database.

The returned array can be used to remove duplication. Simply use it to index the descriptor database.

If you are interested in what compound is duplicated, you can do a search in the database with cutoff
set to 1.

Author(s)

Y. Eddie Cao

cmp.parse1 7

See Also

cmp.parse, cmp.search

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
manually create a duplication
note that we ignore the other information in the database and only consider
the descriptor information
db$descdb[[89]] <- db$descdb[[10]]
length(db$descdb)
find duplication
dup <- cmp.duplicated(db)
locate duplicated compound using search
cmp.search(db, db$descdb[dup][[1]], cutoff=1, quiet=TRUE)
remove duplication from db
db$descdb <- db$descdb[!dup]
normally you should also clear the entries in db$cids and db$sdfsegs
length(db$descdb)

cmp.parse1 Parsing an SDF file and calculate the descriptor for one compound

Description

Read SDF information from an SDF file or connection, parse the first compound, and calculate
the descriptor for that compound. The returned descriptor can be added to database returned
by ’cmp.parse’ or be used as the query structure when calling ’search’. This function will only
parse one compound and return only the descriptor. To parse all compounds in an SDF file, use
’cmp.parse’.

Usage

cmp.parse1(filename)

Arguments

filename The file name of the SDF file or a URL or a connection.

Details

’cmp.parse1’ can take a file name or a URL or a connection. When a connection is used, the current
line must be the first line of SDF of the compound to be parsed. ’cmp.parse1’ will skip the header
and parse from the 4th line. Therefore, the compound ID information will be skipped. After the
parsing is done, if ’filename’ is a connection, it will then point to the line after the connection table
of SDF. You can use some other procedure to parse the annotation block.

Value

Return the descriptor, which is encoded as a vector.

8 cmp.parse

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse, cmp.search, cmp.cluster, cmp.similarity

Examples

load an SDF file from web and parse it
structure <- cmp.parse1(

"http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf")

cmp.parse Parse an SDF file and compute descriptors for all compounds

Description

’cmp.parse’ will take a SDF file, parse all the compounds encoded, compute their atom-pair descrip-
tors, and return the descriptors as a list. The list contains two names, ’descdb’ and ’cids’. ’descdb’
is a vector of descriptors, and ’cids’ is a list of names of compounds found in the SDF file. The
returned list is usually used to a database, against which similarity search can be performed using
the ’search’ function. These two functions will parse all compounds in the SDF file. To parse a
single compound, use ’cmp.parse1’ instead.

Usage

cmp.parse(filename, quiet=FALSE)

Arguments

filename The file name of the SDF file
quiet Whether to silent the output of progress information

Details

The ’filename’ can be a local file or an URL. It is interactive, and will display the parsing progress.
Since the parsing will also compute of atom-pair descriptors, it is time consuming. You will be
reminded to save the parsing result for future use at the end of parsing.

Value

Return a list that can be used as the database against which similarity search can be performed. The
’search’ and ’cmp.cluster’ functions both expect a database returned by ’cmp.parse’.

descdb A vector containing the descriptors for all the compounds.
cids Compound ID information found in the SDF file. It is the first line of SDF of a

compound.

cmp.search 9

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse1, cmp.search, cmp.cluster, cmp.similarity

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
(optinally) save the db for future use
save(db, file="db.rda", compress=TRUE)
...
later, in a separate session, you can load it back:
load("db.rda")

cmp.search Search a descriptor database for compounds similar to query com-
pound

Description

Given descriptor of a query compound and a database of compound descriptors, search for com-
pounds that are similar to the query compound. User can limit the output by supplying a cutoff
similarity score or a cutoff that limits the number of returned compounds. The function can also
return the scores together with the compounds.

Usage

cmp.search(db, query, cutoff = 0.5, return.score = FALSE, quiet = FALSE,
mode = 1, visualize=FALSE, visualize.browse=TRUE, visualize.query=NULL)

Arguments

db The compound descriptor database returned by ’cmp.parse’.

query The query descriptor, which is usually returned by ’cmp.parse1’.

cutoff The cutoff similarity (when cutoff <= 1) or the number of maximum compounds
to be returned (when cutoff > 1).

return.score Whether to return similarity scores. If set to TRUE, a data frame will be re-
turned; otherwise, only the compounds’ indices in the database will be returned
in the order of decreasing scores.

quiet Whether to disable progress information.

mode Mode used when computing similarity scores. This value is passed to ’cmp.similarity’.

10 cmp.search

visualize Whether to visualize the search result in a webpage.
visualize.browse

Whether to open the browser automatically if you choose to visualize the search
result.

visualize.query
Filename/URL or a character string containing the SDF of the query structure if
you also want to visualize the query in the search result visualization webpage.

Details

’cmp.search’ will go through all the compound descriptors in the database and calculate the simi-
larity between the query compound and compounds in the database. When cutoff similarity score
is set, compounds having a similarity score higher than the cutoff will be returned. When maxi-
mum number of compounds to return is set to N via ’cutoff’, the compounds having the highest N
similarity scores will be returned.

If ’visualize’ is set to a TRUE value, sdf.visualize will be called to send the search results
and the scores to ChemMine website. If ’visualize.browse’ is set to a TRUE value, the browser
will open to show the structures in the search result with their corresponding scores. Otherwise, a
URL pointing to that webpage will be printed. By default, ’visualize.query’ is not set, and the query
structure will not be uploaded. If you want that to be included in the visualization webpage as well,
you must set this argument to a character string containing the SDF of the query, or a filename
pointing to a file containing the SDF of the query. If the character string or the file containing
multiple SDFs, only the first will be considered as the SDF of the query.

Value

When ’return.score’ is set to FALSE, a vector of matching compounds’ indices in the database will
be returned. Otherwise, a data frame will be returned:

ids The indices of matching compounds in the database.

scores The similarity scores between the matching compounds and the query com-
pound

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.cluster, cmp.similarity, sdf.visualize

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
(optinally) save the db for future use
save(db, file="db.rda", compress=TRUE)
load SDF of query struture from web

cmp.similarity 11

url <- "http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf"
query <- cmp.parse1(url)
search for similar compounds using similarity cutoff
cmp.search(db, query, cutoff=0.4)
search for similar compounds using similarity cutoff; request to return scores
cmp.search(db, query, cutoff=0.4, return.score=TRUE)
search for similar compounds using return-the-top-N style
cmp.search(db, query, cutoff=10, return.score=TRUE)

you may visualize the search result in ChemMine
cmp.search(db, query, cutoff=10, visualize=TRUE, visualize.browse=FALSE, visualize.query=url)

in the next session, you may use load a saved db and do the search:
load("db.rda")
cmp.search(db, query, cutoff=3)
you may also use the loaded db to do clustering:
cmp.cluster(db, cutoff=0.35)

cmp.similarity Compute similarity between two compounds using their descriptors

Description

Given descriptors for two compounds, ’cmp.similarity’ returns the similarity measure between the
two compounds.

Usage

cmp.similarity(a, b, mode = 1, worst = 0)

Arguments

a Descriptor of the first compound.

b Descriptor of the second compound.

mode Mode used when computing the distance. See details below.

worst The worst value you are expecting. If ’cmp.similarity’ finds the upper bound of
similarity is worse than it, it will return a 0 and potentially save some computa-
tion.

Details

’cmp.similarity’ uses descriptor information generated by ’cmp.parse’ and ’cmp.parse1’. Basically,
a descriptor is a vector of numbers. The vector actually reprsents the set of descriptors of structural
fragment. Similarity measurement uses Tanimoto coefficient. The Tanimoto coefficient between
the atom pair descriptors of two compounds (CMP A and CMP B) is calculated here according to
the following formula:

Tanimoto coefficient = c/(a + b + c)

a = count of atom pair descriptors in CMP A but not in CMP B

b = count of atom pair descriptors in CMP B but not in CMP A

c = count of atom pair descriptors shared by CMP A and CMP B

12 db.explain

’cmp.similarity’ supports 3 different modes. In mode 1, normal Tanimoto coefficient is used. In
mode 2, it uses the size of descriptor intersection over the size of the smaller descriptor, mainly to
deal with compounds that vary a lot in size. In mode 3, it is similar to mode 2, except that it raises
the similarity to the power 3 to penalize small values. When mode is 0, ’cmp.similarity’ will select
mode 1 or mode 3, based on the size differences between the two descriptors.

When ’cmp.similarity’ is used in searching compounds with a threshold similarity value, or in
clustering with a cutoff distance, the threshold similarity and cutoff distance can be used to decide a
’worse’ value. ’cmp.similarity’ can compute an upper bound of similarity easier, and by comparing
this upper bound to the ’worst’ value, it can potentially skip the real computation if it finds the
similarity will be below the ’worst’ value and will be useless to the caller.

Value

Return a numeric value between 0 and 1 which gives the similarity between the two compounds.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

Peter Willett (1998). "Chemical Similarity Searching", in J. Chem. Inf. Comput. Sci.

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.cluster

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
compare two compounds in the database:
attach(db)
cmp.similarity(descdb[[1]], descdb[[2]])
detach(db)

or load a structure from its SDF
query <- cmp.parse1(

"http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf")
compare it against a structure in database
cmp.similarity(query, db$descdb[[2]])

db.explain Explain an atom-pair descriptor or an array of atom-pair descriptors

Description

’db.explain’ will take an atom-pair descriptor in numeric or a set of such descriptors, and interpret
what they represent in a more human readable way.

db.subset 13

Usage

db.explain(desc)

Arguments

desc The descriptor or the array/vector of descriptors

Details

’desc’ can be a single numeric giving a single descriptor or can be any container data type, such as
vector or array, such that ’length(desc)’ returns 2 or larger.

Value

Return a character vector describing the descriptors.

See Also

cmp.parse

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
explain descriptor 1 of compound 1
db.explain(db$descdb[[1]][[1]])
explain descriptor 1 to 10 of compound 1
db.explain(db$descdb[[1]][1:10])
explain all descriptors of compound 1
db.explain(db$descdb[[1]])

db.subset Subset a descriptor database and return a sub-database for the se-
lected compounds

Description

’db.subset’ will take a descriptor database generated by ’cmp.parse’ and an array of indecies, and
return a new database for compounds corresponding to these indecies. The returned value is a
descriptor database as returned by the cmp.parse function.

Usage

db.subset(db, cmps)

Arguments

db The database generated by ’cmp.parse’

cmps An array of indecies that correspond to a set of selected compounds from the
database

14 sdf.subset

Details

’db.subset’ creates a sub-database from ’db’ by only including infomration that is relevant to com-
pounds indexed by ’cmps’.

Value

Return a descriptor database for the selected compounds. The format of the database is compatible
with the one returned by cmp.parse.

See Also

cmp.parse, sdf.subset

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
create a sub-database for the 1st and 2nd compound in that SDF
db_new <- db.subset(db, c(1, 2))

sdf.subset Subset a SDF and return SDF segements for selected compounds

Description

’sdf.subset’ will take a descriptor database generated by ’cmp.parse’ and an array of indecies, and
return an SDF string consisting of SDFs for compounds corresponding to that list of indecies. The
returned value is a character string.

Usage

sdf.subset(db, cmps)

Arguments

db The database generated by ’cmp.parse’

cmps An array of indecies that correspond to a set of selected compounds from the
database

Details

’sdf.subset’ depends on information embedded in the descriptor database returned by ’cmp.parse’.
It also relies on the availability of the original SDF where the database has been generated from.
Basically, when ’cmp.parse’ parses the original SDF file, it will store the path of that SDF file as
well as offset information for SDF segment in that file. Therefore, if the SDF file has been changed
or deleted, ’sdf.subset’ cannot function properly.

The result SDF will also have names added to compounds if they are not present in the original
SDF.

Value

Return a character string whose content is the concatenation of SDFs for the selected compounds.

sdf.visualize 15

See Also

cmp.parse, sdf.visualize

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
select SDF for 1st and 2nd compound in that SDF
sdf_segments <- sdf.subset(db, c(1, 2))
now sdf_segments containt the 2 SDFs for those 2 compounds

sdf.visualize Subset a SDF and visualize selected compounds in a webpage

Description

’sdf.visualize’ will take a descriptor database generated by ’cmp.parse’ and an array of indecies,
send an SDF consisting structure information of compounds indexed by this array to ChemMine
(http://bioweb.ucr.edu/ChemMineV2), and open a webpage that shows the structures of
these compounds. It returns the URL of that page.

Usage

sdf.visualize(db, cmps, extra=NULL, reference.sdf=NULL, reference.note=NULL, browse=TRUE, quiet=TRUE)

Arguments

db The database generated by ’cmp.parse’

cmps A vector of indecies that correspond to a set of selected compounds from the
database

extra A vector or list of character strings or matrices or data frames, each entry of
which gives extra description on the compounds being visualized.

reference.sdf
A character string of SDF or a filename of an SDF file for the reference com-
pound.

reference.note
Note to be displayed with the reference compound.

browse Whether to open the webpage automatically after the upload is finished

quiet Whether to display the progress information

Details

’sdf.visualize’ uses sdf.subset to extract the SDF for the selected compounds. Therefore,
’sdf.visualize’ also depends on information embedded in the descriptor database returned by ’cmp.parse’.
It also relies on the availability of the original SDF file where the database has been generated from.
Basically, when ’cmp.parse’ parses the original SDF file, it will store the path of that SDF file as
well as offset information for SDF segment in that file. Therefore, if the SDF file has been changed
or deleted, ’sdf.visualize’ cannot function properly.

http://bioweb.ucr.edu/ChemMineV2

16 sdf.visualize

After extracting the SDF segments for the selected compounds, ’sdf.visualize’ will send the SDF to
ChemMine (http://bioweb.ucr.edu/ChemMineV2) using HTTP POST method. Chem-
Mine will generate the 2D images for the selected compounds and a webpage containing these
images as well as the SDFs. The URL is returned by ’sdf.visualize’. If ’browse’ is set to TRUE, the
URL will be opened by your default browser.

If the argument ’extra’ is given, it must be a vector or list of character strings or data frames or
matrices. The length of the vector or list must be the same as that of the indices. Each entry may be
named or not. Each entry of this vector is a character string giving extra description on a compound.
This vector will be sent to ChemMine, and the extra description for a compound will be listed at the
right hand side of the compound. Data frames or matrices will be formatted and displayed as they
would be formatted by the ’print’ function.

The ’reference.sdf’ argument is given when you want to upload an extra compound as a reference
compound. This compound will be displayed at the top of the visualization web page. This argu-
ment can be a character string of SDF(s), or it can be a filename or URL that points to an SDF file.
If the string or the file contains multiple SDFs, this function will use the first one.

If a reference compound is uploaded, note about this compound can be set via the ’reference.note’
argument. This note will be displayed next to the structure of the compound on the resulting web-
page.

Value

Returns the URL of the webpage containing all the SDFs and 2D images corresponding to the
selected compounds.

See Also

cmp.parse, sdf.subset

Examples

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
set default browser to firefox
options(browser="firefox")
select SDF for 1st and 2nd compound in that SDF and visualize it
url will contain the URL of the page. Your browser will automatically open
the page, too.
Not run: url <- sdf.visualize(db, c(1, 2))
upload first 20 compounds, disable browsing the page automatically
url <- sdf.visualize(db, 1:20, browse=FALSE)
cat(paste("point your browser to ", url, "\n", sep=''))
upload the first two compounds, with extra description
extra <- c("Mark's compound", "Alan's compound")
names(extra) <- rep("Note", 2)
Not run: url <- sdf.visualize(db, c(1, 2), extra=extra)
upload the first two compound, and use an reference compound
reference.cmp <- "http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf"
Not run: url <- sdf.visualize(db, c(1, 2), extra=extra, reference.sdf=reference.cmp, reference.note='Reference compound from Aurora library')

 http://bioweb.ucr.edu/ChemMineV2

Index

∗Topic utilities
cluster.sizestat, 1
cluster.visualize, 2
cmp.cluster, 4
cmp.duplicated, 5
cmp.parse, 8
cmp.parse1, 7
cmp.search, 9
cmp.similarity, 11
db.explain, 12
db.subset, 13
sdf.subset, 14
sdf.visualize, 15

cluster.sizestat, 1, 3
cluster.visualize, 2, 2
cmp.cluster, 2, 3, 4, 7, 9, 10, 12
cmp.duplicated, 5
cmp.parse, 3, 5–7, 8, 10, 12–14, 16
cmp.parse1, 5, 7, 9, 10, 12
cmp.search, 5–7, 9, 9, 10, 12
cmp.similarity, 5, 7, 9, 10, 11

db.explain, 12
db.subset, 13

sdf.subset, 13, 14, 15, 16
sdf.visualize, 10, 14, 15

17

	cluster.sizestat
	cluster.visualize
	cmp.cluster
	cmp.duplicated
	cmp.parse1
	cmp.parse
	cmp.search
	cmp.similarity
	db.explain
	db.subset
	sdf.subset
	sdf.visualize
	Index

