Biobase
November 11, 2009

R topics documented:

abstract e e e e e e e e 2
addVigs2WinMenu Lo 3
AGEIegate e e e e e e e 4
annotatedDataFrameFrom-methods 5
anNNOLAtION o i e e e e e e e e e e e e e e e e e e 5
anyMISSING e 6
assayData e e e e 7
Biobase-package 7
biocReposList L 8
cache e e 9
channelNames e 10
channel e e 11
AZEIEZALOT .« . . . o v i e 11
AnnotatedDataFrame e 12
AssayData-class 14
class:characterORMIAME 16
COMEAINET . . v v v v v v e 16
BSeL . . . e e 17
ExpressionSet 20
MIAME e e 23
MultiSet e e e 25
NChannelSet-class e e e 27
SnpSeto e 29
VersionedBiobase L 31
Versioned e e e e 32
classVersion e e e e e 33
VersionsNull e e e 34
VEISIONS o e e e e e e e e e e e e e 35
COMDING o v v it e e e e e e e e e e e e e 36
COMEBNLS .+ v v v v v e i e 38
copyEnv . . . Lo 39
copySubstitute 40
createPackage L 42
data:aaMap e e 43
datazgeneData 44
(<] 1) £ O 44
data:sample.ExpressionSet 45

Index

R topics documented:

datazsample.MultiSet 46
Deprecated 46
description. e 46
dims e 47
dumpPackTxXt o e 48
eSAPPLY . . . e 48
EXPIS . o v v e e e e e e e 50
featureData L 51
featureNames L 52
getPkgVigs . . . L L 52
abstraCt e e e e e 53
ISCurrent e e 53
ISUNIQUE o o e e e e e e e 54
isVersioned e 55
leSuffix e 56
listhen L e 57
makeDataPackage 58
matchpt 59
multiasSign e e 60
NOE . . o e e e e e e 61
NOES . o v o e e e e e e e e e e e e e e 62
openPDF e 62
openVignette L e e e 63
package.version L 64
phenoData e e e 65
read.AnnotatedDataFrame o 65
readExpressionSet. 67
read MIAME e 68
reverseSplito L e e e 69
rowMedians 70
TOWQ . L e e e 71
ScalarObject-class 72
selectChannels L 73
selectSome L e 73
storageMode L. 74
strbreak oL L L e e e 75
SubListEXtract e 75
testBioCConnection e 76
updateObject e 77
updateOldESet 79
userQUETY o o e e e e e e 80
validMSZ e e e e 80

82

abstract 3

abstract Retrieve Meta-data from eSets and ExpressionSets.

Description

These generic functions access generic data, abstracts, PubMed IDs and experiment data from in-
stances of the eSet-class or ExpressionSet—-class.

Usage

abstract (object)

pubMedIds (object)

pubMedIds (object) <- wvalue
experimentData (object)
experimentData (object) <- wvalue

Arguments

object Object, possibly derived from eSet-class or MIAME-class

value Value to be assigned; see class of object (e.g., eSet—class) for specifics.
Value

abstract returns a character vector containing the abstract (as in a published paper) associated
with object.

pubMedIds returns a character vector of PUBMED Ids associated with the experiment.

experimentData returns an object representing the description of an experiment, e.g., an object
of MIAME-class

Author(s)

Biocore

See Also

ExpressionSet-class, eSet-class, MIAME-class

addvigs2WinMenu Add Menu Items to an Existing/New Menu of Window

Description

This function adds a menu item for a package’s vignettes.

Usage

addVigs2WinMenu (pkgName)

4 Aggregate

Arguments

pkgName pkgName - a character string for the name of an R package

Details
The original functions addvig2Menu, addvig4Win, addvig4Unix, addNonExisting,
addPDF2Vig have been replaced by addvigs2WinMenu, please use those instead.

Value

The functions do not return any value.

Author(s)

Jianhua Zhang and Jeff Gentry

Examples

Only works for windows now
if (interactive () && .Platform$OS.type == "windows" &&
.Platform$GUI == "Rgui") {
addvigs2WinMenu ("Biobase")

Aggregate A Simple Aggregation Mechanism.

Description
Given an environment and an aggregator (an object of class aggregate simple aggregations are
made.

Usage

Aggregate (x, agqg)

Arguments
X The data to be aggregated.
agg The aggregator to be used.
Details

Given some data, x the user can accumulate (or aggregate) information in env using the two sup-
plied functions. See the accompanying documentation for a more complete example of this function
and its use.

Value

No value is returned. This function is evaluated purely for side effects. The symbols and values in
env are altered.

annotatedDataFrameFrom-methods 5

Author(s)

R. Gentleman

See Also

new.env, class:aggregator

Examples

aggl <- new("aggregator")

Aggregate (letters[1:10], aggl)

the first 10 letters should be symbols in envl with values of 1
Aggregate (letters[5:11], aggl)

now letters[5:10] should have value 2

bb <- mget (letters[l:11], env=aggenv(aggl), ifnotfound=NA)

tl <- as.numeric (bb); names(tl) <- names (bb)

tl

fghijk
222221

annotatedDataFrameFrom—methods

Methods for Function annotatedDataFrameFrom in Package
‘Biobase’

Description

annotatedDataFrameFrom is a convenience for creating AnnotatedDataFrame objects.

Methods

Use the method with annotatedDataFrameFrom (object, byrow=FALSE, ...); the
argument by row must be specified.

signature (object="assayData") This method creates an AnnotatedDataFrame us-
ing sample (when byrow=FALSE) or feature (byrow=TRUE) names and dimensions of an
AssayData object as a template.

signature (object="matrix") This method creates an AnnotatedDataFrame using
column (when byrow=FALSE) or row (byrow=TRUE) names and dimensions of amat rix
object as a template.

signature (object="NULL") This method (called with 'NULL’ as the object) creates an
empty AnnotatedDataFrame; provides dimLabels based on value of byrow.

Author(s)

Biocore team

6 anyMissing

annotation Annotate eSet data.

Description

This generic function handles methods for adding and retrieving ‘annotation’ and ‘description’
information for eSets. An annotation is the name of the file describing the chip used for the experi-
ment.

Usage

annotation (object)
annotation (object) <- "hgu95av2"

Arguments

object Object derived from class eSet

Value

annotation (object) returns a character vector indicating the annotation package.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

anyMissing Checks if there are any missing values in an object or not

Description

Checks if there are any missing values in an object or not.

Usage

anyMissing (x=NULL)

Arguments

X A vector.

Details

The implementation of this method is optimized for both speed and memory.

assayData 7

Value

Returns TRUE if a missing value was detected, otherwise FALSE.

Author(s)

Henrik Bengtsson (http://www.braju.com/R/)

Examples

x <— rnorm(n=1000)
x[seq (300, length(x),by=100)] <- NA

stopifnot (anyMissing(x) == any(is.na(x)))
assayData Retrieve assay data from eSets and ExpressionSets.
Description

This generic function accesses assay data stored in an object derived from the eSet or ExpressionSet
class.

Usage

assayData (object)
assayData (object) <- value

Arguments
object Object derived from class eSet
value Named list or environment containing one or more matrices with identical di-
mensions
Value

assayData applied to eSet-derived classes returns a list or environment; applied to ExpressionSet,
the method returns an environment. See the class documentation for specific details.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

http://www.braju.com/R/

8 biocReposList

Biobase-package Biobase Package Overview

Description

Biobase Package Overview

Details

Important data classes: ExpressionSet, AnnotatedDataFrame MIAME. Full help on meth-
ods and associated functions is available from within class help pages.

Additional data classes: eSet, MultiSet. Additional manipulation and data structuring classes:
Versioned, VersionedBiobase, aggregator, container.

Vignette routines: openVignette, getPkgVigs, openPDF.

Package manipulation functions: createPackage and package.version
Data sets: aaMap, sample.ExpressionSet, geneData.

Introductory information is available from vignettes, type openvVignette ().

Full listing of documented articles is available in HTML view by typing help.start () and
selecting Biobase package from the Packages menu or via library (help="Biobase").

Author(s)

O. Sklyar

biocReposList Return a list of Bioconductor package repositories

Description

This function returns a named character vector of Bioconductor package repositories.

The vector can be used as the repos argument to install.packages and friends.

Usage

biocReposList ()

Details

The repository URLs are hardcoded for each release.

cache 9

Value
bioc URL of main Bioc package repository
aData URL for Bioc annotation data package repository
eData URL for Bioc experiment data package repository
oh URL for Bioc Omegahat package repository. This repository contains the ver-
sions of Omegahat packages that were tested with the current Bioc release.
1i URL for Bioc Lindsey package repository.
cran URL for Bioc CRAN package repository. This is just a normal CRAN reposi-
tory.
Author(s)
S. Falcon
Examples

brl <- biocReposList ()

cache Evaluate an expression if its value is not already cached.

Description

Cache the evaluation of an expression in the file system.

Usage
cache (expr, dir=".", prefix="tmp_R_cache_", name)
Arguments
expr An expression of the form LHS <- RHS, Where LHS is a variable name, RHS
is any valid expression, and <— must be used (= will not work).
dir A string specifying the directory into which cache files should be written (also
where to go searching for an appropriate cache file).
prefix A string giving the prefix to use when naming and searching for cache files. The
defaultis "tmp_R_cache_"
name Unused. This argument is present as a compatibility layer for the deprecated
calling convention.
Details

This function can be useful during the development of computationally intensive workflows, for
example in vignettes or scripts. The function uses a cache file in dir which defaults to the
current working directory whose name is obtained by paste (prefix, name, ".RData",
sep= nn) .

When cache is called and the cache file exists, it is loaded and the object whose name is given on
the left of <— in expr is returned. In this case, expr is not evaluted.

10 channelNames

When cache is called and the cache file does not exist, expr is evaluted, its value is saved into a
cache file, and then its value is returned.

The expr argument must be of the form of someVar <- {expressions}. That is, the left
hand side must be a single symbol name and the next syntactic token must be <—.

To flush the cache and force recomputation, simply remove the cache files. Youcanuse file.remove
to do this.

Value

The (cached) value of expr.

Note

The first version of this function had a slightly different interface which is now deprecated (but still
functional). The old version has arguments name and expr and the intended usage is: foo <—
cache ("foo", expr).

Author(s)
Wolfgang Huber, (huber@ebi.ac.uk) Seth Falcon, (sfalcon@fhcrc.org)

Examples

bigCalc <- function() runif (10)

cache (myComplicatedObject <- bigCalc())

aCopy <- myComplicatedObject

remove (myComplicatedObject)

cache (myComplicatedObject <- bigCalc())

stopifnot (all.equal (myComplicatedObject, aCopy))

allCacheFiles <- list.files(".", pattern=""tmp_R_cache_.*\.RData$",
full.name=TRUE)

file.remove (allCacheFiles)

channelNames Retrieve channel names from object

Description

This generic function reports the channels present in an object.

Usage
channelNames (object, ...)
Arguments
object An S4 object, typically derived from class eSet
Additional argument, not currently used.
Value

character.

channel 11

Author(s)

Biocore

Examples

obj <- new ("NChannelSet",
R=matrix (runif (100), 20, 5),
G=matrix (runif (100), 20, 5))
channelNames (ob7j)

channel Create a new ExpressionSet instance by selecting a specific channel

Description

This generic function extracts a specific element from an object, returning a instance of the Expres-
sionSet class.

Usage
channel (object, name, ...)
Arguments
object An S4 object, typically derived from class eSet
name The name of the channel, a (Iength one) character vector.
Additional arguments.
Value

An instance of class ExpressionSet.

Author(s)

Biocore

Examples

obj <- new ("NChannelSet",
R=matrix (runif (100), 20, 5),
G=matrix (runif (100), 20, 5))
G channel as ExpressionSet
channel (obj, "G")

12 aggregator

aggregator A Simple Class for Aggregators

Description

A class of objects designed to help aggregate calculations over an iterative computation. The aggre-
gator consists of three objects. An environment to hold the values. A function that sets up an initial
value the first time an object is seen. An aggregate function that increments the value of an object
seen previously.

Details
This class is used to help aggregate different values over function calls. A very simple example is to
use leave one out cross-validation for prediction. At each stage we first perform feature selection and

then cross-validate. To keep track of how often each feature is selected we can use an aggregator.
At the end of the cross-validation we can extract the names of the features chosen from aggenv.

Creating Objects

new (" aggregator’, aggenv = [environment], initfun = [function], aggfun
= [function])

Slots

aggenv: Object of class ’environment’, holds the values between iterations

initfun: Object of class *function’ specifies how to initialize the value for a name the first time
it is encountered

aggfun: Object of class ’function’ used to increment (or perform any other function) on a name

Methods

aggenv (aggregator): Used to access the environment of the aggregator
aggfun (aggregator): Used to access the function that aggregates

initfun (aggregator): Used to access the initializer function

See Also

Aggregate

AnnotatedDataFrame 13

AnnotatedDataFrame Class Containing Measured Variables and Their Meta-Data Descrip-
tion.

Description

An AnnotatedDataFrame consists of two parts. There is a collection of samples and the values
of variables measured on those samples. There is also a description of each variable measured. The
components of an AnnotatedDataFrame can be accessed with pData and varMetadata.

Extends

Versioned

Creating Objects

new ("AnnotatedDataFrame")

new ("AnnotatedDataFrame", data=data.frame (), varMetadata=data.frame(),
dimLabels=c ("rowNames", "columnNames"))

AnnotatedDataFrame instances are created using new. The initialize method takes up to three
arguments, data, varMetadata, and dimLabels. data is a data.frame of the samples
(rows) and measured variables (columns). varMetadata is a data . frame with the number of
rows equal to the number of columns of the data argument. varMetadata describes aspects of
each measured variable. dimLabels provides aesthetic control for labeling rows and columns in
the show method. varMetadata and dimLabels can be missing.

as (data.frame, "AnnotatedDataFrame") coercesadata.frametoanAnnotatedDataFrame.

annotatedDataFrameFrom may be a convenient way to create an AnnotatedDataFrame
from AssayData-class.

Slots
Class-specific slots:

data: A data.frame containing samples (rows) and measured variables (columns).

varMetadata: A data.frame with number of rows equal number of columns in data, and
at least one column, named labelDescription, containing a textual description of each
variable.

Methods
Class-specific methods.

as (annotatedDataFrame, "data.frame") Coerceobjectsof AnnotatedDataFrame
to data.frame.

combine (<AnnotatedDataFrame>, <AnnotatedDataFrame>: Binddatafromone AnnotatedDataF r:
to a second AnnotatedDataFrame, returning the result as an AnnotatedDataFrame.
Row (sample) names in each argument must be unique. Variable names present in both ar-
guments occupy a single column in the resulting AnnotatedDataFrame. Variable names
unique to either argument create columns with values assigned for those samples where the
variable is present. varMetadata in the returned AnnotatedDataFrame is updated to
reflect the combination.

14

AnnotatedDataFrame

pData (<AnnotatedDataFrame>), pData (<AnnotatedDataFrame>) <-<data. frame>:
Set and retrieve the data (samples and variables) in the AnnotatedDataFrame

varMetadata (<AnnotatedDataFrame>), varMetadata (<AnnotatedDataFrame>) <—<data. frame
Set and retrieve the meta-data (variables and their descriptions) in the AnnotatedDataFrame

featureNames (<AnnotatedDataFrame>), featureNames (<AnnotatedDataFrame>) <—<ANY>:
Set and retrieve the feature names in AnnotatedDataFrame; a synonym for sampleNames.

sampleNames (<AnnotatedDataFrame>), sampleNames (<AnnotatedDataFrame>) <—<ANY>:
Set and retrieve the sample names in AnnotatedDataFrame

varLabels (<AnnotatedDataFrame>), varLabels (<AnnotatedDataFrame>) <—-<data. frame>:
Set and retrieve the variable labels in the AnnotatedDataF rame

dimLabels (<AnnotatedDataFrame>),dimLabels (<AnnotatedDataFrame>) <- <character>
Retrieve labels used for display of AnnotatedDataFrame, e.g., ‘rowNames’, ‘column-
Names’.

Standard generic methods:
initialize (<AnnotatedDataFrame>): Objectinstantiation, used by new; not to be called

directly by the user.

as (<data.frame>, "AnnotatedDataFrame"): Convert a data.frame to an Anno-
tatedDataFrame.

as (<phenoData>, <AnnotatedDataFrame>): Convertold-style phenoData-class ob-
jects to AnnotatedDataFrame, issuing warnings as appropriate.

validObject (<AnnotatedDataFrame>): Validity-checking method, ensuring coordina-
tion between data and varMetadata elements

updateObject (object, ..., verbose=FALSE) Update instance to current version, if
necessary. See updateObject

isCurrent (object) Determine whether version of object is current. See i sCurrent

isVersioned (object) Determine whether object contains a ’version’ string describing its
structure . See 1 sVersioned

show (<AnnotatedDataFrame>) Abbreviated display of object

[<sample>, <variable>: Subset operation, taking two arguments and indexing the sample
and variable. Returns an AnnotatedDataFrame, i.e., including relevant metadata. Unlike
adata. frame, setting drop=TRUE generates an error.

[[<variable>, $<variable>: Selector returning a variable (column of pData).

[[<variable>, ...]]<—-<new_value>, $<variable> <- <new_value>: Replace or
add a variable to pData. ... can include named arguments (especially labelDescription)
to be added to varMetadata.

dim (<AnnotatedDataFrame>), ncol (<AnnotatedDataFrame>): Number of samples
and variables (dim) and variables (ncol) in the argument.

Author(s)

V.J. Carey, after initial design by R. Gentleman

See Also

eSet, ExpressionSet, read.AnnotatedDataFrame

AssayData-class 15

Examples

df <- data.frame(x=1:6,
y=rep (c ("Low", "High"),3),
z=I (LETTERS[1:6]),
row.names=paste ("Sample", 1:6, sep="_"))
metaData <-
data.frame (labelDescription=c (
"Numbers",
"Factor levels",
"Characters"))

new ("AnnotatedDataFrame")
new ("AnnotatedDataFrame", data=df)
new ("AnnotatedDataFrame",

data=df, varMetadata=metaData)

as (df, "AnnotatedDataFrame")

obj <- new ("AnnotatedDataFrame")
pData (obj) <- df

varMetadata (obj) <- metaData
validObject (obj)

AssayData-class Class "AssayData"

Description

Container class defined as a class union of 1ist and environment. Designed to contain one or
more matrices of the same dimension.

Methods

combine signature (x = "AssayData", y = "AssayData"): This method uses cbind
to create new AssayData elements that contain the samples of both arguments x and y.
Both AssayData arguments to combine must have the same collection of elements. The ele-
ments must have identical numbers of rows (features). The numerical contents of any columns
(samples) present in the same element of different AssayData must be identical. The storage-
Mode of the AssayData arguments must be identical, and the function returns an AssayData
with storageMode matching the incoming mode. See also combine, eSet, eSet-method

featureNames signature (object = "AssayData")

featureNames<- signature (object = "AssayData", value = "ANY"): Return or
set the feature names as a character vector. These are the row names of the AssayData ele-
ments. value can be a character or numeric vector; all entries must be unique.

sampleNames signature (object = "AssayData")

sampleNames<- signature (object = "AssayData", value="ANY"): Return or set
the sample names. These are the column names of the the AssayData elements and the row
names of phenoData. value can be a character or numeric vector.

storageMode signature (object = "AssayData")

16 class:characterORMIAME

storageMode<- signature (object = "AssayData", value="character"): Return
or set the storage mode for the instance. value can be one of three choices: "lockedEnvironment",
"environment", and "1ist". Environments offer a mechanism for storing data that
avoids some of the copying that occurs when using lists. Locked environment help to ensure
data integrity. Note that environments are one of the few R objects that are pass-by-reference.
This means that if you modify a copy of an environment, you also modify the original. For
this reason, we recommend using lockedEnvironment whenever possible.

Additional functions operating on AssayData include:

assayData[[name]] Select element name from assayData.

assayDataNew(storage.mode = c(''lockedEnvironment'', ''environment'', "'list"), ...) Use storage.mode
to create a new list or environment containing the named elements in . . .

assayDataValidMembers(assayData, required) Validate assayData, ensuring that the named
elements required are present, matrices are of the same dimension, and featureNames
(rownames) are consistent (identical or NULL) across entries.

assayDataElement(object, element) See eSet-class
assayDataElementReplace(object, element, value) See eSet-class

assayDataElementNames(object) See eSet-class

Author(s)

Biocore

See Also

eSet-class ExpressionSet-class

class:characterORMIAME
Class to Make Older Versions Compatible

Description

This class can be either character or MIAME.

Methods

No methods defined with class "characterORMIAME" in the signature.

See Also

See also MIAME

container 17

container A Lockable List Structure with Constraints on Content

Description

Container class that specializes the list construct of R to provide content and access control

Creating Objects

new (' container’, x = [list], content = [character], locked = [logicall)

Slots
x list of entities that are guaranteed to share a certain property
content tag describing container contents

locked boolean indicator of locked status. Value of TRUE implies assignments into the container
are not permitted

Methods

Class-specific methods:

content (container) returns content slot of argument

locked (container) returns locked slot of argument
Standard methods defined for ’container’:

show (container) prints container
length (container) returns number of elements in the container
[[(index) and [[(index, wvalue) access and replace elements in the container

[(index) make a subset of a container (which will itself be a container)

Examples

x1 <- new("container", x=vector("list", length=3), content="1m")
Iml <- Im(rnorm(10)~runif (10))
x1[[1]] <= 1ml

18 eSet

eSet Class to Contain High-Throughput Assays and Experimental Meta-
data

Description

Container for high-throughput assays and experimental metadata. Classes derived from eSet
contain one or more identical-sized matricies as assayData elements. Derived classes (e.g.,
ExpressionSet-class, SnpSet-class) specify which elements must be present in the
assayData slot.

eSet object cannot be instantiated directly; see the examples for useage.

Creating Objects

eSet is a virtual class, so instances cannot be created.

Objects created under previous definitions of eSet —class can be coerced to classes derived based
on eSet using updateOldESet.

Slots

Introduced in eSet:
assayData: Contains matrices with equal dimensions, and with column number equal to nrow (phenoData) .
Class:AssayData-class

phenoData: Contains variables describing sample (i.e., columns in assayData) phenotypes.
Class: AnnotatedDataFrame-class

featureData: Contains variables describing features (i.e., rows in assayData) unique to this
experiment. Use the annotation slot to efficiently reference feature data common to the
annotation package used in the experiment. Class: AnnotatedDataFrame-class

experimentData: Contains details of experimental methods. Class: MIAME-class

annotation: Label associated with the annotation package used in the experiment. Class:
character

.classVersion: Character vector describing the R and Biobase version number used to created
the instance. Intended for developer use. Class: Versions—-class

Methods

Methods defined in derived classes (e.g., ExpressionSet—class, SnpSet—-class) may over-
ride the methods described here.

Class-specific methods:
sampleNames (object) and sampleNames (object) <-value: Coordinate accessing and
setting sample names in assayData and phenoData

featureNames (object), featureNames (object) <- wvalue: Coordinate accessing and
setting of feature names (e.g, genes, probes) in assayData.

dims (object): Access the common dimensions (dim) or column numbers (ncol), or dimen-
sions of all memebers (dims) of assayData.

eSet 19

phenoData (object), phenoData (object) <- wvalue: AccessandsetphenoData. Adding
new columns to phenoDat a is often more easily done with eSetObject [["columnName"]]
<- value.

pData (object),pData (object) <- wvalue: Access and set sample data information. Adding
new columns to pData is often more easily done with eSetObject [["columnName"]]
<- value.

varMetadata (object), varMetadata (eSet, value) Access and set metadata describ-
ing variables reported in pData

varLabels (object), varLabels (eSet, wvalue)<-: Access and set variable labels in
phenoData.

featureData (object), featureData (object) <- wvalue: Accessandset featureData.
fData (object), fData (object) <- wvalue: Access and set feature data information.

fvarMetadata (object), fvarMetadata (eSet,value) Accessand set metadata describ-
ing features reported in fData

fvarLabels (object), fvarLabels (eSet, wvalue)<-: Access and set variable labels
in featureData.

assayData (object), assayData(object) <- wvalue: signature (object = "eSet",
value = "AssayData"): Access and replace the AssayData slot of an eSet instance.
assayData returns a list or environment; elements in assayData not accessible in other
ways (e.g., via exprs applied directly to the eSet) can most reliably be accessed with, e.g.,
assayData (obj) [["se.exprs"]].

experimentData (object),experimentData (object) <- wvalue: Accessand setde-
tails of experimental methods

description (object),description (object) <- wvalue: Synonymous with experi-
mentData.

notes (object),notes (object) <- value: signature (object="eSet", value="1list")
Retrieve and set unstructured notes associated with eSet. signature (object="eSet",
value="character") As with value="list", but append value to current list of notes.

pubMedIds (object), pubMedIds (eSet,value) Accessandset PMIDsinexperimentData.
abstract (object): Access abstract in experimentData.

annotation (object), annotation (object) <- wvalue Access and set annotation la-
bel indicating package used in the experiment.

preproc (object), preproc (object) <- value: signature (object="eSet", value="list")
Access and set preprocessing information in the MIAME—-class object associated with
this eSet.

combine (eSet, eSet): Combine two eSet objects. To be combined, eSets must have identi-
cal numbers of featureNames, distinct sampleNames, and identical annotation.

storageMode (object), storageMode (eSet, character) <—: Change storage mode of
assayData. Can be used to "unlock’ environments, or to change between 1ist and environment
modes of storing assayData.

Standard generic methods:
initialize (object): Object instantiation, can be called by derived classes but not usually
by the user.

validObject (object): Validity-checking method, ensuring (1) all assayData components
have the same number of features and samples; (2) the number and names of phenoData
rows match the number and names of assayData columns

20 eSet

as (eSet, "ExpressionSet") Convertinstance of class "eSet " toinstance of ExpressionSet-class,

if possible.

as (eSet, "MultiSet") Convertinstance of class "eSet " toinstance of MultiSet-class,
if possible.

updateObject (object, ..., verbose=FALSE) Update instance to current version, if
necessary. Usually called through class inheritance rather than directly by the user. See
updateObject

updateObjectTo (object, template, ..., verbose=FALSE) Update instance to cur-

rent version by updating slots in template, if necessary. Usually call by class inheritance,
rather than directly by the user. See updateObjectTo

isCurrent (object) Determine whether version of object is current. See 1 sCurrent

isVersioned (object) Determine whether object contains a ’version’ string describing its
structure . See isVersioned

show (object) Informatively display object contents.

dim (object),ncol Access the common dimensions (dim) or column numbers (ncol), of all
memebers (dims) of assayData.

object [(index): Conducts subsetting of matrices and phenoData components
object$name, object$name<-value Access and set name column in phenoData

object[[i, ...]],0bject[[i, ...]l<-value Access and setcolumn i (character or
numeric index) in phenoData. The ... argument can include named variables (especially
labelDescription) to be added to varMetadata.

Additional functions:

assayDataElement(object, element) Return matrix element from assayData slotof object.

assayDataElement(object, element) <- value) Setelementelement in assayData slotof object
to matrix value

assayDataElementReplace(object, element, value) Set element element in assayData slot
of object to matrix value

assayDataElementNames(object) Return element names in assayData slot of object

updateOldESet Update versions of eSet constructued using 1istOrEnv as assayData
slot (before May, 2006).

Author(s)

Biocore team

See Also

Methoduse in ExpressionSet—class. Related classes AssayData-class, AnnotatedDataFrame—
class, MIAME-class. Derived classes ExpressionSet—-class, SnpSet-class. To up-
date objects from previous class versions, see updateOldESet.

Examples

update previous eSet-like class oldESet to existing derived class
Not run: updateOldESet (oldESet, "ExpressionSet")

create a new, ad hoc, class, for personal use

ExpressionSet 21

all methods outlined above are available automatically
setClass ("MySet", contains="eSet")
new ("MySet")

Create a more robust class, with initialization and validation methods
to ensure assayData contains specific matricies
setClass ("TwoColorSet", contains="eSet")

setMethod ("initialize", "TwoColorSet",
function (.0Object,
phenoData = new ("AnnotatedDataFrame"),

experimentData = new ("MIAME"),
annotation = character(),

R = new("matrix"),

G = new("matrix"),

Rb = new("matrix"),

Gb = new("matrix"),

) A
callNextMethod (.Object,
phenoData = phenoData,
experimentData = experimentData,
annotation = annotation,
R=R, G=G, Rb=Rb, Gb=Gb,
-)
})

setValidity ("TwoColorSet", function (object) {
assayDataValidMembers (assayData (object), c("R", "G", "Rb", "Gb"))
})

new ("TwoColorSet")

eSet objects cannot be instantiated directly, only derived objects
try (new("eSet"))

removeClass ("MySet")
removeClass ("TwoColorSet")
removeMethod ("initialize", "TwoColorSet")

ExpressionSet Class to Contain and Describe High-Throughput Expression Level As-
says.

Description
Container for high-throughput assays and experimental metadata. ExpressionSet class is de-
rived from eSet, and requires a matrix named exprs as assayData member.

Extends

Directly extends class eSet.

22 ExpressionSet

Creating Objects

new ("ExpressionSet")

new ("ExpressionSet", phenoData = new ("AnnotatedDataFrame"), featureData
= new ("AnnotatedDataFrame"), experimentData = new ("MIAME"), annotation
= character (0), exprs = new("matrix"))

This creates an ExpressionSet with assayData implicitly created to contain exprs. Ad-
ditional named matrix arguments with the same dimensions as exprs are added to assayData;
the row and column names of these additional matricies should match those of exprs.

new ("ExpressionSet", assayData = assayDataNew (exprs=new ("matrix")),
phenoData = new ("AnnotatedDataFrame"), featureData = new("AnnotatedDataFrame"),
experimentData = new ("MIAME"), annotation = character(0))

This creates an ExpressionSet with assayData provided explicitly. In this form, the only
required named argument is assayData.

as ([exprSet], "ExpressionSet")

ExpressionSet instances are usually created through new ("ExpressionSet", ...).Usu-
ally the arguments to new include exprs (a matrix of expression data, with features correspond-
ing to rows and samples to columns), phenoData, featureData, experimentData, and
annotation. phenoData, featureData, experimentData, and annotation can be
missing, in which case they are assigned default values.

Slots

Inherited from eSet:

assayData: Contains matrices with equal dimensions, and with column number equal to nrow (phenoData) .
assayData must contain a matrix exprs with rows represening features (e.g., reporters)
and columns representing samples. Additional matrices of identical size (e.g., representing
measurement errors) may also be included in assayData. Class:AssayData—-class

phenoData: See eSet
featureData: See eSet
experimentData: See eSet

annotation: See eSet

Methods
Class-specific methods.

as (exprSet, "ExpressionSet") Coerce objectsof exprSet-classtoExpressionSet

as (object, "data.frame") Coerceobjectsof ExpressionSet-classtodata.frame
by transposing the expression matrix and concatenating phenoData

exprs (ExpressionSet), exprs (ExpressionSet,matrix) <— Access and set elements
named exprs in the AssayData-class slot.

esApply (ExpressionSet, MARGIN, FUN, ...) ’apply’-like function to conveniently
operate on ExpressionSet objects. See esApply.

write.exprs (ExpressionSet) Write expression values to a text file. It takes the same
arguments as write.table

Derived from eSet:

ExpressionSet 23

updateObject (object, ..., verbose=FALSE) Update instance to current version, if
necessary. See updateObject and eSet

isCurrent (object) Determine whether version of object is current. See i sCurrent

isVersioned (object) Determine whether object contains a ’version’ string describing its
structure . See isVersioned

assayData (ExpressionSet): See eSet
sampleNames (ExpressionSet) and sampleNames (ExpressionSet) <-: See eSet

featureNames (ExpressionSet), featureNames (ExpressionSet, wvalue)<-: See
eSet

dims (ExpressionSet): See eSet

phenoData (ExpressionSet), phenoData (ExpressionSet, value) <—: See eSet
varLabels (ExpressionSet), varLabels (ExpressionSet, wvalue)<-: SeeeSet
varMetadata (ExpressionSet), varMetadata (ExpressionSet,value)<—-: SeeeSet
pData (ExpressionSet),pData (ExpressionSet, value)<—: See eSet

varMetadata (ExpressionSet), varMetadata (ExpressionSet,value) SeeeSet

experimentData (ExpressionSet),experimentData (ExpressionSet, value) <-:
See eSet

pubMedIds (ExpressionSet), pubMedIds (ExpressionSet,value) See eSet

abstract (ExpressionSet): See eSet

annotation (ExpressionSet), annotation (ExpressionSet,value)<— SeeeSet

combine (ExpressionSet, ExpressionSet): See eSet

storageMode (ExpressionSet), storageMode (ExpressionSet, character) <-:
See eSet

Standard generic methods:

initialize (ExpressionSet): Object instantiation, used by new; not to be called directly
by the user.

updateObject (ExpressionSet): Update outaded versions of ExpressionSet to their
current definiton. See updateObject, Versions—-class.

validObject (ExpressionSet): Validity-checking method, ensuring that exprs is a mem-
ber of assayData. checkValidity (ExpressionSet) imposes this validity check,
and the validity checks of eSet.

makeDataPackage (object, author, email, packageName, packageVersion, license, bic
Create a data package based on an ExpressionSet object. See makeDataPackage.

as (exprSet ,ExpressionSet): Coerce exprSet to ExpressionSet.

as (eSet, ExpressionSet): Coerce the eSet portion of an object to ExpressionSet.
show (ExpressionSet) SeeeSet

dim (ExpressionSet),ncol See eSet

ExpressionSet [(index): See eSet

ExpressionSet$, ExpressionSet$<- See eSet

ExpressionSet[[i]], ExpressionSet[[i]]<—- See eSet

Author(s)

Biocore team

24 MIAME

See Also

eSet-class, ExpressionSet-class.

Examples

create an instance of ExpressionSet
new ("ExpressionSet")

new ("ExpressionSet",
exprs=matrix (runif (1000), nrow=100, ncol=10))

update an existing ExpressionSet
data (sample.ExpressionSet)
updateObject (sample.ExpressionSet)

information about assay and sample data
featureNames (sample.ExpressionSet) [1:10]
sampleNames (sample.ExpressionSet) [1:5]
phenoData (sample.ExpressionSet)
experimentData (sample.ExpressionSet)

subset: first 10 genes, samples 2, 4, and 10
expressionSet <- sample.ExpressionSet[1:10,c(2,4,10)]

named features and their expression levels
subset <- expressionSet[c ("AFFX-BioC-3_at","AFFX-BioDn-5_at"),]
exprs (subset)

samples with above-average 'score' in phenoData
highScores <- expressionSet$score > mean (expressionSet$score)
expressionSet [, highScores]

(automatically) coerce to data.frame
Im(score~AFFX.BioDn.5_at + AFFX.BioC.3_at, data=subset)

MIAME Class for Storing Microarray Experiment Information

Description

Class MIAME covers MIAME entries that are not covered by other classes in Bioconductor. Namely,
experimental design, samples, hybridizations, normalization controls, and pre-processing informa-
tion.

Slots

name: Object of class character containing the experimenter name
lab: Object of class character containing the laboratory where the experiment was conducted

contact: Object of class character containing contact information for lab and/or experi-
menter

title: Object of class character containing a single-sentence experiment title

abstract: Object of class character containing an abstract describing the experiment

MIAME 25

url: Object of class character containing a URL for the experiment
samples: Object of class 1ist containg information about the samples
hybridizations: Object of class 1ist containing information about the hybridizations

normControls: Object of class 1ist containing information about the controls such as house
keeping genes

preprocessing: Object of class 1ist containing information about the pre-processing steps
used on the raw data from this experiment

pubMedIds: Object of class character listing strings of PubMed identifiers of papers relevant
to the dataset

other: Object of class 1ist containing other information for which none of the above slots does
not applies

Methods
Class-specific methods:

abstract (MIAME): An accessor function for abstract.

combine (MIAME, MIAME): Combine two objects of MIAME-class, issuing warnings when
ambiguities encountered.

expinfo (MIAME): An accessor function for name, lab, contact,title,and url.
hybridizations (MIAME): An accessor function for hybridizations.

normControls (MIAME): An accessor function for normControls.

notes (MIAME), notes (MIAME) <- value: Accessor functions for other. notes (MIAME)

<—- character appends character to notes; use notes (MIAME) <- list toreplacethe
notes entirely.

otherInfo (MIAME): An accessor function for other.

preproc (MIAME): An accessor function for preprocessing.

pubMedIds (MIAME), pubMedIds (MIAME) <- value: Accessor function for pubMedIds.

samples (MIAME): An accessor function for samples.
Standard generic methods:

updateObject (object, ..., verbose=FALSE) Update instance to current version, if
necessary. See updateObject

isCurrent (object) Determine whether version of object is current. See i sCurrent

isVersioned (object) Determine whether object contains a ’version’ string describing its
structure . See i sVersioned

show (MIAME) : Renders information about the MIAME information

Author(s)

Rafael A. Irizarry

References

http://www.mged.org/Workgroups/MIAME/miame_1.1.html

See Also

class:characterORMIAME, read.MIAME

http://www.mged.org/Workgroups/MIAME/miame_1.1.html

26 MultiSet

MultiSet Class to Contain and Describe High-Throughput Expression Level As-
says.

Description
Container for high-throughput assays and experimental metadata. MutliSet is derived from
eSet-class. MultiSet differs from ExpressionSet—class because MultiSet can
contain any element(s) in assayData (ExpressionSet must have an element named exprs).

Extends

Directly extends class eSet.

Creating Objects
new ('MultiSet’, phenoData = [AnnotatedDataFrame], experimentData =
[MIAME], annotation = [character], ...)

updateOldESet (0o1dESet, "MultiSet")

MultiSet instances are usually created through new ("MultiSet", ...). The ... argu-
ments to new are matrices of expression data (with features corresponding to rows and samples to
columns), phenoData, experimentData, and annotation. phenoData, experimentData,
and annotation can be missing, in which case they are assigned default values.

updateOldESet will take a serialized instance (e.g., saved to a disk file with save object created
with earlier definitions of the eSet-class, and update the object to MultiSet. Warnings are
issued when direct translation is not possible; incorrectly created o1dESet instances may not be
updated.

Slots
Inherited from eSet:

assayData: Contains zero or more matrices with equal dimensions, and with column number
equal to nrow (phenoData). Each matrix in assayData has rows represening features
(e.g., reporters) and columns representing samples. Class:AssayData—-class

phenoData: See eSet-class
experimentData: See eSet-class

annotation: See eSet-class

Methods

Class-specific methods: none

Derived from eSet-class:

updateObject (object, ..., verbose=FALSE) Update instance to current version, if
necessary. See updateObject and eSet

isCurrent (object) Determine whether version of object is current. See i sCurrent

isVersioned (object) Determine whether object contains a ’version’ string describing its
structure . See isVersioned

MultiSet 27

sampleNames (MultiSet) and sampleNames (MultiSet) <—: See eSet-class
featureNames (MultiSet), featureNames (MultiSet, value)<-: SeeeSet-class
dims (MultiSet): See eSet-class

phenoData (MultiSet), phenoData (MultiSet, value)<-: See eSet—-class
varLabels (MultiSet), varLabels (MultiSet, wvalue)<-: SeeeSet-class
varMetadata (MultiSet), varMetadata (MultiSet, value) <-: See eSet—-class
pData (MultiSet),pData (MultiSet,value)<—: See eSet-class

varMetadata (MultiSet), varMetadata (MultiSet,value) See eSet-class
experimentData (MultiSet),experimentData (MultiSet,value)<—-: SeeeSet-class
pubMedIds (MultiSet), pubMedIds (MultiSet,value) SeeeSet-class

abstract (MultiSet): See eSet—-class

annotation (MultiSet), annotation (MultiSet,value)<- See eSet-class
combine (MultiSet,MultiSet): Seec eSet-class

storageMode (eSet), storageMode (eSet, character) <—: See eSet-class
Standard generic methods:

initialize (MultiSet): Object instantiation, used by new; not to be called directly by the
user.

validObject (MultiSet): Validity-checking method, ensuring that all elements of assayData
are matricies with equal dimensions.

as (eSet,MultiSet): Coerce the eSet portion of an object to MultiSet.
show (MultiSet) See eSet-class

dim(MultiSet), ncol See eSet-class

MultiSet|[(index): See eSet-class

MultiSet$,MultiSet$<— See eSet-class

Author(s)

Biocore team

See Also

eSet-class, ExpressionSet-class

Examples

create an instance of ExpressionSet
new ("MultiSet")

28 NChannelSet-class

NChannelSet—class Class to contain data from multiple channel array technologies

Description

Container for high-throughput assays and experimental meta-data. Data are from experiments
where a single ‘chip’ contains several (more than 1) different ‘channels’. All channels on a chip
have the same set of ‘features’. An experiment consists of a collection of several N-channel chips;
each chip is a ‘sample’.

An NChannelSet provides a way to coordinate assay data (expression values) with phenotype
information and references to chip annotation data; it extends the eSet class.

An NChannelSet allows channels to be extracted (using the channels method, mentioned
below), and subsets of features or samples to be selected (using [<features>, <samples>]).
Selection and subsetting occur so that relevant phenotypic data is maintained by the selection or
subset.

Objects from the Class

Objects can be created by calls of the form new ("NChannelSet", assayData, phenoData,
.. .). See the examples below.

Slots

assayData: Object of class AssayData, usually an environment containing matrices of iden-
tical size. Each matrix represents a single channel. Columns in each matrix correspond to
samples, rows to features. Once created, NChannel Set manages coordination of samples
and channels.

phenoData: Object of class AnnotatedDataFrame.
The data component of the AnnotatedDataFrame is data.frame with number of
rows equal to the number of samples. Columns of the data component correspond to mea-
sured covariates.
The varMetadata component consists of mandatory columns labelDescription (pro-
viding a textual description of each column label in the data component) and channel. The
channel of varMetadata isa factor, with levels equal to the names of the assayData
channels, plus the special symbol _ALL_. The channel column is used to indicate which
channel(s) the corresponding column in the data component of AnnotatedDataFrame
correspond; the _ALL_ symbol indicates that the data column is applicable to all channels.
varMetadata may contain additional columns with arbitrary information.
Once created, NChannelSet coordinates selection and subsetting of channels in phenoData.

featureData: Object of class AnnotatedDataFrame, used to contain feature data that is
unique to this experiment; feature-level descriptions common to a particular chip are usually
referenced through the annotation slot.

experimentData: Object of class MIAME containing descriptions of the experiment.

annotation: Object of class "character". Usually a length-1 character string identifying
the chip technology used during the experiment. The annotation string is used to retrieve
information about features, e.g., using the annotat ion package.

.__classVersion__: Object of class Versions, containing automatically created informa-
tion about the class definition Biobase package version, and other information about the user
system at the time the instance was created. See classVersion and updateObject for
examples of use.

NChannelSet-class 29

Extends

Class "eSet™", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class
"Versioned", by class "eSet", distance 3.

Methods

Methods with class-specific functionality:

channel (object, name, ...) signature (object="NChannelSet", name="character").

Return an ExperessionSet created from the channel and corresponding phenotype of ar-
gument name. name must have length 1. Arguments . . . are rarely used, but are passed to
the ExpressionSet constructor, for instance to influence storage .mode.

channelNames (object) signature (object = "NChannelSet"). Obtain names of
channels contained in ob ject.

selectChannels (object, names, ... signature(object = "NChannelSet",
names = "character"). Create anew NChannelSet from object, containing only
channels in names. The . . . is not used by this method.

object [features, samples] signature (object = "NChannelSet", features
= "ANY", samples = "ANY"). Create anew NChannelSet from object, contain-
ing only elements matching features and samples; either index may be missing, or a
character, numeric, or logical vector.

sampleNames (object) <- value signature (object = "NChannelSet", value
= "list") assign each (named) element of value to the sampleNames of the corre-
spondingly named elements of assayData in object.

Methods with functionality derived from eSet: annotation, assayData, assayData<-,
classVersion,classVersion<—-,dim,dims, experimentData, featureData, phenoData,
phenoData<—, pubMedIds, sampleNames, sampleNames<—-, storageMode, varMetadata,
isCurrent, isVersioned, updateObject.

Additional methods: coerce (‘as’, to convert between objects, if possible), initialize (used
internally for creating objects), show (invoked automatically when the object is displayed to the
screen)

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

See Also

eSet, ExpressionSet.

Examples

An empty NChannelSet
obj <- new ("NChannelSet")

An NChannelSet with two channels (R, G) and no phenotypic data
obj <- new("NChannelSet",

R=matrix(0,10,5), G=matrix(0,10,5))
An NChannelSet with two channels and channel-specific phenoData
R <- matrix (0, 10, 3, dimnames=1list (NULL, LETTERS[1:3]))
G <- matrix (1, 10, 3, dimnames=1list (NULL, LETTERS[1:3]))
assaybData <- assayDataNew (R=R, G=G)

30 SnpSet
data <- data.frame (ChannelRData=numeric (ncol(R)),
ChannelGData=numeric (ncol (R)),
ChannelRAndG=numeric (ncol (R)))
varMetadata <- data.frame (labelDescription=c (
"R-specific phenoData",
"G-specific phenoData",
"Both channel phenoData"),
channel=factor (c ("R", "G", "_ALL_")))
phenoData <- new ("AnnotatedDataFrame",
data=data, varMetadata=varMetadata)
obj <- new ("NChannelSet",
assayData=assayData, phenoData=phenoData)
obj
G channel as NChannelSet
selectChannels (obj, "G")
G channel as ExpressionSet
channel (obj, "G")
Samples "A" and "C"
Obj[,C("A", HC")]
SnpSet Class to Contain Objects Describing High-Throughput SNP Assays.

Description

Container for high-throughput assays and experimental metadata. SnpSet class is derived from
eSet, and requires matricies call, callProbability as assay data members.

Extends

Directly extends class eSet.

Creating Objects

new (’ SnpSet’, phenoData = [AnnotatedDataFrame], experimentData = [MIAME],
annotation = [character], call = [matrix], callProbability = [matrix],

.)

SnpSet instances are usually created through new ("SnpSet", ...). Usually the arguments
to new include call (a matrix of gentoypic calls, with features (SNPs) corresponding to rows
and samples to columns), phenoData, experimentData, and annotation. phenoData,
experimentData, and annotation can be missing, in which case they are assigned default
values.

Slots

Inherited from eSet:

assayData: Contains matrices with equal dimensions, and with column number equal to nrow (phenoData) .
assayData must contain a matrix call with rows represening features (e.g., SNPs) and
columns representing samples, and a matrix cal1Probability describing the certainty of

SnpSet

31

the call. The content of call and callProbability are not enforced by the class. Addi-
tional matrices of identical size may also be included in assayData. Class:AssayData—-class

phenoData: See eSet

experimentData: See eSet

annotation: See eSet

Methods

Class-specific methods:

exprs (SnpSet), exprs (SnpSet , matrix) <— Access and set elements named call in the

AssayData slot.

Derived from eSet:

updateObject (object, ..., verbose=FALSE) Update instance to current version, if

necessary. See updateObject and eSet

isCurrent (object) Determine whether version of object is current. See i sCurrent

isVersioned (object) Determine whether object contains a ’version’ string describing its

structure . See isVersioned

sampleNames (SnpSet) and sampleNames (SnpSet) <—: See eSet

featureNames (SnpSet), featureNames (SnpSet, value)<-: See eSet

dims (SnpSet): See eSet

phenoData (SnpSet), phenoData (SnpSet, value) <—: See eSet

varLabels (SnpSet), varLabels (SnpSet, value)<-: See eSet

varMetadata (SnpSet), varMetadata (SnpSet, value) <—: See eSet

pData (SnpSet), pData (SnpSet, value) <—: See eSet

varMetadata (SnpSet), varMetadata (SnpSet, value) See eSet

experimentData (SnpSet),experimentData (SnpSet, value) <—: See eSet

pubMedIds (SnpSet), pubMedIds (SnpSet, value) See eSet

abstract (SnpSet): See eSet

annotation (SnpSet), annotation (SnpSet,value)<—- See eSet

combine (SnpSet, SnpSet): See eSet

storageMode (eSet), storageMode (eSet, character) <—: See eSet

Standard generic methods:

initialize (SnpSet): Object instantiation, used by new; not to be called directly by the user.

validObject (SnpSet): Validity-checking method, ensuring that call and callProbability

isamember of assayData. checkValidity (SnpSet) imposes this validity check, and
the validity checks of eSet.

show (SnpSet) See eSet

dim (SnpSet),ncol See eSet

SnpSet [(index): See eSet

SnpSet$, SnpSet$<— See eSet

32 VersionedBiobase

Author(s)

V.J. Carey, after initial design by R. Gentleman

See Also

eSet, ExpressionSet

VersionedBiobase Class "VersionedBiobase"

Description

Use this class as a ‘superclass’ for classes requiring infomration about versions. By default, the
class contains versions for R and Biobase. See Versioned-class for additional details.

Methods

set Versioned-class for methods.

Author(s)

Biocore

See Also

Versioned-class

Examples

obj <- new("VersionedBiobase")
classVersion (ob7j)

obj <- new("VersionedBiobase", versions=list (A="1.0.0"))
classVersion (ob7j)

setClass ("A", contains="VersionedBiobase")

classVersion ("A")
a <- new("A")
classVersion (a)

obj <- new("VersionedBiobase", versions=c (MyVersion="1.0.0"))
classVersion (ob7j)

setClass ("B",
contains="VersionedBiobase",
prototype=prototype (new ("VersionedBiobase",versions=1ist (B="1.0.0"))))

classVersion ("B")
b <- new("B")
classVersion (b)

Versioned 33

removeClass ("A")
removeClass ("B")

Versioned Class "Versioned"

Description

Use this class as a ‘superclass’ for classes requiring infomration about versions.

Methods
The following are defined; package developers may write additional methods.

new ("Versioned", ..., versions=list()) Create a new Versioned-class in-
stance, perhaps with additional named version elements (the contents of versions) added.
Named elements of versions are character strings that can be coerced using package_version,
or package_version instances.

classVersion (object) Obtain version inforomation about instance object. See classVersion.

classVersion (object) <- wvalue Setversioninforomation oninstance object tovalue;
useful when ob ject is an instance of a class that contains VersionClass. See classVersion.

classVersion (object) ["id"] <- wvalue Create or update version inforomation "id"
on instance object to value; useful when object is an instance of a class that contains
VersionClass. See classVersion.

show (object) Default method returns invisible, to avoid printing confusing information
when your own class does not have a show method defined. Use classVersion (object)
to get or set version information.

Author(s)

Biocore

See Also

Versions—-class

Examples

obj <- new("Versioned", versions=list (A="1.0.0"))
obj
classVersion (ob7j)

setClass ("A", contains="Versioned")
classVersion ("A")

a <- new("A")

a # 'show' nothing by default

classVersion (a)

setClass ("B",

34 classVersion

contains="Versioned",
prototype=prototype (new ("Versioned",versions=1list (B="1.0.0"))))

classVersion ("B")
b <= new("B")
classVersion (b)

classVersion(b) ["B"] <= "1.0.1"
classVersion (b)

classVersion ("B")

classVersion ("B") < classVersion (b)
classVersion(b) == "1.0.1"

setClass ("C",
representation (x="numeric"),
contains=("VersionedBiobase"),

prototype=prototype (new ("VersionedBiobase", versions=c(C="1.0.1"))))

setMethod ("show", signature (object="C"),
function (object) print (object@x))

c <— new("C", x=1:10)
c

classVersion (c)

classVersion Retrieve information about versioned classes

Description

These generic functions return version information for classes derived from Versioned-class,
or VersionsNull-class for unversioned objects. The version information is an object of
Versions—class.

By default, classVersion has the following behaviors:
classVersion (Versioned-instance) ReturnsaVersions-class objectobtaine from
the object.

classVersion{"class"} Consults the definition of class and return the current version
information, if available.

classVersion (ANY) Return a VersionsNull-class object to indicate no version infor-
mation available.

By default, the classVersion<- method has the following behavior:

classVersion (Versioned-instance) ["id"] <- value Assign (update or add) value
toVersions—instance. value is coerced to a valid version description. see Versions—class
for additional access methods.

VersionsNull 35

Usage

classVersion (object)
classVersion (object) <- value

Arguments

object Object whose version is to be determined, as described above.

value Version-class object to assign to object of Versioned—-class object.
Value

classVersion returns an instance of Versions—-class

Author(s)

Biocore team

See Also

Versions—-class

Examples

obj <- new("VersionedBiobase")

classVersion (ob7j)

(
classVersion(obj) ["Biobase"]
classVersion(1:10) # no version
classVersion ("ExpressionSet") # consult ExpressionSet prototype
classVersion (obj) ["MyVersion"] <- "1.0.0"

classVersion (ob7j)

VersionsNull Class "VersionsNull"

Description

A class used to represent the ‘version’ of unversioned objects. Useful primarily for method dispatch.

Methods

The following are defined; package developers may write additional methods.

new ("VersionsNull", ...) Create a new VersionsNull-class instance, ignoring
any additional arguments.

show (object) Display “No version”.

Author(s)

Biocore

36 Versions

See Also

classVersion

Examples

obj <- new("VersionsNull")

obj
obj <- new("VersionsNull", A="1.0.0") # warning
obj
Versions Class "Versions"
Description

A class to record version number information. This class is used to report versions; to add version
informaton to your own class, use Versioned-class.

Methods
The following are defined; package developers may write additional methods.

new ("Versions", ...) Create a new Versions—class instance, perhaps with named
version elements (the contents of . . .) added. Named elements of versions are character
strings that can be coerced using package_version, or package_version instances,
Versions—class objects.

object ["id"] Obtain version information "id" from object.
object["id"] <- wvalue Create or update version information "id" on instance object.

object[["id"]] Obtain version information "id" from object. The result is a list of inte-
gers, corresponding to entries in the version string.

object[["id"]] <- value Create or update version information "id" on instance object.

object$id Obtain version information "id" from object.The result is a list of integers, cor-
responding to entries in the version string.

object$id <- wvalue Create or update version information "id" on instance ob ject.
show (object) Display version information.

updateObject (object) Update object to the current Versions—class representation.
Note that this does not update another class that uses Versions—class to track the class
version.

as (object, "character") Convert object to character representation, e.g., 1.0.0

objectl < object2 Compare objectl and object?2 using version class information. Sym-
bols in addition to < are admissable; see ?0ps

Author(s)

Biocore

combine 37

See Also

classVersion isCurrent isVersioned

Examples

obj <- new("Versions", A="1.0.0")
obj

obJ["A"] <- "1.0.1"
obj

Obj["Bll] <7 ll2.0"
obj

objl <- obj
objl["B"] <- "2.0.1"

objl == obj
obj1["B"] > "2.0.0"
obj["B"] == "2.0" # TRUE!
combine Methods for Function combine in Package ‘Biobase’
Description

This generic function handles methods for combining or merging different Bioconductor data struc-
tures. It should, given an arbitrary number of arguments of the same class (possibly by inheritance),
combine them into a single instance in a sensible way (some methods may only combine 2 objects,
ignoring . .. in the argument list; because Bioconductor data structures are complicated, check
carefully that combine does as you intend).

Usage

combine (x, vy, ...)

Arguments
X One of the values.
% A second value.
Any other objects of the same class as x and y.
Details

There are two basic combine strategies. One is an intersection strategy. The returned value should
only have rows (or columns) that are found in all input data objects. The union strategy says that
the return value will have all rows (or columns) found in any one of the input data objects (in which
case some indication of what to use for missing values will need to be provided).

These functions and methods are currently under construction. Please let us know if there are
features that you require.

38 combine

Value

A single value of the same class as the most specific common ancestor (in class terms) of the input
values. This will contain the appropriate combination of the data in the input values.

Methods

combine (x=ANY, missing) Return the first (x) argument unchanged.

combine (data.frame, data.frame) Combines two data.frame objects so that the
resulting data.frame contains all rows and columns of the original objects. Rows and
columns in the returned value are unique, that is, a row or column represented in both argu-
ments is represented only once in the result. To perform this operation, combine makes sure
that data in shared rows and columns are identical in the two data.frames. Data differences in
shared rows and columns usually cause an error. combine issues a warning when a column
is a factor and the levels of the factor in the two data.frames are different.

combine (matrix, matrix) Combined two matrix objects so that the resulting matrix
contains all rows and columns of the original objects. Both matricies must have dimnames.
Rows and columns in the returned value are unique, that is, a row or column represented in
both arguments is represented only once in the result. To perform this operation, combine
makes sure that data in shared rows and columns are all equal in the two matricies.

Additional combine methods are defined for AnnotatedDataFrame, AssayData, MIAME,
and eSet classes and subclasses.

Author(s)

Biocore

See Also

merge

Examples

x <- data.frame (x=1:5,
y=factor (letters[1l:5], levels=letters[1:8]),
row.names=letters[1:5])

y <- data.frame(z=3:7,
y=factor (letters[3:7], levels=letters[1:8]),
row.names=letters[3:7])

combine (x,V)

w <— data.frame (w=4:8,
y=factor (letters([4:8], levels=letters[1l:8]),
row.names=letters[4:8])

combine (w, x, V)

y is converted to 'factor' with different levels

dfl <- data.frame(x=1:5,y=letters[1l:5], row.names=letters[l:5])
df2 <- data.frame(z=3:7,y=letters[3:7], row.names=letters[3:7])
try (combine (dfl, df2)) # fails

solution 1: ensure identical levels

yl <- factor(letters[1l:5], levels=letters([1l:7])

y2 <- factor(letters[3:7], levels=letters[1l:7])

dfl <- data.frame(x=1:5,y=yl, row.names=letters[l:5])

df2 <- data.frame(z=3:7,y=y2, row.names=letters[3:7])

contents

combine (dfl, df2)
solution 2: force column to be 'character'

dfl <- data.frame(x=1:5,y=I(letters[1l:5]), row.names=letters[l:5])
df2 <- data.frame(z=3:7,y=I(letters[3:7]), row.names=letters[3:7])

combine (dfl, df2)

m <- matrix(1:20, nrow=5, dimnames=1ist (LETTERS[1:5], letters([1:4]))

combine (m[1:3,], m[4:5,])
combine (m[1:3, 1:3], m[3:5, 3:4]) # overlap

39

contents Function to retrieve contents of environments

Description

The contents method is used to retrieve the values stored in an environment.

Usage

contents (object, all.names)

Arguments
object The environment (data table) that you want to get all contents from
all.names a logical indicating whether to copy all values in as.list.environment
Value

A named list is returned, where the elements are the objects stored in the environment. The names

of the elements are the names of the objects.

The all.names argument is identical to the one used in as.list.environment.

Author(s)

R. Gentleman

See Also

as.list.environment

Examples

z <— new.env()
multiassign(letters, 1:26, envir=z)
contents (z)

40 copyEnv

copyEnv List-Environment interactions

Description

These functions can be used to make copies of environments, or to get/assign all of the objects
inside of an environment.

Usage

copyEnv (0ldEnv, newEnv, all.names=FALSE)
12e (vals, envir)

Arguments
0ldEnv An environment to copy from
newEnv An environment to copy to. If missing, a new environment with the same parent
environment as oldEnv.
envir An environment to get/set values to. For 12e this can be left missing and a new
environment of an appropriate size will be returned.
vals A named list of objects to assign into an environment. The names must not
include NA or " " and should be unique.
all.names Whether to retrieve objects with names that start with a dot.
Details

12e: This function takes a named list and assigns all of its elements into an environment (using the
names to name the objects). Unless you have an existing environment which you want to reuse, it
is best to omit the envir argument. This way, the function will create a new environment with an
efficient initial size. If the names of vals are not unique, a warning will be raised. The returned
environment will contain the value associated with the last occurance of any given duplicated name.

copyEnv: This function will make a copy of the contents from oldEnv and place them into
newkEnv.

Author(s)

Jeff Gentry and R. Gentleman

See Also

environment,as.list

Examples

z <- new.env (hash=TRUE, parent=emptyenv (), size=29L)
multiassign(c("a","b","c"), c(1,2,3), z)

a <- copyEnv(z)
1s (a)

g <- as.list(z)

copySubstitute 41

g <- new.env (hash=TRUE, parent=emptyenv(), size=29L)
g <= l2e(q, 9)

1s(9g)

g2 <= 1l2e(q)

copySubstitute Copy Between Connections or Files with Configure-Like Name-Value
Substitution

Description
Copy files, directory trees or between connections and replace all occurences of a symbol by the
corresponding value.

Usage

copySubstitute (src, dest, symbolValues, symbolDelimiter="@", allowUnresolvedSymk

Arguments
src Source, either a character vector with filenames and/or directory names, or a
connection object.
dest Destination, either a character vector of length 1 with the name of an existing,

writeable directory, or a connection object. The class of the dest argument
must match that of the src argument.
symbolValues A named list of character strings.
symbolDelimiter
A character string of length one with a single character in it.
allowUnresolvedSymbols
Logical. If FALSE, then the function will execute stop if it comes across
symbols that are not defined in symbolValues.

recursive Logical. If TRUE, the function works recursively down a directory tree (see
details).
removeExtension

Character. Matches to this regular expression are removed from filenames and
directory names.

Details

Symbol substitution: this is best explained with an example. If the list symbolValues contains
an element with name FOO and value bar, and symbolDelimiter is @, then any occurence of @FO0@
is replaced by bar. This applies both the text contents of the files in src as well as to the filenames.
See examples.

If recursiveis FALSE, both src and dest must be connection or a filenames. The textin src
is read through the function readLines, symbols are replaced by their values, and the result is
written to de st through the function writeLines.

If recursive is TRUE, copySubstitute works recursively down a directory tree (see details
and example). src must be a character vector with multiple filenames or directory names, dest a
directory name.

One use of this function is in createPackage for the automatic generation of packages from a
template package directory.

42

Value

None. The function is called for its

Author(s)

side effect.

Wolfgang Huber http://www.dkfz.de/mga/whuber

Examples

create an example file
infile = tempfile()
outfile = tempfile()

writeLines (text=c("We will

perform in @WHAT@:",

copySubstitute

"So, thanks to @WHOM@ at once and to each one,",
"Whom we invite to see us crown'd at @WHERER."),
con = infile)

create the symbol table
z = list (WHAT="measure,
run copySubstitute
copySubstitute(infile, out
display the results
readLines (outfile)

time and place",

file, z)

WHOM="all",

WHERE="Scone")

This is a slightly more complicated example that demonstrates

how copySubstitute works on nested directories

d = tempdir ()
my.dir.create =

unlink (file.path(d,
unlink (file.path(d,

"SIC")
"dest"

create some directories

function (x

) {dir.create (x);

, recursive=TRUE)
), recursive=TRUE)

and files:

src = my.dir.create(file.path(d, "src"))

dest = file.path(d, "dest")

dl = my.dir.create(file.path(src, "dirl.in"))

d2 = my.dir.create(file.path(src, "dir2@FOOQ.in"))

d3 = my.dir.create(file.path(d2, "dir3"))

d4 = my.dir.create(file.path(d3, "dir4d"))

ds = my.dir.create(file.path(d4, "dir5@BARQE"))

writelLines (c("Filel:", "FOO: @FOOQ"), file.path(dl, "filel.txt.in"))
writeLines (c ("File2:", "BAR: QBARQ@"), file.path(d2, "file2.txt.in"))
writeLines (c ("File3:", "SUN: Q@SUNQ"), file.path(d3, "file3.txt.in"))
writeLines (c("Filed4:", "MOON: @MOON@"), file.path(d4, "@SUN@.txt"))

call copySubstitute
copySubstitute (src, dest,

symbolValues =

recursive=TRUE,
list (FOO="thefoo",
SUN="thesun",

BAR="thebar",
MOON="themoon"))

http://www.dkfz.de/mga/whuber

createPackage 43

view the result

listsrc = dir(src, full.names=TRUE, recursive=TRUE)
listdest = dir (dest, full.names=TRUE, recursive=TRUE)
listsrc
listdest

cat (unlist (lapply (listsrc, readLines)), sep="\n")
cat (unlist (lapply (listdest, readLines)), sep="\n")

createPackage Create a Package Directory from a Template

Description

Create a package directory from a template, with symbol-value substitution

Usage

createPackage (pkgname, destinationDir, originDir, symbolValues, unlink=FALSE, gt

Arguments
pkgname Character. The name of the package to be written.
destinationDir
Character. The path to a directory where the package is to be written.
originDir Character. The path to a directory that contains the template package. Usu-

ally, this will contain a file named DESCRIPTION, and subdirectories R, man,
data. In all files and filenames, symbols will be replaced by their respectives
values, see the parameter symbolValues.

symbolValues Named list of character strings. The symbol-to-value mapping. See copySubstitute
for details.

unlink Logical. If TRUE, and destinationDir already contains a file or directory
with the name pkgname, try to unlink (remove) it.
quiet Logical. If TRUE, do not print information messages.
Details

The intended use of this function is for the automated mass production of data packages, such
as the microarray annotation, CDF, and probe sequence packages. An example is in the function
makeProbePackage.

No syntactic or other checking of the package is performed. For this, use R CMD check.

The symbols @PKGNAMEQ and @DATE@ are automatically defined with the values of pkgname
and \date (), respectively.

Value

The function returns a 1ist with one element pkgdir: the path to the package.

Author(s)

Wolfgang Huber http://www.dkfz.de/mga/whuber

http://www.dkfz.de/mga/whuber

44 data:aaMap

See Also

copySubstitute, makeProbePackage, the reference manual Writing R extensions.

Examples

sym = list (AUTHOR = "Hesiod", VERSION = "1.0",
TITLE = "the nine muses",
FORMAT = "Character vector containg the names of the 9 muses.")

res = createPackage ("muses",
destinationDir = tempdir(),
originDir system.file ("Code", package="Biobase"),
symbolValues = sym,
unlink = TRUE, quiet = FALSE)

muses = c("Calliope", "Clio", "Erato", "Euterpe", "Melpomene",
"Polyhymnia", "Terpsichore", "Thalia", "Urania")

dir.create(file.path (res$pkgdir, "data"))

save (muses, file = file.path(res$pkgdir, "data", "muses.rda"))
res$pkgdir
data:aaMap Dataset: Names and Characteristics of Amino Acids
Description

The aaMap data frame has 20 rows and 6 columns. Includes elementary information about amino
acids.

Usage

data (aaMap)

Format
This data frame contains the following columns:

name amino acid name

let.1 one-letter code

let.3 three-letter code

scProp side chain property at pH 7 (polar/nonpolar)
hyPhilic logical: side chain is hydrophilic at pH 7
acidic logical: side chain is acidic at pH 7

Source

Nei M and Kumar S: Molecular evolution and phylogenetics (Oxford 2000), Table 1.2

Examples

data (aaMap)

data:geneData 45

data:geneData Sample expression matrix and phenotype data.frames.

Description

The geneData data.frame has 500 rows and 26 columns. It consists of a subset of real expression
data from an Affymetrix U95v2 chip. The data are anonymous. The covariate data geneCov and
geneCovariate are made up. The standard error data seD is also made up.

Usage

data (geneData)

Format

A 500 by 26 data frame.

Source

The J. Ritz Laboratory (S. Chiaretti).

Examples

data (geneData)
data (geneCovariate)
data (seD)

reporter Example data.frame representing reporter information

Description

The reporter object is a 500 by 1 data frame. The rows represent the 500 probe ids in the
geneData data. The values in reporter are the predefined probe types for the probes. reporter
is used in conjunction with the geneData object and its associates.

Usage

data (reporter)

Format

A 500 by 1 data frame

46 data:sample.ExpressionSet

Details
There are 10 predefined probe types:

AFFX- Quality Control (QC)
f SequenceFamily
g CommonGroups
_s__ SimilarityConstraint
r RulesDropped
i Incomplete
b AmbiguousProbeSet
1 LongProbeSet
_at AntiSenseTarget
_st SenseTarget

Source

Affymetrix GeneChip Expression Analysis Data Analysis Fundamentals (http://www.affymetrix.
com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.
pdf)

Examples

data (reporter)
maybe str (reporter) ; plot (reporter)

data:sample.ExpressionSet
Dataset of class ’ExpressionSet’

Description

The expression data are real but anonymized. The data are from an experiment that used Affymetrix
U95v2 chips. The data were processed by dChip and then exported to R for analysis.

The data illustrate ExpressionSet-class, with assayData containing the required matrix
element exprs and an additional matrix se.exprs. se.exprs has the same dimensions as
exprs.

The phenoData and standard error estimates (se.exprs) are made up. The information in the "de-
scription” slot is fake.
Usage

data (sample.ExpressionSet)

Format
The data for 26 cases, labeled A to Z and 500 genes. Each case has three covariates: sex (male/female);
type (case/control); and score (testing score).

Examples

data (sample.ExpressionSet)

http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf
http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf
http://www.affymetrix.com/Auth/support/downloads/manuals/data_analysis_fundamentals_manual.pdf

data:sample.MultiSet 47

data:sample.MultiSet
Data set of class ’MultiSet’

Description

The expression data are real but anonymized. The data are from an experiment that used Affymetrix
U95v2 chips. The data were processed by dChip and then exported to R for analysis.

The phenoData, standard error estimates, and description data are fake.

Usage

data (sample.MultisSet)

Format
The data for 4 cases, labeled a to d and 500 genes. Each case has five covariates: SlideNumber:

number; FileName: name; Cy3: genotype labelled Cy3; CyS5: genotype labelled Cy5; Date: date.

Examples

data (sample.MultiSet)

Deprecated Biobase Deprecated and Defunct

Description

The function, class, or data object you have asked for has been deprecated or made defunct.

description Retrieve and set overall experimental information eSet-like classes.

Description

These generic functions access experimental information associated with eSet-class.

Usage

description (object, ...)
description (object) <- wvalue

Arguments
object Object, possibly derived from class eSet-class.
value Structured information describing the experiment, e.g., of MIAME-class.

Further arguments to be used by other methods.

48 dims
Value

description returns an object of MIAME-class.

Author(s)

Biocore

See Also

eSet-class,MIAME—-class

dims Retrieve dimensions of all elements in a list or environment

Description

This function returns the dimensions of element members in lists or environments such as AssayData-—
class.

Usage

dims (object)

Arguments

object List or environment object containing one or several matrices

Value

matrix of row and column dimensions, (in rows) for each element in ob ject (columns).

Author(s)

Biocore

See Also

eSet-class

dumpPackTxt 49

dumpPackTxt Dump Textual Description of a Package

Description

Dump textual description of a package

Usage

dumpPackTxt (package)

Arguments

package Character string naming an R package

Details
dumps DESCRIPTION and INDEX files from package sources

Value

stdout output

Note

Other approaches using formatDL are feasible

Author(s)

<stvjc@channing.harvard.edu>

Examples

dumpPackTxt ("stats")

esApply An apply-like function for ExpressionSet and related structures.

Description

esApply is a wrapper to apply for use with ExpressionSets. The application of a function
to rows of an expression array usually involves variables in pData. esApply uses a special
evaluation paradigm to make this easy. The function FUN may reference any data in pData by
name.

Usage

esApply (X, MARGIN, FUN, ...)

50 esApply
Arguments
X An instance of class ExpressionSet.
MARGIN The margin to apply to, either 1 for rows (samples) or 2 for columns (features).
FUN Any function
Additional parameters for FUN.
Details

The pData from X is installed in an environment. This environment is installed as the environment
of FUN. This will then provide bindings for any symbols in FUN that are the same as the names of
the pData of X. If FUN has an environment already it is retained but placed after the newly created
environment. Some variable shadowing could occur under these circumstances.

Value

The result of with (pData (x), apply (exprs(X), MARGIN, FUN, ...)).

Author(s)

V.J. Carey <stvjc@channing.harvard.edu>, R. Gentleman

See Also

apply, ExpressionSet

Examples

data (sample.ExpressionSet)
sum columns of exprs
res <- esApply(sample.ExpressionSet, 1, sum)

t-test, spliting samples by 'sex'
f <- function (x) {
xx <- split(x, sex)
t.test(xx[[1]], xx[[2]])S$p.value
}
res <- esApply(sample.ExpressionSet, 1, £f)

same, but using a variable passed in the function call

f <- function(x, s) {
xx <- split(x, s)

mean (xx[[1]]) - mean(xx[[2]1])
}
sex <- sample.ExpressionSet|[["sex"]]
res <- esApply (sample.ExpressionSet, 1, f, s = sex)

obtain the p-value of the t-test for sex difference
mytt.demo <- function(y) {
ys <- split(y, sex)
t.test (ys[[1]], ys[[2]])Sp.value
}
sexPValue <- esApply (sample.ExpressionSet, 1, mytt.demo)

exprs 51

obtain the p-value of the slope associated with score, adjusting for sex
(if we were concerned with sign we could save the z statistic instead at coef[3, 3]
myreg.demo <- function(y) {
summary (Im(y ~ sex + score)) Scoef[3,4]
}

scorePValue <- esApply (sample.ExpressionSet, 1, myreg.demo)

a resampling method

resamp <- function (ESET) {
ntiss <- ncol (exprs (ESET))
newind <- sample(l:ntiss, size = ntiss, replace = TRUE)
ESET [newind,]

}

a filter
g3gl100filt <- function (eset) {

apply (exprs (eset), 1, function(x) quantile(x,.75) > 100)
}

filter after resampling and then apply

set.seed (123)

rest <- esApply ({bool <- g3gl00filt (resamp (sample.ExpressionSet)); sample.ExpressionSet [k
1, mytt.demo)

exprs Retrieve expression data from eSets.

Description

These generic functions access the expression and error measurements of assay data stored in an
object derived from the eSet-class.

Usage

exprs (object)

exprs (object) <- value
se.exprs (object)

se.exprs (object) <- wvalue

Arguments

object Object derived from class eSet.

value Matrix with rows representing features and columns samples.
Value

exprs returns a (usually large!) matrix of expression values; se . exprs returns the correspond-
ing matrix of standard errors, when available.

Author(s)

Biocore

52 featureData

See Also

eSet-class, ExpressionSet-class, SnpSet-class

featureData Retrieve information on features recorded in eSet-derived classes.

Description

These generic functions access feature data (experiment specific information about features) and
feature meta-data (e.g., descriptions of feature covariates).

Usage

featureData (object)
featureData (object) <- value
fData (object)

fData (object) <- value
fvarLabels (object)

fvarLabels (object) <- value
fvarMetadata (object)
fvarMetadata (object) <- wvalue

Arguments
object Object, possibly derived from eSet—-class or AnnotatedDataFrame—
class.
value Value to be assigned to corresponding object.
Value

featureData returns an object containing information on both variable values and variable meta-
data. fvarLabels returns a character vector of measured variable names. fData returns a data
frame with features as rows, variables as columns. fvarMetadata returns a data frame with
variable names as rows, description tags (e.g., unit of measurement) as columns.

Author(s)

Biocore

See Also

eSet, ExpressionSet

featureNames 53

featureNames Retrieve feature and sample names from eSets.

Description

These generic functions access the feature names (typically, gene or SNP identifiers) and sample
names stored in an object derived from the eSet-class.

Usage

featureNames (object)
featureNames (object) <- value
sampleNames (object)
sampleNames (object) <- value

Arguments

object Object, possibly derived from class eSet.

value Character vector containing feature or sample names.
Value

featureNames returns a (usually long!) character vector uniquely identifying each feature.sampleNames
returns a (usually shorter) character vector identifying samples.

Author(s)

Biocore

See Also

ExpressionSet-class, SnpSet-class

getPkgVigs List Vignette Files for a Package

Description

This function will return a listing of all vignettes stored in a package’s doc directory.

Usage

getPkgVigs (package = NULL)

Arguments

package A character vector of packages to search or NULL. The latter is for all attached
packages (in search ()).

54 isCurrent

Value

A dataframe with columns package, filename, title.

Author(s)

Jeff Gentry, modifications by Wolfgang Huber.

See Also

openVignette

Examples

z <- getPkgVigs ()
z # and look at them

abstract Internals

Description

Use help.search("your keyword", package="Biobase").

isCurrent Use version information to test whether class is current

Description
This generic function uses Versioned-class information to ask whether an instance of a class
(e.g., read from disk) has current version information.
By default, i sCurrent has the following behaviors:
isCurrent (Versioned-instance) Returns a vector of logicals, indicating whether each
version matches the current version from the class prototype.
isCurrent (ANY) Return N2, indicating that the version cannot be determined
isCurrent (Versioned-instance, "class") Returnsalogical vector indicating whether

version identifiers shared between Versioned-instance and "class" are current.

Starting with R-2.6 / Bioconductor 2.1 / Biobase 1.15.1, isCurrent (Versioned-instance,
.) returns an element S4 indicating whether the class has the ‘S4’ bit set; a value of FALSE
indicates that the object needs to be recreated.

Usage

isCurrent (object, value)

Arguments

object Object whose version is to be determined, as described above.

value (Optional) character string identifying a class with which to compare versions.

isUnique 55

Value

isCurrent returns a logical vector.

Author(s)

Biocore team

See Also

Versions—class

Examples

obj <- new("VersionedBiobase")
isCurrent (obj)

isCurrent (1:10) # NA

setClass ("A", contains="VersionedBiobase",
prototype=prototype (new ("VersionedBiobase", versions=c(A="1.0.0"))))

a <- new("A")
classVersion (a)

isCurrent (a, "VersionedBiobase") # is the 'VersionedBiobase' portion current?
classVersion(a) ["A"] <= "1.0.1"

classVersion (a)

isCurrent (a, "VersionedBiobase")

isCurrent (a) # more recent, so does not match 'current' defined by prototype

removeClass ("A")

isUnique Determine Unique Elements

Description

Determines which elements of a vector occur exactly once.

Usage

isUnique (x)

Arguments

X a vector

Value

A logical vector of the same length as x, in which TRUE indicates uniqueness.

56 isVersioned

Author(s)
Wolfgang Huber

See Also

unique,duplicated.

Examples

x <= c¢(9:20, 1:5, 3:7, 0:8)
isUnique (x)

isVersioned Determine whether object or class contains versioning information

Description

This generic function checks to see whether Versioned-class information is present. When
the argument to isVersioned is a character string, the prototype of the class corresponding to
the string is consulted.

By default, i sVersioned has the following behaviors:

isVersioned (Versioned-instance) Returns TRUE when the instance have version in-
formation.

isCurrent ("class—-name") Returns TRUE when the named class extends Versioned—-class.

isVersioned (ANY) Returns FALSE

Usage

isVersioned (object)

Arguments

object Object or class name to check for version information, as described above.

Value

isVersioned returns a logical indicating whether version information is present.

Author(s)

Biocore team

See Also

Versions—class

IcSuffix 57

Examples

obj <- new("VersionedBiobase")
isVersioned (obj)

isVersioned(1:10) # FALSE

setClass ("A", contains="VersionedBiobase",
prototype=prototype (new ("VersionedBiobase", versions=c(A="1.0.0"))))

a <- new("A")

isVersioned(a)

removeClass ("A")

lcSuffix Compute the longest common prefix or suffix of a string

Description

These functions find the longest common prefix or suffix among the strings in a character vector.

Usage

lcPrefix (x, ignore.case=FALSE)
lcPrefixC(x, ignore.case=FALSE)
lcSuffix(x, ignore.case=FALSE)

Arguments

X a character vector.

ignore.case A logical value indicating whether or not to ignore the case in making compar-
isons.
Details

Computing the longest common suffix is helpful for truncating names of objects, like microarrays,
that often have a common suffix, such as .CEL.

There are some potential problems with the approach used if multibyte character encodings are
being used.

lcPrefixC is a faster implementation in C. It only handles ascii characters.

Value

The common prefix or suffix.

Author(s)

R. Gentleman

See Also

nchar, nchar

58 listLen

Examples

sl <- c("ABC.CEL", "DEF.CEL")
lcSuffix(sl)

s2 <- c("ABC.123", "ABC.4506")
lcPrefix (s2)

CHK <- stopifnot

CHK (".CEL" == lcSuffix(sl))
CHK ("bc" == lcSuffix(c("abc", "333abc", "bc")))
CHK ("c" == lcSuffix(c("c", "abc", "xxxc")))
CHK ("" == lcSuffix(c("c", "abc", "xxx")))
CHK ("ABC." == lcPrefix(s2))
CHK ("ab" == 1lcPrefix(c("abcd", "abcdl23", "ab", "abc", "abc333333")))
CHK ("a" == lcPrefix(c("abcd", "abcdl23", "ax")))
CHK ("a" == lcPrefix(c("a", "abcdl23", "ax")))
CHK("" == lcPrefix(c("a", "abc", "xxx")))
CHK ("ab" == lcPrefixC(c("abcd", "abcdl23", "ab", "abc", "abc333333")))
CHK ("a" == lcPrefixC(c("abcd", "abcdl23", "ax")))
CHK ("a" == lcPrefixC(c("a", "abcdl23", "ax")))
CHK("" == lcPrefixC(c("a", "abc", "xxx")))
listLen Lengths of list elements
Description

This function returns an integer vector with the length of the elements of its argument, which is
expected to be a list.
Usage

listLen (x)

Arguments

X A list

Details

This function returns a vector of the same length as the list x containing the lengths of each element.
The current implementation is intended for lists containing vectors and the C-level length function
is used to determine lenght. This means no dispatch is done for the elements of the list. If your list
contains S4 objects, you should use sapply (x, length) instead.

Author(s)

Jeff Gentry and R. Gentleman

makeDataPackage 59

See Also
sapply

Examples

foo = lapply(1:8, rnorm)
listLen (foo)

makeDataPackage Make an R package from a data object

Description

This generic creates a valid R package from an R data object.

Usage

makeDataPackage (object, author, email,
packageName=deparse (substitute (object)),
packageVersion=package_version("1.0.0"),
license="Artistic-2.0",
biocViews="ExperimentData",
filePath=tempdir (),
.)

Arguments
object An instance of an R data object.
author The author, as a character string.
email A valid email address for the maintainer, as a character string.

packageName The name of the package, defaults to the name of the object instance.
packageVersion
The version number, as a character string.

license The license, as a character string.
biocViews A character vector of valid biocViews views.
filePath The location to create the package.

Additional arguments to specific methods.

Details
The function makes use of various tools in R and Bioconductor to automatically generate the source
files for a valid R package.

Value

The return value is that from a call to 1ink { createPackage} which is invoked once the default
arguments are set up. The data instance is stored in the data directory with a name the same as that
of the resulting package.

60 matchpt

Note

Developers implementing derived methods might force correct package name evaluation by includ-
ing ’packageName’ in any callNextMethod ().

Author(s)

R. Gentleman

See Also

createPackage

Examples

data (sample.ExpressionSet)

package created in tempdir ()

sl <- makeDataPackage (sample.ExpressionSet,
author = "Foo Author",
email = "foo@bar",
packageName = "FooBarPkg",
packageVersion = "1.0.0")

matchpt Nearest neighbor search.

Description

Find the nearest neighbors of a set of query points in the same or another set of points in an n-
dimensional real vector space, using the Euclidean distance.

Usage
matchpt (x, V)
Arguments
x A matrix (or vector) of coordinates. Each row represents a pointinanncol (x) -
dimensional real vector space.
% Optional, matrix (or vector) with the same number of columns as x.
Details

If v is provided, the function searches for each point in x its nearest neighbor in y. If y is missing,
it searches for each point in x its nearest neighbor in x, excluding that point itself. In the case of
ties, only the neighbor with the smaller index is given.

The implementation is simple and of complexity nrow (x) times nrow (y) . For larger problems,
please consider one of the many more efficient nearest neighbor search algorithms.

Value

A data.frame with two columns and nrow (x) rows. The first column is the index of the
nearest neighbor, the second column the distance to the nearest neighbor. If v was given, the index
is a row number in y, otherwise, in x. The row names of the result are those of x.

multiassign 61

Author(s)
Oleg Sklyar (osklyar@ebi.ac.uk)

Examples

a <- matrix(c(2,2,3,5,1,8,-1,4,5,6), ncol=2L, nrow=5L)
rownames (a) = LETTERS[seq_len(nrow(a))]

matchpt (a)

b <- c¢c(1,2,4,5,6)

d <- ¢(5.3, 3.2, 8.9, 1.3, 5.6, -6, 4.45, 3.32)
matchpt (b, d)

matchpt (d, b)

multiassign Assign Values to a Names

Description

Assign values to names in an environment.

Usage

multiassign(x, value, envir = parent.frame (), inherits=FALSE)
Arguments

x A vector or list of names, represented by strings.

value a vector or list of values to be assigned.

envir the environment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?
Details

The pos argument can specify the environment in which to assign the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys . frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

If value is missing and x has names then the values in each element of x are assigned to the names
of x.

Value

This function is invoked for its side effect, which is assigning the values to the variables in x. If
no envir is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable is
encountered. If the symbol is not encountered then assignment takes place in the user’s workspace
(the global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir.

62 note

Examples

#-— Create objects 'rl', 'r2', ... 'ré' -—-
nam <- paste("r",1:6, sep=".")

multiassign(nam, 11:16)
1s (pat="Ar. ‘sn)

#assign the values in y to variables with the names from y

y<-list (a=4,d=mean, c="aaa")
multiassign (y)

note Informational Messages

Description

Generates an informational message that corresponds to its argument(s). Similar to warning() ex-
cept prefaced by "Note:" instead of "Warning message:".
Usage

note (...)

Arguments

character vectors (which are pasted together) or NULL

Details

This function essentially cat()’s the created string to the screen. It is intended for messages to the
user that are deemed to be ’informational’, as opposed to warnings, etc.

Author(s)

Jeff Gentry

See Also

warning,stop

Examples

note ("This is an example of a note")

notes 63

notes Retrieve and set eSet notes.

Description

These generic functions access notes (unstructured descriptive data) associated eSet—-class.

notes (<ExpressionSet>) <- <character> is unusual, in that the character vector is
appended to the list of notes; use notes (<ExpressionSet>) <- <list> toentirely replace
the list.

Usage

notes (object)
notes (object) <- value

Arguments
object Object, possibly derived from class eSet-class.
value Character vector containing unstructured information describing the experine-
ment.
Value

notes returns a list.

Author(s)

Biocore

See Also

ExpressionSet-class, SnpSet-class

openPDF Open PDF Files in a Standard Viewer

Description

Displays the specified PDF file.

Usage

openPDF (file, bg=TRUE)

Arguments

file A character string, indicating the file to view

bg Should the pdf viewer be opened in the background.

64 openVignette

Details

Currently this function works on Windows and Unix platforms. Under Windows, whatever program
is associated with the file extension will be used. Under Unix, the function will use the program
named in the option "pdfviewer" (see help (options) for information on how this is set.)

The bg argument is only interpreted on Unix.

Value
This function is executed for its side effects. The specified PDF file is opened in the PDF viewer
and TRUE is returned.

Author(s)

Jeff Gentry

Examples

Not run: openPDF ("annotate.pdf")

openVignette Open a Vignette or Show Vignette Selection Menu

Description
Using the data returned by vignette this function provides a simple easy to use interface for
opening vignettes.

Usage

openVignette (package=NULL)

Arguments

package character string indicating the package to be used.

Details

If package is NULL then all packages are scanned for vignettes. The list of vignettes is presented
to the user via the menu command. The user may select one of the vignettes to be opened in a PDF
viewer.

Value
No value is returned; this function is run entirely for the side effect of opening the pdf document in
the PDF viewer.

Author(s)

R. Gentleman

package.version 65

See Also

vignette, openPDF, menu, getPkgVigs

Examples

1if(interactive ())
openVignette ("Biobase")

package.version Report Version of a Package

Description

Will report the version number of a requested installed package

Usage

package.version (pkg, lib.loc = NULL)

Arguments
pkg The name of the package
lib.loc a character vector describing the location of R library trees to search through,
or ‘NULL’. The default value of ‘NULL’ corresponds to all libraries currently
known.
Details

This function is a convenience wrapper around package .description, and will report simply
the version number of the requested package. If the package does not exist or if the DESCRIPTION
file can not be read, then an error will be thrown.

Value

A character string reporting the version number.

Author(s)
Jeff Gentry

See Also

package.description

Examples

package.version ("Biobase")

66 read.AnnotatedDataFrame

phenoData Retrieve information on experimental phenotypes recorded in eSet and
ExpressionSet-derived classes.

Description

These generic functions access the phenotypic data (e.g., covariates) and meta-data (e.g., descrip-
tions of covariates) associated with an experiment.

Usage

phenoData (object)

phenoData (object) <- value
varLabels (object)

varLabels (object) <- wvalue
varMetadata (object)
varMetadata (object) <- value
pData (object)

pData (object) <- wvalue

Arguments
object Object, possibly derived from eSet—-class or AnnotatedDataFrame.
value Value to be assigned to corresponding object.

Value

phenoData returns an object containing information on both variable values and variable meta-
data. varLabels returns a character vector of measured variables. pData returns a data frame
with samples as rows, variables as columns. varMetadata returns a data frame with variable
names as rows, description tags (e.g., unit of measurement) as columns.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

read.AnnotatedDataFrame
Read ’AnnotatedDataFrame’

Description

Create an instance of class AnnotatedDataFrame by reading a file.

read.AnnotatedDataFrame 67

Usage
read.AnnotatedDataFrame (filename, path,
sep = "\t", header = TRUE, quote = "", stringsAsFactors = FALSE,
row.names = 11,

varMetadata.char="#",
widget = getOption ("BioC") $BaseS$Suse.widgets,

sampleNames = character (0), ...)
Arguments
filename file or connection from which to read.
path (optional) directory in which to find £ilename.
row.names this argument gets passed on to read.table and will be used for the row

names of the phenoData slot.
varMetadata.char

lines beginning with this character are used for the varMetadata slot. See
examples.

sep, header, quote, stringsAsFactors,
further arguments that get passed on to read.table.

widget logical. Currently this is not implemented, and setting this option to TRUE will
result in an error. In a precursor of this function, read.phenoData, this
option could be used to open an interactive GUI widget for entering the data.

sampleNames optional argument that could be used in conjunction with widget; do not use.

Details

The function read.table is used to read pData. The argument varMetadata.char is

passed on to that function as its argument comment . char. Lines beginning with varMetadata.char
are expected to contain further information on the column headers of pData. The format is of the

form: # variable: textual explanation of the variable, units, measurement
method, etc. (assuming that # is the value of varMetadata.char). See also examples.

Value

An instance of class AnnotatedDataFrame

Author(s)

Martin Morgan <mtmorgan@fhcrc.org> and Wolfgang Huber, based on read.phenoData by
Rafael A. Irizarry.

See Also

AnnotatedDataFrame for additional methods, read.table for details of reading in pheno-
typic data

Examples

exampleFile = system.file("extdata", "pData.txt", package="Biobase")

adf <- read.AnnotatedDataFrame (exampleFile)

68 readExpressionSet

adf
head (pData (adf))
head (readLines (exampleFile))

readExpressionSet Read 'ExpressionSet’

Description

Create an instance of class ExpressionSet by reading data from files. ‘widget’ functionality is not
implemented for readExpressionSet.

Usage

readExpressionSet (exprsFile,
phenoDataFile,
experimentDataFile,
notesFile,
path,
annotation,
arguments to read.x* methods
exprsArgs=1list (sep=sep, header=header, row.names=row.names, quote=quote,
phenoDataArgs=1list (sep=sep, header=header, row.names=row.names, quote=quot
experimentDataArgs=1list (sep=sep, header=header, row.names=row.names, quote
sep = "\t", header = TRUE, quote = "", stringsAsFactors = FALSE, row.names
widget
widget = getOption ("BioC") $BaseSuse.widgets,
-)

Arguments
exprsFile (character) File or connection from which to read expression values. The file
should contain a matrix with rows as features and columns as samples. read.table
is called with this as its £ 1 1e argument and further arguments given by exprsArgs.
phenoDataFile

(character) File or connection from which to read phenotypic data. read.AnnotatedDataFrame

is called with this as its £ i 1 e argument and further arguments given by phenoDataArgs.
experimentDataFile

(character) File or connection from which to read experiment data. read . MIAME

is called with this as its £1 1e argument and further arguments given by experimentDataArgs.

notesFile (character) File or connection from which to read notes; readLines is used to
input the file.

path (optional) directory in which to find all the above files.

annotation (character) A single character string indicating the annotation associated with
this ExpressionSet.

exprsArgs A list of arguments to be used with read. table when reading in the expres-
sion matrix.

read MIAME 69

phenoDataArgs
A list of arguments to be used (with read.AnnotatedDataFrame) when
reading the phenotypic data.

experimentDataArgs
A list of arguments to be used (with read.MIAME) when reading the experi-
ment data.

sep, header, quote, stringsAsFactors, row.names
arguments used by the read. table-like functions.

widget A boolean value indicating whether widgets can be used. Widgets are NOT yet
implemented for read.AnnotatedDataFrame.

Further arguments that can be passed on to the read. table-like functions.

Details

Expression values are read using the read.table function. Phenotypic data are read using the
read.AnnotatedDataFrame function. Experiment data are read using the read.MIAME
function. Notes are read using the readLines function. The return value must be a valid
ExpressionSet. Only the exprsFile argument is required.

Value

An instance of the ExpressionSet class.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

See Also

ExpressionSet for additional methods.

Examples
exprsFile = system.file("extdata", "exprsData.txt", package="Biobase")
phenoFile = system.file ("extdata", "pData.txt", package="Biobase")

Read ExpressionSet with appropriate parameters

obj = readExpressionSet (exprsFile, phenoFile, sep = "\t", header=TRUE)
obj
read.MIAME Read MIAME Information into an Instance of Class "MIAME’
Description

Reads MIAME information from a file or using a widget.

Usage

read.MIAME (filename = NULL, widget = getOption("BioC") $BaseSuse.widgets,

70 reverseSplit

Arguments
filename Filename from which to read MIAME information.
widget Logical. If TRUE and a filename is not given, a widget is used to enter informa-
tion.
Further arguments to scan.
Details

Notice that the MIAME class tries to cover the MIAME entries that are not covered by other classes
in Bioconductor. Namely, experimental design, samples, hybridizations, normalization controls,
and pre-processing information.

The function scan is used to read. The file must be a flat file with the different entries for the
instance of MIAME class separated by carriage returns. The order should be: name, lab, contact,
title, abstract, and url.

Alternatively a widget can be used.

Value

An object of class MIAME.

Author(s)

Rafael Irizarry <rafa@jhu.edu>

See Also

MIAME,tkMIAME

Examples

miame <- read.MIAME (widget=FALSE) ##creates an empty instance
show (miame)

reverseSplit A function to reverse the role of names and values in a list.

Description
Given a list with names x and values in a set y this function returns a list with names in y and values
in x.

Usage

reverseSplit (inList)

Arguments

inList A named list with values that are vectors.

rowMedians 71

Details

First the list is unrolled to provide a two long vectors, names are repeated, once for each of their
values. Then the names are split by the values.

This turns out to be useful for inverting mappings between one set of identifiers and an other.

Value
A list with length equal to the number of distinct values in the input list and values from the names

of the input list.

Author(s)

R. Gentleman

See Also

split

Examples

11 = list(a=1:4, b=c(2,3), d=c(4,5))
reverseSplit (11)

rowMedians Calculates the median for each row in a matrix

Description

Calculates the median for each row in a matrix.

Usage

rowMedians (imat, na.rm=FALSE)

Arguments
imat A numericmatrix.
na.rm If TRUE, NAs are excluded before calculating the medians, otherwise not.
Not use.
Value

Returns a double vector of length equal to number of rows in x.

Missing values

Missing values are excluded before calculating the medians.

72 rowQ

Benchmarking

This implementation is optimized for speed and memory to calculate. As the example shows, this
implementation is roughly 3-10 times faster than using apply (x, MARGIN=1, FUN=medians).
As the example might show, the rowQ () does not (have to) handle missing values, and is therefore
in some cases faster.

Author(s)

Henrik Bengtsson

See Also

See rowMeans () in colSums().

Examples

set.seed (1)

x <— rnorm(n=234x543)

x[sample (l:length(x), size=0.lxlength(x))] <- NA
dim(x) <- c(234,543)

yl <- rowMedians (x, na.rm=TRUE)

y2 <- apply(x, MARGIN=1, FUN=median, na.rm=TRUE)
stopifnot (all.equal(yl, y2))

x <= cbind(x1=3, x2=c(4:1, 2:5))
stopifnot (all.equal (rowMeans (x), rowMedians (x)))

rowQ A function to compute empirical row quantiles.

Description

This function computes the requested quantile for each row of a matrix, or of an ExpressionSet.

Usage

rowQ (imat, which)
rowMax (imat)
rowMin (imat)

Arguments

imat Either a matrix or an ExpressionSet.

which An integer indicating which order statistic should be returned.
Details

rowMax, rowMin and rowMedians simply call rowQ with the appropriate argument set.

The argument which takes values between 1, for the minimum per row, and ncol (imat), for
the maximum per row.

ScalarObject-class 73

Value

A vector of length equal to the number of rows of the input matrix containing the requested quan-
tiles.

Author(s)

R. Gentleman

See Also

rowMedians. rowMeans () in colSums().

Examples

data (sample.ExpressionSet)
rowMin (sample.ExpressionSet)
rowQ (sample.ExpressionSet, 4)

ScalarObject—class Utility classes for length one (scalar) objects

Description

These classes represent scalar quantities, such as a string or a number and are useful because
they provide their own validity checking. The classes ScalarCharacter, ScalarLogical,
ScalarInteger, and ScalarNumeric all extend their respective base vector types and can
be used interchangeably (except they should always have length one).

The mkScalar factory function provides a convenient way of creating Scalar<type> objects
(see the examples section below).

Usage

mkScalar (obj)

Arguments
obj An object of type character, logical, integer, or double
Author(s)
Seth Falcon
Examples
v <- list (mkScalar("a single string"),
mkScalar (1),
mkScalar (1L),
mkScalar (TRUE))

sapply (v, class)
sapply (v, length)

74 selectSome

selectChannels Create a new NChannelSet instance by selecting specific channels

Description

This generic function extracts specific elements from an object, returning a instance of that object.

Usage
selectChannels (object, names, ...)
Arguments
object An S4 object, typically derived from class eSet
names Character vector of named channels.
Additional arguments.
Value

Instance of class object.

Author(s)

Biocore

Examples

obj <- new("NChannelSet",
R=matrix (runif (100), 20, 5),
G=matrix (runif (100), 20, 5))

G channel as NChannelSet
selectChannels (obj, "G")

selectSome Extract elements of a vector for concise rendering

Description
Extract the first and last several elements of a vector for concise rendering; insert elipses to indici-
ated elided elements. This function is primarily meant for developer rather than end-user use.
Usage

selectSome (obj, maxToShow=5)

Arguments

obj A vector.

maxToShow The number of elements (including "...") to render.

storageMode 75

Details

This function can be used in ’show’ methods to give users exemplars of the tokens used in a vector.
For example, an ExpressionSet built from a yeast experiment might have features enumerated
using systematic gene names (e.g., YPR181C) or standard gene names (e.g., SEC23). The show
method for ExpressionSet uses selectSome to alert the user to the tokens used, and thereby
to indicate what vocabulary must be understood to work with the feature names.

Value

A string vector with at most maxToShow plus 1 elements, where an ellipsis ("...") is included to
indicate incompleteness of the excerpt.

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

Examples

selectSome (1:20)

storageMode Retrieve or set storage mode for eSets.

Description

These generic functions report or change the storage mode used for assayData.

Usage

storageMode (object)
storageMode (object) <- wvalue

Arguments
object Object, derived from class eSet
value Character vector containing "lockedEnvironment","environment", or
"list". See AssayData—-class for details.
Value

storageMode returns a length-1 character vector

Author(s)

Biocore

See Also

AssayData-class, eSet-class ExpressionSet-class, SnpSet—-class

76 subListExtract

strbreak Break Character Strings to Fit Width

Description

Inserts line breaks (collapse) into input character strings. The main intention of this function is
to prepare long strings for printing, so the output is not wider than width.

Usage

strbreak (x, width=getOption ("width"), exdent=2, collapse="\n")

Arguments
X a character vector
width a positive integer giving the width of the output.
exdent a positive integer specifying the indentation of subsequent lines after the first
line.
collapse a character. This is inserted to break lines.
Author(s)

Wolfgang Huber http://www.ebi.ac.uk/huber

See Also

strwrap, substring

Examples

longString = paste (rep (LETTERS, 10), collapse="", sep="")
cat (strbreak (longString))

subListExtract Extract the same element from the sublists of a list

Description

Given a list of lists, this function can be used to extract a named element from each sublist.

Usage

subListExtract (L, name, simplify = FALSE, keep.names = TRUE)

http://www.ebi.ac.uk/huber

testBioCConnection 77

Arguments
L A list of named lists
name The name of the element in the sublists that should be extracted. This should be
a length one character vector.
simplify When TRUE, the return value will be an atomic vector. If any extracted sublist

value has length not equal to one and simp1li fy=TRUE, an error will be raised.
When FALSE, a list is returned containing the extracted elements.

keep.names If TRUE (default), the names of L will be attached to the returned vector.

Details

This function is implemented in C and is intended to be faster than calling lapply or sapply.

Value

If simplify=FALSE, a list will be returned having the same length as L, but with each element
containing the element named name from the corresponding inner list of L.

When simplify=TRUE, an atomic vector will be returned containing the extracted elements. If
any of the inner list elements do not have length one or cannot be put inside an atomic vector, an
error will be raised.

Author(s)

Seth Falcon

Examples

list_size = 500000
innerL = list (foo="foo", bar="bar")
L = rep(list(innerl), list_size)

system.time ({jO = sapply (L, function (x) x$foo)})
system.time ({jl = subListExtract (L, "foo", simplify=TRUE) })
stopifnot (all.equal (j0, 3j1))

LS = L[1:3]

names (LS) = LETTERS[1:3]

subListExtract (LS, "bar", simplify=TRUE)
subListExtract (LS, "bar", simplify=FALSE)
subListExtract (LS, "bar", simplify=TRUE, keep.names=FALSE)

testBioCConnection A function to check internet connectivity to Bioconductor

Description

This function will attempt to determine if the user has internet connectivity to the Bioconductor
website. This is useful in many situations dealing with code that uses automated downloads and
other such things.

78 updateObject

Usage

testBioCConnection ()

Value

TRUE if a connection is possible, FALSE if not.

Author(s)

Jeff Gentry

Examples

z <— testBioCConnection ()

updateObject Update an object to its current class definition

Description

These generic functions return an instance of ob ject updated to its current class definition (or to
the class definition of template, in the case of updateObjectTo).

Updating objects is primarily useful when an object has been serialized (e.g., stored to disk) for
some time (e.g., months), and the class definition has in the mean time changed. Because of the
changed class definition, the serialized instance is no longer valid.

updateObject requires that the class of the returned object be the same as the class of the
argument ob ject, and that the object is valid (see validObject). By default, updateObject
has the following behaviors:

updateObject (ANY, ..., verbose=FALSE) By default, updateObject uses heuris-
tic methods to determine whether the object should be the ‘new’ S4 type (introduced in R
2.4.0), but is not. If the heuristics indicate an update is required, the updateObjectFromSlots
function tries to update the object. The default method returns the original S4 object or the
successfully updated object, or issues an error if an update is required but not possible. The
optional named argument verbose causes a message to be printed describing the action.
Arguments . . . are passed to 1link{updateObjectFromSlots}.

updateObject (1list, ..., verbose=FALSE) Visiteachelementin 1ist,applyingupdateObject (1is
., verbose=verbose).

updateObject (environment, ..., verbose=FALSE) Visiteachelementinenvironment,
applying updateObject (environment [[elt]], ..., verbose=verbose)

updateObjectTo requires that the class of the returned object be the same as the class of the
template argument, and that the object is valid. Usually, updating proceeds by modifying slots
in template with information from object, and returning template. Use as to coerce an
object from one type to another; updateOb ject To might be useful to update a virtual superclass.
By default, updateOb ject To has the following behavior:

updateObjectTo (ANY-object, ANY-template) Attemptas (ANY-object,class (ANY-template))

updateObject 79

Sample methods are illustrated below.

updateObjectFromSlots (object, objclass = class(object), ..., verbose=FALSE)
is a utility function that identifies the intersection of slots defined in the object instance and
objclass definition. The corresponding elements in ob ject are then updated (with updateObject (elt,
., verbose=verbose)) and used as arguments to a call to new (class, ...), with
. replaced by slots from the original object. If this fails, updateObjectFromSlots then
tries new (class) and assigns slots of object to the newly created instance.

getObjectSlots (object) extracts the slot names and contents from ob ject. This is useful
when ob ject was created by a class definition that is no longer current, and hence the contents of
object cannot be determined by accessing known slots.

Usage
updateObject (object, ..., verbose=FALSE)
updateObjectTo (object, template, ..., verbose=FALSE)
updateObjectFromSlots (object, objclass=class(object), ..., verbose=FALSE)

getObjectSlots (object)

Arguments
object Object to be updated, or for slot information to be extracted from.
template Instance representing a template for updating object.
objclass Optional character string naming the class of the object to be created.
verbose A logical, indicating whether information about the update should be reported.
Use message to report this.
Additional arguments, for use in specific update methods.
Value

updateObject returns a valid instance of object. updateObjectTo returns a valid in-
stance of template. updateObjectFromSlots returns an instance of class objclass.
getObjectSlots returns a list of named elements, with each element corresponding to a slot in
object.

Author(s)

Biocore team

See Also

Versions—-class

Examples

update object, same class
data (sample.ExpressionSet)
obj <- updateObiject (sample.ExpressionSet)

setClass ("UpdtA", representation (x="numeric"), contains="data.frame")
setMethod ("updateObject", signature (object="UpdtA"),
function (object, ..., verbose=FALSE) {
if (verbose) message ("updateObject object = 'A'")

object <- callNextMethod()

80 updateOIdESet

object@x <- -object@x
object
1)

a <- new ("UpdtA", x=1:10)
See steps involved
updateObject (a)

removeClass ("UpdtA")
removeMethod ("updateObject", "UpdtA")

updateOldESet Update previously created eSet object to current eSet structure

Description

This function updates eSet objects created in previous versions of Biobase to the current class
structure. Warnings indicate when coercions change how data in the £ rom object are altered. If the
from object was not a valid object of the original eSet classs, then updateOldESet may fail.

Usage
updateOldESet (from, toClass, ...)
Arguments
from Object created using a previous version of the eSet class.
toClass Character string identifying new class, e.g., "ExpressionSet"
Additional arguments passed to the initialization method for class toClass
Value

Valid object of class toClass.

Author(s)

Biocore

See Also

eSet-class, ExpressionSet-class, SnpSet-class

Examples

Not run:
updateOldESet (oldESet, "ExpressionSet")
End (Not run)

userQuery 81

userQuery A function to query the user for input

Description

This function will output a given message and seek a response from the user, repeating the message
until the input is from a valid set provided by the code.

Usage

userQuery (msg, allowed = c("y", "n"), default = "n", case.sensitive = FALSE)
Arguments

msg The output message

allowed Allowed input from the user

default Default response if called in batch mode

case.sensitive
Is the response case sensitive? Defaults to FALSE

Value

The input from the user

Author(s)
Jeff Gentry

validMsg Conditionally append result to validity message

Description
This function facilitates constructing messages during S4 class validation, and is meant for devel-
oper rather than end-user use.

Usage

validMsg (msg, result)

Arguments
msg A character vector or NULL.
result Any vector.

Details

This function appends result to msg, but only if result is a character vector.

82 validMsg

Author(s)

Martin Morgan <mtmorgan @fhcrc.org>

Examples

msg <- NULL

validMsg (msg, FALSE) # still NULL
msg <- validMsg(msg, "one")
validMsg (msg, "two")

Index

+Topic array *Topic logic
cache, 7 anyMissing, 5
matchpt, 58 isUnique, 53

+Topic character +Topic manip
strbreak, 74 abstract, 1

xTopic classes annotation, 4
aggregator, 10 assayData, 5
AnnotatedDataFrame, 11 cache, 7
AssayData-class, 13 channel, 9
class:characterORMIAME, 14 channelNames, 9
container, 15 classVersion, 32
eSet, 16 combine, 35
ExpressionSet, 19 contents, 37
MIAME, 22 description,45
MultiSet, 24 dims, 46
NChannelSet-class, 26 exprs, 49
ScalarObject-class, 71 featureData, 50
SnpSet, 28 featureNames, 51
Versioned, 31 isCurrent, 52
VersionedBiobase, 30 isUnique, 53
Versions, 34 isVersioned, 54
VersionsNull, 33 lcSuffix, 55

+Topic connection makeDataPackage, 57
copySubstitute, 39 matchpt, 58

*Topic datasets notes, 61
data:aaMap, 42 phenoData, 64
data:geneData, 43 read.AnnotatedDataFrame, 64
data:sample.ExpressionSet, 44 readExpressionSet, 66
data:sample.MultiSet, 45 reverseSplit, 68
reporter, 43 rowMedians, 69

*Topic data selectChannels, 72
multiassign, 59 storageMode, 73

*Topic file subListExtract, 74
read.AnnotatedDataFrame, 64 updateObject, 76
read.MIAME, 67 updateOldESet, 78
readExpressionSet, 66 *Topic methods

+Topic interface Aggregate, 2
addvigs2WinMenu, 2 aggregator, 10

*Topic internal annotatedDataFrameFrom-methods,
abstract, 52 3
Deprecated, 45 container, 15

*Topic iteration esApply, 47
anyMissing, 5 *Topic models

83

84

dumpPackTxt, 47
esApply, 47
xTopic package
Biobase-package, 6
+Topic programming
Aggregate, 2
copySubstitute, 39
createPackage, 41
xTopic utilities
biocReposList, 7
copyEnv, 38
getPkgVigs, 51
listLen, 56
note, 60
openPDF, 61
openVignette, 62
package.version, 63
selectSome, 72
testBioCConnection, 75
userQuery, 79
validMsg, 79
[,AnnotatedDataFrame-method
(AnnotatedDataFrame), 11
,Versions—-method (Versions), 34
,container-method (container), 15
eSet-method (eSet), 16
—,Versions—-method (Versions), 34
,AnnotatedDataFrame-method
(AnnotatedDataFrame), 11
[[,container-method (container),
15
[[,eSet—-method (eSet), 16
[[<=,AnnotatedDataFrame-method
(AnnotatedDataFrame), 11
[[<—,Versions—-method (Versions),
34
[[<=,container-method
(container), 15
[[<—,eSet-method (eSet), 16
$,AnnotatedDataFrame-method
(AnnotatedDataFrame), 11
$,eSet-method (eSet), 16
$<—-,AnnotatedDataFrame—-method
(AnnotatedDataFrame), 11
$<—,Versions—-method (Versions), 34
$<—,eSet-method (eSet), 16

[
[
[’
[<
|l

aaMap, 6

aaMap (data:aaMap), 42

abstract, 1,52
abstract,eSet-method (eSet), 16
abstract,MIAME-method (MIAME), 22
addvigs2WinMenu, 2

INDEX

aggenv (abstract), 52

aggenv, aggregator-method
(aggregator), 10

aggfun (abstract), 52

aggfun, aggregator-method
(aggregator), 10

Aggregate, 2, 11

aggregator, 6, 10

aggregator-class (aggregator), 10

AnnotatedDataFrame, 3, 6, 11, 26, 36,
64, 65

AnnotatedDataFrame-class, I8, 50

AnnotatedDataFrame-class, 16

AnnotatedDataFrame-class
(AnnotatedDataFrame), 11

annotatedDataFrameFrom, I/

annotatedDataFrameFrom

(annotatedDataFrameFrom-methods),

3

annotatedDataFrameFrom, AssayData-method
(annotatedDataFrameFrom-methods),

3

annotatedDataFrameFrom, matrix-method
(annotatedDataFrameFrom—-methods),

3
annotatedDataFrameFrom, NULL-method

(annotatedDataFrameFrom-methods),

3

annotatedDataFrameFrom—methods,
3

annotatedDataset (Deprecated), 45

annotatedDataset-class
(Deprecated), 45

annotation,4

annotation, eSet-method (eSet), 16

annotation<- (annotation), 4

annotation<-,eSet,character-method
(eSet), 16

anyMissing, 5

apply, 48

as, 76

as.data.frame.ExpressionSet
(ExpressionSet), 19

as.list, 38

as.list.environment, 37

AssayData, 3, 26, 36

AssayData (AssayData-class), 13

assayData, 5, 17

assayData, AssayData-method
(AssayData-class), 13

assayData,eSet-method (eSet), 16

AssayData-class, 11,18,73

INDEX

AssayData-class, 13, 16, 20, 24, 29
assayData<- (assayData), 5
assayData<-,eSet,AssayData-method
(eSet), 16
assayDataElement (eSet), 16
assayDataElement<- (eSet), 16
assayDataElementNames (eSet), 16
assayDataElementReplace (eSet), 16
assayDataNew (AssayData-class), 13
assayDataValidMembers
(AssayData—-class), 13

Biobase (Biobase-package), 6
Biobase-package, 6
biocReposList, 7

cache, 7
channel, 9

channel, NChannelSet, character-method

(NChannelSet-class), 26
channelNames, 9
channelNames, NChannelSet-method
(NChannelSet-class),26
characterORMIAME-class
(class:characterORMIAME),
14
class.NChannelSet
(NChannelSet-class), 26
class:aggregator, 3
class:aggregator (aggregator), 10
class:AnnotatedDataFrame
(AnnotatedDataFrame), 11
class:annotatedDataset
(Deprecated), 45
class:characterORMIAME, 14, 23
class:container (container), 15
class:eSet (eSet), 16
class:ExpressionSet
(ExpressionSet), 19
class:exprList (Deprecated), 45
class:exprMatrix (Deprecated), 45
class:exprSet (Deprecated), 45
class:MIAME (MIAME), 22
class:MultiSet (MultiSet),24
class:phenoData (Deprecated), 45
class:SnpSet (SnpSet), 28
classVersion, 26, 31,32, 34, 35
classVersion, ANY-method
(classVersion), 32
classVersion, character—-method
(classVersion), 32
classVersion, Versioned—-method
(Versioned), 31

85

classVersion<-(classVersion), 32

classVersion<—,Versioned,Versions—-method
(Versioned), 31

coerce,AnnotatedDataFrame, data.frame-method
(AnnotatedDataFrame), 11

coerce,data.frame, AnnotatedDataFrame-method
(AnnotatedDataFrame), 11

coerce,eSet,ExpressionSet-method
(ExpressionSet), 19

coerce, eSet,MultiSet-method
(MultiSet), 24

coerce, ExpressionSet,data.frame-method
(ExpressionSet), 19

coerce, exprSet, ExpressionSet-method
(ExpressionSet), 19

coerce, phenoData, AnnotatedDataFrame—-method
(AnnotatedDataFrame), 11

coerce,Versions, character-method
(Versions), 34

colSums, 70, 71

combine, 35

combine, AnnotatedDataFrame, AnnotatedDataFrame-
(AnnotatedDataFrame), 11

combine, ANY, missing-method
(combine), 35

combine,AssayData, AssayData-method
(AssayData-class), 13

combine,data.frame,data.frame-method
(combine), 35

combine, eSet, ANY-method (eSet), 16

combine, eSet, eSet-method, /13

combine, eSet, eSet-method (eSet),
16

combine,matrix,matrix-method
(combine), 35

combine, MIAME, MIAME-method
(MIAME), 22

Compare, character,Versions—-method
(Versions), 34

Compare,Versions, character-method
(Versions), 34

Compare,Versions,Versions-method
(Versions), 34

container, 6, 15

container—-class (container), 15

content (abstract), 52

content, container-method
(container), 15

contents, 37

contents, environment-method
(abstract), 52

copyEnv, 38

86

copySubstitute, 39, 39, 41, 42
createPackage, 6, 39,41, 58

data.frameOrNULL-class
(abstract), 52

data:aaMap, 42

data:geneCov (data:geneData), 43

data:geneCovariate
(data:geneData), 43

data:geneData, 43

data:reporter (reporter), 43

data:sample.eSet (Deprecated), 45

data:sample.ExpressionSet, 44

data:sample.exprSet (Deprecated),
45

data:sample.MultiSet, 45

data:seD (data:geneData), 43

Deprecated, 45

description,45

description, eSet-method (eSet), 16

description<- (description), 45

description<—,eSet,MIAME-method
(eSet), 16

df2pD (Deprecated), 45

dim, AnnotatedDataFrame-method
(AnnotatedDataFrame), 11

dim, eSet-method (eSet), 16

dimLabels (AnnotatedDataFrame), 11

dimLabels, AnnotatedDataFrame-method
(AnnotatedDataFrame), 11

dimLabels<- (AnnotatedDataFrame),
11

INDEX

eSet-class, 14,24, 25
eSet-class (eSet), 16
experimentData (abstract), 1
experimentData, eSet-method
(eSet), 16
experimentData<- (abstract), 1
experimentData<-,eSet, MIAME-method
(eSet), 16
expinfo (abstract), 52
expinfo, MIAME-method (MIAME), 22
ExpressionSet, 5, 6, 10, 13,19, 27, 30,
48, 50, 67,73
ExpressionSet-class, 1,4, 6, 14, 16,
18, 22,24, 25,44, 50, 51,61, 64,73,
78
ExpressionSet-class, I8, 20
ExpressionSet-class
(ExpressionSet), 19
exprList (Deprecated), 45
exprList—-class (Deprecated), 45
exprMatrix (Deprecated), 45
exprMatrix—-class (Deprecated), 45
exprs, 49
exprs,eSet-method (eSet), 16
exprs, ExpressionSet-method
(ExpressionSet), 19
exprs, SnpSet-method (SnpSet), 28
exprs<- (exprs), 49
exprs<—,eSet,AssayData-method
(eSet), 16
exprs<—,ExpressionSet,matrix-method
(ExpressionSet), 19

dimLabels<-, AnnotatedDataFrame, charactapmeethShpSet, matrix-method

(AnnotatedDataFrame), 11
dims, 46
dims, eSet-method (eSet), 16
double, 69
dumpPackTxt, 47
duplicated, 54

elList (Deprecated), 45

elList,eSet-method (Deprecated), 45

elList<- (Deprecated), 45

elList<—,eSet,AssayData-method
(Deprecated), 45

environment, 38, 59

esApply, 20, 47

esApply, ExpressionSet-method
(ExpressionSet), 19

eSet, 5, 6,9, 13,16, 19-21, 24, 26-30, 36
50,72

eSet—-class, 1,4,6, 14,22, 24, 25,45, 46,
49-51,61,64,73,78

(SnpSet), 28
exprSet (Deprecated), 45
exprSet-class, 20
exprSet-class (Deprecated), 45

factor, 36

FALSE, 5

fData (featureData), 50

fData, eSet-method (eSet), 16

fData<- (featureData), 50

fData<-,eSet,data.frame-method
(eSet), 16

featureData, 50

featureData, eSet-method (eSet), 16

featureData<- (featureData), 50

featureData<—-,eSet, AnnotatedDataFrame-method

(eSet), 16
featureNames, 51

featureNames, AnnotatedDataFrame-method

(AnnotatedDataFrame), 11

INDEX

featureNames, AssayData-method
(AssayData-class), 13

featureNames, eSet-method (eSet),
16

featureNames<- (featureNames), 51

87

initialize, eSet-method(eSet), 16
initialize,ExpressionSet-method
(ExpressionSet), 19
initialize, exprSet-method

(Deprecated), 45

featureNames<—, AnnotatedDataFrame-methodtialize,MultiSet-method

(AnnotatedDataFrame), 11
featureNames<—, AssayData—-method
(AssayData-class), 13
featureNames<—-, eSet-method
(eSet), 16
file.remove, 8
fvarLabels (featureData), 50
fvarLabels, eSet—-method (eSet), 16
fvarLabels<- (featureData), 50
fvarLabels<—, eSet—-method (eSet),
16
fvarMetadata (featureData), 50
fvarMetadata, eSet—-method (eSet),
16
fvarMetadata<- (featureData), 50

fvarMetadata<—,eSet,data.frame-method

(eSet), 16

geneCov (data:geneData), 43
geneCovariate (data:geneData), 43
geneData, 6
geneData (data:geneData), 43
geneNames (Deprecated), 45
geneNames, ExpressionSet-method
(Deprecated), 45
geneNames<- (Deprecated), 45

(MultiSet), 24
initialize,NChannelSet-method
(NChannelSet—-class), 26
initialize, phenoData-method
(Deprecated), 45
initialize, SnpSet-method
(SnpSet), 28
initialize,Versioned-method
(Versioned), 31
initialize,Versions—-method
(Versions), 34
initialize,VersionsNull-method
(VersionsNull), 33
isCurrent, 12, 18, 21, 23, 24, 29, 35, 52
isCurrent, ANY, ANY-method
(isCurrent), 52
isCurrent, MIAME, missing-method
(MIAME), 22
isCurrent,Versioned, character-method
(Versioned), 31
isCurrent, Versioned, missing-method
(Versioned), 31
isUnique, 53
isVersioned, 12, 18, 21, 23, 24, 29, 35, 54
isVersioned, ANY-method
(isVersioned), 54

geneNames<—, ExpressionSet, character-matgvedsioned, character-method

(Deprecated), 45
getExpData (Deprecated), 45
getExpData, eSet,character—-method
(Deprecated), 45
getObjectSlots (updateObject), 76
getPkgVigs, 6,51, 63

hybridizations (abstract), 52
hybridizations, MIAME-method
(MIAME), 22

initfun (abstract), 52

initfun, aggregator-method
(aggregator), 10

initialize, aggregator-method
(aggregator), 10

initialize, AnnotatedDataFrame-method
(AnnotatedDataFrame), 11

initialize, annotatedDataset-method
(Deprecated), 45

(isVersioned), 54
isVersioned, Versioned-method
(Versioned), 31

12e (copyEnv), 38

lcPrefix (lcSuffix),55

lcPrefixC (lcSuffix), 55

lcSuffix, 55

length, container-method
(container), 15

listLen, 56

listOrEnv (eSet), 16

listOrEnv-class (abstract), 52

locked (abstract), 52

locked, container-method
(container), 15

makeDataPackage, 21, 57
makeDataPackage, ANY-method
(makeDataPackage), 57

88 INDEX

makeDataPackage, ExpressionSet—-method pData,eSet-method (eSet), 16

(ExpressionSet), 19 pData<- (phenoData), 64
makeProbePackage, 41, 42 pData<-,AnnotatedDataFrame,data.frame-method
matchpt, 58 (AnnotatedDataFrame), 11
matrix, 4, 69 pData<-,eSet,data.frame-method
menu, 63 (eSet), 16
merge, 36 phenoData, 64
MIAME, 6, 14,22, 26, 36, 68 phenoData, eSet—-method (eSet), 16
MIAME-class, I, 18,45, 46 phenoData—-class (Deprecated), 45
MIAME-class, 16, 17 phenoData<- (phenoData), 64
MIAME-class (MIAME), 22 phenoData<-,eSet, AnnotatedDataFrame-method
mkScalar (ScalarObject-class), 71 (eSet), 16
multiassign, 59 preproc (MIAME), 22
MultiSet, 6,24 preproc, eSet-method (eSet), 16
MultiSet-class, I8 preproc, MIAME-method (MIAME), 22
MultiSet-class (MultiSet), 24 preproc<- (MIAME), 22

preproc<-, eSet-method (eSet), 16

Na, 69 preproc<—, MIAME-method (MIAME), 22
NChannelSet (NChannelSet-class), pubMedIds (abstract), |

26 pubMedIds, eSet-method (eSet), 16
NChannelset-class, 26 pubMedIds, MIAME-method (MIAME), 22
nchar, 55

pubMedIds<- (abstract), 1

ncol, AnnotatedDataFrame-method pubMedIds<-, eSet, character-method

(AnnotatedDataFrame), 11

. (eSet), 16
ncol,eSé;—method(eSetLl pubMedIds<-,MIAME, ANY-method
new.env, (MIAME), 22

normControls (abstract), 52

normControls, MIAME-method
(MIAME), 22

note, 60

notes, 61

notes,eSet-method (eSet), 16

notes, MIAME-method (MIAME), 22

notes<- (notes), 61

notes<—, eSet, ANY-method (eSet), 16

notes<-,MIAME, character-method

read.AnnotatedDataFrame, 13, 64, 66,
67

read.exprSet (Deprecated), 45

read.MIAME, 23, 66, 67, 67

read.pD (Deprecated), 45

read.phenoData (Deprecated), 45

read.table, 65-67

readExpressionSet, 66

readLines, 39, 66, 67

(MIAME), 22
notes<-,MIAME, list-method reporter, 43
(MIAME), 22 reporterNames (Deprecated), 45

reporterNames, eSet-method

numeric, 69
(Deprecated), 45

openPDF, 6, 61, 63 reporterNames<- (Deprecated), 45
openVignette, 6, 52, 62 reporterNames<-,eSet, character—-method
otherInfo (abstract), 52 (Deprecated), 45
otherInfo, MIAME-method (MIAME), 22 reverseSplit, 68

rowMax (rowQ), 70
package.description, 63 rowMedians, 69, 71
package.version, 6, 63 rowMedians, ExpressionSet-method
package_version, 31, 34 (rowMedians), 69
pData, 11 rowMedians, matrix—-method
pData (phenoData), 64 (rowMedians), 69
pData, AnnotatedDataFrame-method rowMin (rowQ), 70

(AnnotatedDataFrame), 11 rowQ, 70, 70

INDEX

rowQ, ExpressionSet, numeric-method
(rowQ), 70
rowQ,matrix, numeric-method

(rowQ), 70

sample.eSet (Deprecated), 45

sample.ExpressionSet, 6

sample.ExpressionSet
(data:sample.ExpressionSet),
44

sample.exprSet (Deprecated), 45

sample.MultiSet
(data:sample.MultiSet), 45

sampleNames (featureNames), 51

sampleNames, AnnotatedDataFrame—-method

(AnnotatedDataFrame), 11
sampleNames, AssayData-method

(AssayData—-class), 13
sampleNames, eSet—method (eSet), 16
sampleNames, NChannelSet-method

(NChannelSet-class), 26
sampleNames<- (featureNames), 51

89

show, 73

show, AnnotatedDataFrame-method
(AnnotatedDataFrame), 11

show, container-method
(container), 15

show, eSet-method (eSet), 16

show, MIAME-method (MIAME), 22

show, ScalarCharacter-method
(ScalarObject—class), 71

show, ScalarObject-method
(ScalarObject—-class), 71

show, Versioned-method
(Versioned), 31

show, Versions—-method (Versions),
34

show, VersionsNull-method
(VersionsNull), 33

SnpSet, 28

SnpSet-class, 4,6, 16, 18, 50, 51, 61, 64,
73,78

SnpSet-class (SnpSet), 28

split, 69

sampleNames<—-, AnnotatedDataFrame, ANY— mg;hogg 60

(AnnotatedDataFrame), 11
sampleNames<—, AssayData, ANY-method
(AssayData-class), 13

sampleNames<-,AssayData, list-method

(AssayData-class), 13
sampleNames<—, eSet, ANY-method
(eSet), 16

sampleNames<-,NChannelSet, list-method

(NChannelSet-class), 26
samples (MIAME), 22
samples, MIAME-method (MIAME), 22
sapply, 57
ScalarCharacter-class
(ScalarObject—-class), 71
ScalarInteger—class
(ScalarObject—-class), 71
ScalarLogical-class
(ScalarObject—-class), 71
ScalarNumeric-class
(ScalarObject—-class), 71
ScalarObject-class, 71
scan, 68
se.exprs (exprs), 49
se.exprs<- (exprs), 49
search, 51, 59
seD (data:geneData), 43
selectChannels, 72

storageMode, 73

storageMode, AssayData-method
(AssayData-class), 13

storageMode, eSet-method (eSet), 16

storageMode<- (storageMode), 73

storageMode<—, AssayData, character—-method
(AssayData—-class), 13

storageMode<—, eSet, character-method
(eSet), 16

strbreak, 74

strwrap, 74

subListExtract, 74

substring, 74

SW (eSet), 16

sys.frame, 59

testBioCConnection, 75
tkMIAME, 68
TRUE, 3, 69

unique, 54
updateObject, 12, 18, 21, 23, 24, 26, 29
76
updateObject, AnnotatedDataFrame-method
(AnnotatedDataFrame), 11
updateObject, ANY-method

selectChannels, NChannelSet, character-method (updateObject), 76

(NChannelSet-class), 26
selectSome, 72

updateObject, environment-method
(updateObject), 76

90

updateObject, eSet—-method (eSet),
16
updateObject, ExpressionSet-method
(ExpressionSet), 19
updateObject, list-method
(updateOb ject), 76
updateObject, MIAME-method
(MIAME), 22
updateObject, Versions-method
(Versions), 34
updateObjectFromSlots, 76
updateObjectFromSlots
(updateOb ject), 76
updateObjectTo, I8
updateObjectTo (updateObject), 76
updateObjectTo, ANY, ANY-method
(updateOb ject), 76
updateObjectTo, eSet,eSet-method
(eSet), 16
updateOldESet, I8, 24,78
updateOldMiame (Deprecated), 45
userQuery, 79

validMsg, 79
validObject, 76
varLabels (phenoData), 64

varLabels, AnnotatedDataFrame-method

(AnnotatedDataFrame), 11
varLabels, eSet—-method (eSet), 16
varLabels<- (phenoData), 64

varLabels<—, AnnotatedDataFrame-method

(AnnotatedDataFrame), 11
varLabels<—,eSet-method (eSet), 16
varMetadata, 11
varMetadata (phenoData), 64

varMetadata, AnnotatedDataFrame-method

(AnnotatedDataFrame), 11
varMetadata, eSet-method (eSet), 16
varMetadata<- (phenoData), 64

INDEX

Versions-class, 16, 21, 32
Versions-class (Versions), 34
VersionsNull, 33
VersionsNull-class, 32
VersionsNull-class, 32
VersionsNull-class

(VersionsNull), 33
vignette, 63

warning, 60

write.exprs (ExpressionSet), 19

write.exprs,ExpressionSet-method
(ExpressionSet), 19

writeLines, 39

varMetadata<—-, AnnotatedDataFrame,data.frame-method

(AnnotatedDataFrame), 11

varMetadata<-,eSet,data.frame-method

(eSet), 16
vector, 5, 69
Versioned, 6, 27, 31
Versioned-class, 30, 32, 34, 52, 54
Versioned-class, 54
Versioned-class (Versioned), 31
VersionedBiobase, 6, 27, 30
VersionedBiobase-class
(VersionedBiobase), 30
Versions, 26, 34
Versions—class, 31-33,53, 54,77

	abstract
	addVigs2WinMenu
	Aggregate
	annotatedDataFrameFrom-methods
	annotation
	anyMissing
	assayData
	Biobase-package
	biocReposList
	cache
	channelNames
	channel
	aggregator
	AnnotatedDataFrame
	AssayData-class
	class:characterORMIAME
	container
	eSet
	ExpressionSet
	MIAME
	MultiSet
	NChannelSet-class
	SnpSet
	VersionedBiobase
	Versioned
	classVersion
	VersionsNull
	Versions
	combine
	contents
	copyEnv
	copySubstitute
	createPackage
	data:aaMap
	data:geneData
	reporter
	data:sample.ExpressionSet
	data:sample.MultiSet
	Deprecated
	description
	dims
	dumpPackTxt
	esApply
	exprs
	featureData
	featureNames
	getPkgVigs
	abstract
	isCurrent
	isUnique
	isVersioned
	lcSuffix
	listLen
	makeDataPackage
	matchpt
	multiassign
	note
	notes
	openPDF
	openVignette
	package.version
	phenoData
	read.AnnotatedDataFrame
	readExpressionSet
	read.MIAME
	reverseSplit
	rowMedians
	rowQ
	ScalarObject-class
	selectChannels
	selectSome
	storageMode
	strbreak
	subListExtract
	testBioCConnection
	updateObject
	updateOldESet
	userQuery
	validMsg
	Index

