
Introduction to EBImage, an image processing and analysis toolkit for

R

Oleg Sklyar, Wolfgang Huber
osklyar@ebi.ac.uk

October 22, 2008

Contents

1 Introduction 1

2 Importing and exporting images 1

3 Displaying images and accessing the image data 2

4 Image processing 4

5 Colour modes 4

6 Creating images and further data manipulation 7

7 Image segmentation and image analysis 7

1 Introduction

In this manual we demonstrate the EBImage package. In creating this package, the application that we have
in mind is the analysis of sets of images acquired in cell-based RNAi or compound screens with automated
microscopy readout, and the extraction of numerical descriptors of the cells in these images. Relations between
the descriptor values and biological phenotypes are sought. Some of the choices we have made in the design of
the package reflect this application. This vignette tries to give a general overview of the package functionality,
it does not provide a recipe for the analysis of cell-based RNAi screens.

The package makes use of two external libraries for some of its functionality, ImageMagick and GTK+. In
particular, ImageMagick is used for image import and export, and we provide an interface to many of its image
processing capabilities. GTK+ provides facilities for the display of and user interaction with images. Reliance
on these external (to R and the EBImage package) libraries makes the installation of EBImage a bit more tricky
than than that of a self-contained package. Please see the vignette EBImage installation HOWTO for hints on
the installation.

2 Importing and exporting images

> library("EBImage")

1

mailto:osklyar@ebi.ac.uk

EBImage provides two functions to read images, readImage and chooseImage. They both allow users to specify
whether the result should be in grayscale or RGB mode. The chooseImage function provides a dialogue window
that lets you interactively choose an image from the file system. It is available if the package was compiled with
GTK+ support (this is always the case on Windows):

> x = chooseImage(TrueColor)

For programmatic use, the readImage function can read local files, or files on the internet via the HTTP or
anonymous FTP protocols. Multiple files can be loaded into a single object, an image stack. If the source image
has multiple frames they all will be read into a stack. Images and image stacks are stored in objects of class
Image:

> imgdir = file.path(system.file(package="EBImage"), "images")

> fG = dir(imgdir, pattern="_G.tif", full.names=TRUE)

> iG = readImage(fG[1], Grayscale)

> class(iG)

[1] "Image"
attr(,"package")
[1] "EBImage"

> dim(iG)

[1] 508 508 4

> fR = dir(imgdir, pattern="_R.tif", full.names=TRUE)

> iR = readImage(fR[1])

The images are 16-bit grayscale TIFFs and were measured at two different wavelengths corresponding to two
different stainings: DNA content measured in the green channel (suffix G) and a cytoplasmic protein in red
(suffix R).

Images can be read from remote URLs as in the following example:

> baseurl = "http://www.ebi.ac.uk/~osklyar/BioC2007/data"

> a = readImage(paste(baseurl, c("Gene1_R.tif", "Gene2_R.tif"), sep="/"))

The writeImage function can be used to write images to files.

> outdir = tempdir()

> writeImage(iR, file.path(outdir, "test.png"))

> compression(iR)

[1] "JPEG"

> writeImage(iR[,,1], file.path(outdir, "test.jpg"), quality=90)

> file.info(dir(outdir, full.names=TRUE))[,c(1,5)]

size ctime
/tmp/Rtmp53oigz/test-0.png 51665 2008-10-22 01:27:21
/tmp/Rtmp53oigz/test-1.png 65662 2008-10-22 01:27:21
/tmp/Rtmp53oigz/test-2.png 98917 2008-10-22 01:27:22
/tmp/Rtmp53oigz/test-3.png 105709 2008-10-22 01:27:22
/tmp/Rtmp53oigz/test.jpg 7341 2008-10-22 01:27:22

3 Displaying images and accessing the image data

The prefered method for displaying objects of class Image is the display function.

> display(iR)

> animate(iR)

display and animate create their own windows, using GTK+ or ImageMagick functions. Sometimes it may also
be useful to use the image method for the Image class. This method plots the image on the current R device.

2

0.0 0.2 0.4 0.6 0.8 1.0

0
10

00
0

30
00

0

Image histogram: 258064 pixels

Intensity

co
un

ts

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

60
00

0

Image histogram: 258064 pixels

Intensity

co
un

ts

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
0

60
00

0

Image histogram: 258064 pixels

Intensity

co
un

ts

0.0 0.2 0.4 0.6 0.8 1.0
0

20
00

0
40

00
0

60
00

0

Image histogram: 258064 pixels

Intensity

co
un

ts

Figure 1: Histogrammes of intensities of the four images in ’Gene1 R.tif’. Note that, in general, histogrammes
may be subject to binning artifacts, and smooth density estimates (as for example provided by the density
function from the stats package or the multidensity function from the geneplotter package) are often more
appropriate.

> image(iR[,,1])

One can access the data in the same way as for a 3-dimensional array, where the first two dimensions correspond
to x− and y−directions and applications can use the third dimension for the z-direction, for different channels,
for a time covariate, or indeed for any other experimental covariate. Alternatively, the size of the third dimension
can be set to 1, which corresponds to a simple 2-dimensional image. The Image class contains (inherits from)
the base R class array , and one can use all the statistical summaries and plotting functions for arrays.

> is(iG, "array")

[1] TRUE

For example, for the image stack iR, which consists of 4 images, we can draw histogrammes of the intensities
in each image (see Figure 1).

> par(mfrow=c(2,2))

> for(i in 1:4)

+ hist(iR[,,i], breaks=20, xlim=c(0,1))

Try additionally the following commands to explore the structure of the data:

> dim(iR)

> range(iR)

> print(iR)

> str(iR)

Try to do the same for iG, the images of the DNA content.

3

4 Image processing

One often distiguishes between image processings, operations that map images into transformed images, and
image analysis, operations that extract features of interest or compute numerical or categorical summaries.

One of the simplest image processing operations is normalization of the image intensities, i. e. adjusting the
intensities from different images such that they are on the same range,

x 7→ x− b
s

(1)

This is provided by the normalize function. The default target range is [0, 1], which corresponds to b = min{x},
s = max{x} − min{x}. The minimum and maximum can be computed either for each image separately, or
simultaneously for all images in a stack. Let us try the following two normalizations and compare the results.

> iRnns = normalize(iR, separate=FALSE)

> apply(iRnns, 3, range)

[,1] [,2] [,3] [,4]
[1,] 0.0000000 0.03076923 0.04615385 0.06923077
[2,] 0.2615385 0.51538462 1.00000000 0.94615385

> iRn = normalize(iR, separate=TRUE)

> apply(iRn, 3, range)

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 1 1 1 1

> iGn = normalize(iG, separate=TRUE)

More generally, on might also normalize not on range but on other distribution properties such as interquantile
ranges or other measures of location and scale.

Functions from ImageMagick are provided to manipulate images, such as enhance, contrast, despeckle
and denoise. Try them out on the images in iRn. Such manipulations can be useful for visualisation, but their
results are likely not appropriate for quantitative analyses.

Sometimes it is useful apply non-linear transformations. When displaying a grayscale image, this can improve
contrast in regions of high interest. For example, a power transformation x 7→ xα with 0 < α < 1 will enhance
contrast at lower intensities and suppress contrast at higher intensities. Transformations are sometimes also used
in model-based data anaylses. For example, when the noise component of a signal has a constant coefficient of
variation, rather than a constant standard deviation, then a logarithimc transformation is often convenient. Box-
Cox type transformations have many uses in regression analysis. Let us define several functions for transforming
the range [0, 1] into itself.

> modif1 = function(x) sin((x-1.2)^3)+1

> modif2 = function(x, s) (exp(-s*x) - 1) / (exp(-s) - 1)

> modif3 = function(x) x^0.5

The graphs of these functions are shown in Figure 2.
Transformations of image size and orientation can be performed using resize, rotate etc. The following

increases the size of the image by a factor of 1.3 or rotates it by 15 degrees:

> a1 = resize(iRn, dim(iRn)[1]*1.3)

> a2 = rotate(iRn, 15)

> display(a1)

> display(a2)

5 Colour modes

For visual representations, images can be converted between grayscale and true colour modes. A grayscale
image can also be converted into one of the RGB channels if required, and channels can be added together as
in the following example.

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

source intensity

ta
rg

et
 in

te
ns

ity

modif2(s=4)

modif2(s=−4)

sqrt

modif3

modif1

Figure 2: Non-linear transformations of the range [0, 1] onto itself.

> iRG = channel(iRn, "asred") + channel(iGn, "asgreen")

> display(iRG)

> display(channel(iRG, "gray"))

> display(channel(iRG, "asred"))

The image iRG is shown in Figure 3. The channel function can also be used to convert vectors containing
colour data from one format to another. Grayscale to RGB integers:

> ch = channel(c(0.2, 0.5), "rgb")

> ch

[1] 3355443 8421504

> sprintf("%X", ch)

[1] "333333" "808080"

Grayscale to X11 hexadecimal color strings:

> channel(c(0.2, 0.5), "x11")

[1] "#333333" "#808080"

Color strings to RGB:

> channel(c("red","green","#0000FF"), "rgb")

[1] 255 32768 16711680

24-bit RGB integers to grayscale:

> channel(as.integer(c(0x0000f0, 0x00f000, 0xf0000, 0x808080)), "gray")

[1] 0.28140688 0.55246815 0.00669871 0.50196078

5

Figure 3: The image iRG, a false-colour representation of the data in the two channels iRG and iG.

Figure 4: An image of uniform random numbers.

6

6 Creating images and further data manipulation

Images can be created either using the default constructor new for class Image or using a wrapper function,
Image:

> a = Image(runif(200*100), c(200,100))

Simple data manipulations can be performed by subsetting. For example, the following lines represent simple
thresholding:

> a = iRn

> a[a > 0.6] = 1.0

> a[a <= 0.6] = 0.0

On a grayscale image the values of 0 and 1 in the above example create a black-and-white mask. If now we
want to mark the background e.g. in blue and foreground in red, this can be achieved as follows:

> b = channel(a, "rgb")

> b[a >= 0.1] = channel("red", "rgb")

> b[a < 0.1] = channel("#114D90", "rgb")

> display(b)

Figure 5: Colour-marked binary mask.

7 Image segmentation and image analysis

The purpose of segmentation is to mask the objects of interest from the background prior to identifying them.
The quality of the segmentation will generally define the quality of the subsequent object indexing and feature
extraction. We need something better than the mask in Figure 5.

For further object indexing We will make use of the fact that we have two images corresponding to the same
location of the microscope – one of the nuclei staining and one for the cytoplasm protein. Assuming that every
cell has a nucleus we will use indexed nuclei (after segmentation, indexing and feature extraction) to index cells.
Therefore, we start start with segmenting nuclei, images iG.

The function thresh provides an implementation of an adaptive threshold filter that takes into account
inequalities in background intensity across the image. For iG the segmented image can be obtained as follows:

7

> mask = thresh(iGn, 15, 15, 0.002)

The parameters w, h of the function are related to the size of the objects we expect to find in the image:
objects of different size would require adjustment of these parameters. The offset is determined by the local
intensity differences. Try using different parameters and compare the segmentation. The quality of segmentation
is vital for good quality of object indexing and feature extraction, therefore it worth to spend time tuning
the parameters. For comparable results, images across the experiment should be segmented using the same
parameter set. This might lead to artifacts in segmentation in some cases, but will ensure that same types of
cells look similar in different images! The result of the above segmentation is shown in Figure 6.

Figure 6: Preliminary nuclei segmentation.

Some further smoothing of the mask is necessary. A useful set of instruments for this is provided by
mathematical morphology implemented in the morphological operators dilate, erode, opening and closing:

> mk3 = morphKern(3)

> mk5 = morphKern(5)

> mask = dilate(erode(closing(mask, mk5), mk3), mk5)

Here, several operators were used sequentially. You can observe the results of each of these operators separately
by looking at the intermediate images. You can also try different kernels, i. e. different parameters for the
function morphKern. The current result is shown in Figure 7.

As the next step, one needs to index regions in the segmented image that correspond to the different objects.
A classic algorithm for this is computing the distance map transform followed by the watershed transform (see
Figure 8):

> sG = watershed(distmap(mask), 1.5, 1)

Finally, when we are happy with the result of the watershed transform, we can remove nuclei that are either
too small or too dark or fall on the edge of the images, etc (see Figure 9):

> ft = hullFeatures(sG) ## need these for edge and perimeter

> mf = moments(sG, iGn) ## need these for intensity and size

> for (i in seq_along(ft)) ft[[i]] = cbind(ft[[i]], mf[[i]])

> sG = rmObjects(sG,

+ lapply(ft,

+ function(x)

8

Figure 7: Nuclei segmentation after smoothing and noise removal.

Figure 8: Nuclei segmentation by watershed (before artifact removal).

9

+ which(x[,"h.s"] < 150 | x[,"h.s"] > 10000 | x[,"int"] < 30 |

+ 0.4 * x[,"h.p"] < x[,"h.edge"])

+))

here h.s and h.p stand for the hull size and perimeter, h.edge for the number of pixels at the image edge and
int for the intensity of the region (as returned by hullFeatures and moments). Investigate the structure of ft
and mf and explain what kind of objects were removed.

What we have finally obtained is an IndexedImage for the nuclei, where each nucleus is given an index
from 1 to max(sG). One can now directly use functions like getFeatures or moments etc. to obtain numerical
descriptors of each nucleus.

Figure 9: Nuclei segmentation by watershed (after artefact removal).

In principle, the same distance-map/watershed algorithm could be used to segment the cells, however we
often find that neighbouring cells are touching and lead to segmentation errors. We can use the already
identified nuclei as seed points to detect corresponding cells – assuming that each cell has exactly one nucleus.
This method falls short of detecting multi-nuclear cells, but it improves the quality of detection for all other
cells tremendously. We start similarly to the nuclei segmentation, however instead of using watershed, we use
propagate, supplying it with an IndexedImage of the seed points (nuclei). The function implements an elegant
algorithm that produces a Voronoi segmentation using a metric that combines Euclidean distance and intensity
differences between different pixels in the image:

> mask = thresh(blur(iRn,4,1.5), 25, 25, 0.005)

> mask = erode(erode(dilate(mask,mk5), mk5), mk3)

> sR = propagate(iRn, sG, mask, 1e-5, 1.6)

A weighting factor is used in propagate to either give more weight to the Euclidean distance or otherwise to the
intensity-driven one. We use a very low value of 1e − 5 basically minimizing the effect of the Euclidean. Also
please note that we used the blur filter to obtain the original mask. In case of cells we use seed points and we
know where the cells are, therefore the mask we use is larger and smoother to accommodate more tiny settled
changed in the overall image of every individual cell. The result is shown in Figure 10.

Again, some artifacts need to be removed. In all consequent computations, the number of objects in an
indexed image (as obtained from watershed or propagate) is determined by finding the maximum value.
Consider that this value is N for sR. If the image contains pixels indexed with N , but is missing pixels with
some other indexes, smaller than N , the corresponding objects will be identified with 0 data, first of all 0 size. N
can be smaller than the original number of nuclei as it could happen that for some nuclei no cells were identified.
There can be many reasons for this: cells masked out or too small or too dark etc. In order to preserve the
1-t-1 match of nuclei to cells, max(sG) must be equal N , so we mask out all nuclei with indexes larger than N :

10

Figure 10: Cell segmentation by the propagate function (before artifact removal).

> for (i in 1:dim(sR)[3]) {

+ x = sG[,,i]

+ x[x > max(sR[,,i])] = 0.0

+ sG[,,i] = x

+ }

Now as we ensured the 1-to-1 match of nuclei to cells, we can remove cells that are too small or too large
to be plausible, are on the edge of the image, are too dark, etc. We also remove the corresponding nuclei (the
result is given in Figure 11):

> ft = hullFeatures(sR)

> mf = moments(sR, iRn)

> for (i in seq_along(ft)) ft[[i]] = cbind(ft[[i]], mf[[i]])

> index = lapply(ft,

+ function(x)

+ which(x[,"h.s"] < 150 | x[,"h.s"] > 15000 |

+ x[,"int"]/x[,"h.s"] < 0.1 |

+ 0.3 * x[,"h.p"] < x[,"h.edge"]

+))

> sR = rmObjects(sR, index)

> sG = rmObjects(sG, index)

See above for the notations of the column names in x.
Finally, having the indexed images for cells and nuclei, the full set of descriptors can be extracted using the

getFeatures function:

> sG = getFeatures(sG, iGn)

> sR = getFeatures(sR, iRn)

> nucl = do.call("rbind", features(sG))

> cells = do.call("rbind", features(sR))

> stopifnot(identical(dim(nucl), dim(cells)))

The resulting matrices have 210 rows (one for each of cell/nucleus) and 96 columns (one for each object descrip-
tor).

You can now try out the following visualisations, with the first one shown in Figure 12:

11

Figure 11: Cell segmentation by propagate (after artefact removal).

> rgb = paintObjects(sR, iRG)

> rgb = paintObjects(sG, rgb)

> ct = tile(stackObjects(sR, iRn))

> nt = tile(stackObjects(sG, iGn))

The result is shown in Figure 12.

12

Figure 12: Results of detection.

13

	Introduction
	Importing and exporting images
	Displaying images and accessing the image data
	Image processing
	Colour modes
	Creating images and further data manipulation
	Image segmentation and image analysis

