Introduction to the xps Package: Classes structure

Christian Stratowa

April, 2008

Contents

(1__Introduction| 1

2 XPS and ROOT] 1
... 2
... 2

B__XPS 5S4 classes| 2
B.1 TreeSet classl e 3
8.2 SchemeTreeSet classl e 4
B.3 ProcesSet classl. e 7
B.4 DataTreeSet classl o 7
[3.5 ExprTreeSet class| 9
B.6_CallTreeSet Class . . - « - ¢ v v v e e e 10
[3.7 ProjectInfoclass| 10
BR Filter clasd. . - - v v v v v 12
B.9 PreFilterclasdl. 12
B.10 UniFilter classl. e 14
B.11 FilterTreeSet classl 15
[3.12 AnalysisTreeSet class| L 16

1 Introduction

This document provides a tutorial on the class structures used in the xps package. The xps package
provides S4 class definitions and associated methods for raw intensity data, preprocessed intensity
data, expression measures, and detection call data for batches of Affymetrix expression or exon arrays.
Detailed information on functions, classes and methods can be obtained in the help files.

Since the main purpose of the S4 classes is to provide a link to and allow access to ROOT files and
the ROOT trees contained therein, it is important to understand the meaning of ROOT files and the ROOT
trees first.

2 XPS and ROOT

Package xps is based on two powerful frameworks, namely R and ROOT. ROOT(http://root.cern.ch) is
an object-oriented C++ framework that has been developed at CERN for distributed data warehousing
and data mining of particle data in the petabyte range. Data are stored as sets of objects in machine-
independent files, and a specialized class, called a ROOT tree, has been designed to store large quantities

of data, see The ROOT (2007)).

http://root.cern.ch

2.1 ROOT File

A ROOT file, C++ class TFile, is like a UNIX file directory. It can contain directories and objects
organized in unlimited number of levels. It is also stored in machine independent format. Thus it can
be considered to be the ROOT equivalent of an R environment. Just like an R environment a ROOT file
can be copied to any system directory and used from within any OS.

A ROOT file can store any C++ object like ROOT trees, but also any other object such as a text file.
For our purpose it is only important to know that ROOT trees can be stored in ROOT files.

2.2 ROOT Tree

ROOT trees, C++ class TTree, have been especially designed to store large quantities of same-class
objects. As simplest case, a ROOT tree can store data imported from tables, and thus can be considered
to be the ROOT equivalent of an R data.frame. A ROOT tree consists of branches and leaves, with each
leaf containing the data from one column of the imported data table.

The TTree class is optimized to reduce disk space and enhance access speed. When using a TTree,
you fill its branch buffers with leaf data and the buffers are written to disk when it is full. Branches,
buffers, and leaves are explained in: The ROOT [team| (2007)); here it is important to realize that each
object is not written individually, but rather collected and written a bunch at a time. This is where
TTree takes advantage of compression and will produce a much smaller file than if the objects were
written individually.

3 XPS S4 classes

Taking advantage of the features described above, package xps stores all data as ROOT trees in portable
ROOT files. The four main classes for Affymetrix oligonucleotide array data are:

SchemeTreeSet: Data describing microarray layout, probe information and metadata for genes are
stored as ROOT trees in ROOT scheme files, accessible from R as S4 class SchemeTreeSet objects.

DataTreeSet: This class provides the link to ROOT data files and the ROOT trees contained therein.
Data files contain the content of the raw CEL-files as ROOT trees. Additional data files can contain
the background-corrected intensities as well as the computed background intensities.

ExprTreeSet: Preprocessing of raw data, i.e. summarization and normalization, results in conversion
of probe level data to expression values. These data are stored as ROOT trees in ROOT expression
files. Class ExprTreeSet provides the link to the ROOT expression file and the ROOT trees contained
therein.

CallTreeSet: Results of MAS5 detection calls or DABG calls, respectively, and the corresponding
p-values are stored as ROOT trees in ROOT call files, accessible via class CallTreeSet.

All of these S4 classes are derived from the same virtual base class TreeSet.

The following classes are relevant for filtering and analysis of expression values:

PreFilter: This class allows the initialization of different non—specific filters and stores the relevant
parameters of each filter.

UniFilter: This class allows the initialization of different univariate filters and stores the relevant
parameters of each filter..

FilterTreeSet: This class provides a link between class ExprTreeSet, the filter class applied to this
EzprTreeSet and the resulting ROOT filter file and the ROOT mask tree contained therein.

AnalysisTreeSet: Univariate analysis allows the selection of differentially expressed genes. This class
provides a link between class FilterTreeSet containing the relevant filtering information, and the
resulting ROOT filter file and the ROOT trees contained therein.

The S4 classes PreFilter and UniFilter are derived from base class Filter while S4 classes Fil-
terTreeSet and AnalysisTreeSet are derived from the virtual base class TreeSet.

An optional S4 class, called Projectinfo, can be used to describe the relevant phenotypic and MIAME-
like project information.

3.1 TreeSet class

This is the virtual base class for all other S4 classes and provides the link to the ROOT file and the ROOT
trees contained therein for the corresponding subclass.
Function getClassDef can be used to get information on the slots and the inheritance information:

> library(xps)
> getClassDef ("TreeSet")

Virtual Class

Slots:
Name : setname settype rootfile filedir numtrees treenames
Class: character character character character numeric list

Known Subclasses:

Class "SchemeTreeSet", directly

Class "ProcesSet", directly

Class "DataTreeSet", by class "ProcesSet", distance 2
Class "ExprTreeSet", by class "ProcesSet", distance 2
Class "CallTreeSet", by class "ProcesSet", distance 2
Class "FilterTreeSet", by class "ProcesSet", distance 2
Class "AnalysisTreeSet", by class "ProcesSet", distance 2

The meaning of the slots is as follows:

setname: Object of class "character”, representing the name to the ROOT file subdirectory where the
ROOT trees are stored, usually one of DataTreeSet, PreprocesSet, CallTreeSet.

settype: Object of class "character”, describing the type of treeset stored in setname, usually one of
scheme, rawdata, preprocess.

rootfile: Object of class "character”, representing the name of the ROOT file, including the full path.

filedir: Object of class "character”, describing the full path to the system directory where rootfile
is stored.

numtrees: Object of class "numeric”, representing the number of ROOT trees stored in subdirectoy
setname.

treenames: Object of class "list”, representing the names of the ROOT trees stored in subdirectoy
setname.

3.2 SchemeTreeSet class

This class extends class TreeSet and allows access to the ROOT scheme trees, probe trees and annotation
trees. Furthermore, it contains certain array information (slot probeinfo) and allows access to the
array mask (slot mask), describing the probe type.

> getClassDef ("SchemeTreeSet")

Slots:

Name: chipname chiptype probeinfo mask setname settype
Class: character character list data.frame character character
Name: rootfile filedir numtrees treenames

Class: character character numeric list

Extends: "TreeSet"

In addition to the slots of TreeSet it contains the following slots:
chipname: Object of class "character”, representing the Affymetrix chip name.
chiptype: Object of class "character”, representing the chip tpye, either "GeneChip” or "ExonChip”.

probeinfo: Object of class "list”, representing chip information, including nrows, ncols, number of
probes, etc.

mask: Object of class "data.frame”. The data.frame can contain the mask used to identify the probes
as e.g. PM, MM, or control probes.

As an example, scheme.test3, described in Vignette "xps.pdf” contains the information for the
Affymetrix ‘Test3’ expression array:

> scheme.test3 <- root.scheme(paste(.path.package("xps"), "schemes/SchemeTest3.root",
+ sep = n/u))
> str(scheme.test3)

Formal class 'SchemeTreeSet' [package "xps"] with 10 slots
..0 chipname : chr "Test3"
..Q@ chiptype : chr "GeneChip"
..Q@ probeinfo:List of 8

rootfile : chr "/tmp/Rinst2746144865/xps/schemes/SchemeTest3.root"
filedir : chr "/tmp/Rinst2746144865/xps/schemes"

..$ nrows : int 126
..$ ncols : int 126
..$ nprobes : int 14552
..$ ncontrols : int 13
..$ ngenes : int 345
..$ nunits : int 358
..$ nprobesets: int 358

.. ..$ naffx : int O

..0@ mask :'data.frame': 0 obs. of O variables

..0 setname : chr "Test3"

..Q@ settype : chr "scheme"

..0

..0

..0@ numtrees : int 4

..0 treenames:List of 4
..$: chr "Test3.idx"
..$: chr "Test3.scm"
..$: chr "Test3.prb"
..$: chr "Test3.ann"

As this example demonstrates, the ROOT scheme file contains 4 ROOT trees, storing all necessary
GeneChip information, including the annotation. All trees can be exported as tables, and optionally
also imported as data.frame.

The ‘Unit’ tree with extension idz contains information about the processing units, i.e. the Affymetrix
probesets, such as an internal ‘UNIT_ID’, probeset names and number of cells:

> idx <- export(scheme.test3, treetype = "idx", outfile = "Test3_idx.txt",
+ as.dataframe = TRUE, verbose = FALSE)
> idx[10:16,]

UNIT_ID UnitName NumCells NumAtoms UnitType
10 -4 QC10 161 1 -5
11 -3 QC11 128 1 -12
12 -2 QC12 128 1 -11
13 -1 QC13 9 1 -13
14 0 Pae_16SrRNA_s_at 32 16 3
15 1 Pae_23SrRNA_s_at 32 16 3
16 2 PA1178_oprH_at 24 12 3

The ‘Scheme’ tree with extension scm provides the chip layout for the different probesets, i.e. the
(x,y)-coordinates for each probeset with a defined ‘UNIT_ID’:

> scm <- export(scheme.test3, treetype = "scm", outfile = "Test3_scm.txt",
+ as.dataframe = TRUE, verbose = FALSE)
> scm[1843:1848,]

UNIT_ID X Y Probelength Mask Atom ProbeBase TargetBase

1843 -1 62 63 25 -1 0 N N
1844 -1 62 64 25 -1 0 N N
1845 0 111 80 25 0 0 A A
1846 0 111 79 25 1 0 T A
1847 0 19 19 25 1 1 A T
1848 0 19 20 25 0 1 T T

As shown, this tree contains also a column (leaf) ‘Mask’, which assigns the probe type to each probe
on the array. For expression arrays, probe types are PM with msk=1, MM with msk=0, and control
probes with msk=-1. ‘Mask’ for exon arrays will be described elsewhere.

As default, slot mask is empty to save memory (especially when using exon arrays). It is easy to
add the ‘Mask’ to slot mask (and remove it, t00):

> scheme.test3 <- attachMask(scheme.test3)
> msk <- chipMask(scheme.test3)

> scheme.test3 <- removeMask(scheme.test3)
> msk[1843:1848,]

UNIT_ID X Y Mask

1843 -1 6263 -1
1844 -1 6264 -1
1845 0 111 80 0
1846 0 111 79 1
1847 0 19 19 1
1848 0 19 20 0

The ‘Probe’ tree with extension prb contains the nucleotide sequence for each PM oligonucleotide,
as well as the GC-content and the calculated melting temperature Tm:

> prb <- export(scheme.test3, treetype = "prb", outfile = "Test3_prb.txt",
+ as.dataframe = TRUE, verbose = FALSE)
> prb[1843:1848,]

ProbeSetID ProbeX ProbeY ProbelnterrogationPosition

1843 -1 62 63 -1
1844 -1 62 64 -1
1845 0 111 80 -1
1846 0 111 79 128
1847 0 19 19 174
1848 0 19 20 -1
ProbeSequence ContentGC Tm ProbeType
1843 N -1 -1 -1
1844 N -1 -1 -1
1845 N 14 73 1
1846 TGCCTAGGAATCTGCCTGGTAGTGG 14 73 1
1847 CGCTAATACCGCATACGTCCTGAGG 14 73 1
1848 N 14 73 1

Finally, the transcript ‘Annotation’ tree with extension ann contains the probeset annotation, such
as gene name and symbol:

> ann <- export(scheme.test3, treetype = "ann", outfile = "Test3_ann.txt",
+ as.dataframe = TRUE, verbose = FALSE)
> head(ann)

UNIT_ID ProbesetID
1 0 Pae_16SrRNA_s_at
2 1 Pae_23SrRNA_s_at
3 2 PA1178_oprH_at
4 3 PA1816_dnaQ_at
5 4 PA3183_zwf_at
6 5 PA3640_dnaE_at
GeneName GeneSymbol
1 <NA> <NA>
2 <NA> <NA>
3 PhoP/Q and low Mg2+ inducible outer membrane protein H1 precursor oprH
4 DNA polymerase III, epsilon chain dnaQ
5 glucose-6-phosphate 1-dehydrogenase zwf
6 DNA polymerase III, alpha chain dnaE

GeneAccession EntrezID Chromosome Cytoband Start Stop Strand

1 <NA> -1 NA <NA> -1 -1 ?
2 <NA> -1 NA <NA> -1 -1 ?
3 <NA> -1 NA <NA> -1 -1 ?
4 <NA> -1 NA <NA> -1 -1 ?
5 <NA> -1 NA <NA> -1 -1 ?
6 <NA> -1 NA <NA> -1 -1 ?

The ROQT scheme files for exon arrays contain additional tree types, see the help file 7validTreeType.

3.3 ProcesSet class

This is the common base class for subclasses DataTreeSet, ExprTreeSet, and CallTreeSet, respectively,
and contains the following slots:

> getClassDef ("ProcesSet")

Slots:

Name: scheme data params setname settype
Class: SchemeTreeSet data.frame list character character
Name: rootfile filedir numtrees treenames

Class: character character numeric list

Extends: "TreeSet"

Known Subclasses: "DataTreeSet", "ExprTreeSet", "CallTreeSet", "FilterTreeSet", "AnalysisTreeSet"

The additional slots are:
scheme: Object of class "SchemeTreeSet”, providing access to the ROOT scheme file.
data: Object of class "data.frame”. The data.frame can contain the data stored in ROOT data trees.
params: Object of class "list” representing relevant parameters.

The content of slot data depends on the type of subclass:

For subclass DataTreeSet slot data is reserved for the probe data, however, it is empty by default
to avoid potential memory problems with large datasets. For subclasses EzprTreeSet and CallTreeSet
slot data contains expression levels and detection p-values, respectively.

3.4 DataTreeSet class

Class DataTreeSet is usually created when importing raw CEL-files as ROOT trees into a ROOT data file, or
accessing an existing ROOT data file, using functions import.data or root.data, respectively. However,
certain preprocessing functions such as bgcorrect can also result in the creation of class DataTreeSet.
The slots are:

> getClassDef ("DataTreeSet")

Slots:
Name : bgtreenames bgrd projectinfo scheme data
Class: list data.frame ProjectInfo SchemeTreeSet data.frame

Name : params setname settype rootfile filedir

Class: list character character character character
Name: numtrees treenames

Class: numeric list

Extends:

Class "ProcesSet", directly
Class "TreeSet", by class "ProcesSet", distance 2

Following additional slots are defined for class DataTreeSet:
bgtreenames: Object of class "list”, representing the names of optional ROOT background trees.

bgrd: Object of class "data.frame”. The data.frame can contain background intensities stored in ROOT
background trees.

projectinfo: Object of class "ProjectInfo”, containing information about the project.

Slots bgtreenames and bgrd are reserved for optional background tree names and data, respectively.
Slot projectinfo allows to save optional project information defined in class ProjectInfo described
below. The project information will not only be stored in class DataTreeSet, but also in the ROOT data file
containing the raw data from the CEL-files, when using functions import.data or addData, respectively.

As an example, data.test3, described in Vignette "xps.pdf’ contains the information to access the
CEL-files from the ‘Test3’ expression array, which are stored as ROOT trees in ROOT data file DataT-
est3_cel.root:

> data.test3 <- root.data(scheme.test3, paste(.path.package("xps"),
+ "rootdata/DataTest3_cel.root", sep = "/"))
> str(data.test3)

Formal class 'DataTreeSet' [package "xps"] with 12 slots
..Q@ bgtreenames: list()

..Q@ bgrd :'data.frame': 0 obs. of O variables
..Q@ projectinfo:Formal class 'ProjectInfo' [package "xps"] with 15 slots
..0@ submitter : chr ""
..@ laboratory : chr ""
..Q contact : chr ""
..Q@ project : list O
..@ author 1 1list Q)
..Q@ dataset 1 1list Q)
..Q source : 1list O
..Q@ sample : 1list O
..@ celline : 1list O
..Q@ primarycell : list()
..Q@ tissue ¢ 1list Q)
..Q@ biopsy : 1list Q)
..Q@ arraytype : list()
..@ hybridizations:'data.frame': 0 obs. of O variables
..0 treatments :'data.frame': 0 obs. of O variables
..Q@ scheme :Formal class 'SchemeTreeSet' [package "xps"] with 10 slots

..Q@ chipname : chr "Test3"
..Q@ chiptype : chr "GeneChip"
..0 probeinfo:List of 8

..$ nrows : int 126
..$ ncols : int 126
..$ nprobes : int 14552
..$ ncontrols : int 13
..$ ngenes : int 345
..$ nunits : int 358
..$ nprobesets: int 358
.$ naffx : int O
mask :'data.frame': 0 obs. of 0 variables
setname : chr "Test3"
settype : chr "scheme"

rootfile : chr "/tmp/Rinst2746144865/xps/schemes/SchemeTest3.root"
filedir : chr "/tmp/Rinst2746144865/xps/schemes"
numtrees : int 4
treenames:List of 4
$: chr "Test3.idx"
..$: chr "Test3.scm"
$
$

©@ 0 0 b o 0

chr "Test3.prb"
.% : chr "Test3.ann"
data :'data.frame': 0 obs. of 0 variables

..0

..@ params 1 1ist O

..0 setname : chr "DataSet"

..0 settype : chr "rawdata"

..@ rootfile : chr "/tmp/Rinst2746144865/xps/rootdata/DataTest3_cel.root"
..@ filedir : chr "/tmp/Rinst2746144865/xps/rootdata"

..Q@ numtrees : int 4

..0 treenames :List of 4

.$: chr "TestAl.cel"
..$: chr "TestA2.cel"
..$: chr "TestBl.cel"
..$: chr "TestB2.cel"

As mentioned, slot data is initially empty to avoid memory problems with large datasets, especially
exon array datasets. Functions attachInten and removelInten allow to attach/remove these data,
respectively, as described in Vignette "xps.pdf”.

3.5 ExprTreeSet class

Class FExprTreeSet is obtained as result of preprocessing the raw data, i.e. summarization, or as result
of normalizing preprocessed data, respectively. It contains the expression levels in slot data. It has the
following slots:

> getClassDef ("ExprTreeSet")

Slots:
Name : exprtype normtype scheme data params
Class: character character SchemeTreeSet data.frame list

Name: setname settype rootfile filedir numtrees

Class: character character character character numeric
Name: treenames

Class: list

Extends:

Class "ProcesSet", directly
Class "TreeSet", by class "ProcesSet", distance 2

The additional slots are:
exprtype: Object of class “character”, representing the exression type, i.e. rma, mas5, mas4 or custom.
normtype: Object of class "character”, representing the normalization type, i.e. none, mean, median,
lowess,supsmu.

3.6 CallTreeSet class

Class CallTreeSet allows to access the Affymetrix detection calls and corresponding p-values, either
the MASSH detection calls or the detection above background (DABG) calls. It is obtained as result of
functions mas5.call or dabg.call, respectively. It has the following slots:

> getClassDef ("CallTreeSet")

Slots:

Name: calltype detcall scheme data params
Class: character data.frame SchemeTreeSet data.frame list
Name: setname settype rootfile filedir numtrees
Class: character character character character numeric
Name: treenames

Class: list

Extends:

Class "ProcesSet", directly
Class "TreeSet", by class "ProcesSet", distance 2

The additional slots are:
calltype: Object of class ”"character”, representing the call type, i.e. "masb” or "dabg”.

detcall: Object of class "data.frame”. The data.frame can contain the detection calls stored in ROOT
call trees.

Slot data contains the detection call p-values while slot detcall contains the detection calls.

3.7 ProjectInfo class

This class is a stand-alone supporting S4 class and allows to store phenotypic and MIAME-like project
information. It contains the following slots:

> getClassDef ("ProjectInfo")

10

Slots:

Name : submitter laboratory contact project
Class: character character character list
Name: author dataset source sample
Class: list list list list
Name: celline primarycell tissue biopsy
Class: list list list list
Name: arraytype hybridizations treatments

Class: list data.frame data.frame

submitter: Object of class “character”, representing the name of the submitter.
laboratory: Object of class “character”, representing the laboratory of the submitter.
contact: Object of class "character”, representing the contact address of the submitter.
project: Object of class "list”, representing the project information.

author: Object of class "list”, representing the author information.

dataset: Object of class "list”, representing the dataset information.

source: Object of class "list”, representing the sample source information.

sample: Object of class "list”, representing the sample information.

celline: Object of class "list”, representing the sample information for cell lines.
primarycell: Object of class "list”, representing the sample information for primary cells.
tissue: Object of class "list”, representing the sample information for tissues.

biopsy: Object of class "list”, representing the sample information for biopsies.
arraytype: Object of class "list”, representing the array information.

hybridizations: Object of class "data.frame”, representing the hybridization information for each
hybridization.

treatments: Object of class "data.frame”, representing the treatment information for each hybridiza-
tion.

This class must be created explicitely first using the constructor function ProjectInfo, before it
can be added to class DataTreeSet. Here is a simple example for data.test3:

> project <- ProjectInfo(submitter = "Christian", laboratory = "home",

+ contact = "email")

> projectInfo(project) <- c("TestProject", "20060106", "Project Type",

+ "use Test3 data for testing", "my comment")

> authorInfo(project) <- c("Stratowa", "Christian", "Project Leader",

+ "Company", "Dept", "cstrato.at.aon.at", "++43-1-1234", "my comment")
> datasetInfo(project) <- c("Test3Set", "MC", "Tissue", "Stratowa',

+ "20060106", "description", "my comment")

11

> sourceInfo(project) <- c("Unknown", "source type", "Homo sapiens",

+ "caucasian", "description", "my comment")

> primcellInfo(project) <- c("Mel31", "primary cell", 20071123,

+ "extracted from patient", "male", "my pheno", "my genotype",

+ "RNA extraction", TRUE, "NMRI", "female", 7, "months", "my comment")

> arrayInfo(project) <- c("Test3", "GeneChip", "description", "my comment")
> hybridizInfo(project) <- c(c("TestAl", "hyb type", "TestAl.CEL",

+ 20071117, "my prepl", "standard protocol", "A1", 1, "my comment"),

+ c("TestA2", "hyb type", "TestA2.CEL", 20071117, "my prep2",

+ "standard protocol", "A2", 1, "my comment"), c("TestB1",

+ "hyb type", "TestB1.CEL", 20071117, "my prepl", "standard protocol",
+ "B1", 2, "my comment"), c("TestB2", "hyb type", "TestB2.CEL",

+ 20071117, "my prep2", "standard protocol", "B2", 2, "my comment"))
> treatmentInfo(project) <- c(c("TestA1", "DMSO", 4.3, "mM", 1,

+ "hours", "intravenous", "my comment"), c("TestA2", "DMSO",

+ 4.3, "mM", 8, "hours", "intravenous", "my comment"), c("TestB1",

+ "DrugA2", 4.3, "mM", 1, "hours", "intravenous", "my comment"),

+ c("TestB2", "DrugA2", 4.3, "mM", 8, "hours", "intravenous",

+ "my comment"))

> show(project)

Project information:
Submitter: Christian
Laboratory: home
Contact: email
Information is available on: project, author, dataset, source, sample, primarycell, arraytype, hybr

3.8 Filter class
This is the base class for the S4 classes PreFilter and UniFilter.

> getClassDef ("Filter")

Slots:

Name: numfilters
Class: numeric

Known Subclasses: "PreFilter", "UniFilter"

The meaning of the slots is as follows:

numfilters: Object of class "numeric” giving the number of filters applied.

3.9 PreFilter class

Class PreFilter allows to apply different filters to class ExprTreeSet, i.e. to the expression level
data.frame data..

> getClassDef ("PreFilter")

Slots:

12

Name: mad cv variance difference ratio gap
Class: list list list list list list

Name: lothreshold hithreshold quantile prescall numfilters
Class: list list list list numeric

Extends: "Filter"

The meaning of the slots is as follows:
mad:Object of class "list” describing parameters for madFilter.
cv:Object of class "list” describing parameters for cvFilter.
variance:Object of class "list” describing parameters for varFilter.
difference:Object of class "list” describing parameters for diffFilter.
ratio:Object of class "list” describing parameters for RratioFilter.
gap:Object of class "list” describing parameters for RgapFilter.
hithreshold:Object of class "list” describing parameters for highFilter.
lothreshold:Object of class "list” describing parameters for lowFilter.
quantile:Object of class "list” describing parameters for quantileFilter.
prescall:Object of class "list” describing parameters for callFilter.

This class must be created explicitely using the constructor function PreFilter, and is added as
parameter filter to function prefilter. Here is an example, where all filters are initialized for
demonstration purposes only:

> prefltr <- PreFilter()

> madFilter(prefltr) <- c(0.5, 0.01)

> cvFilter(prefltr) <- c¢(0.3, 0, 0.01)

> varFilter (prefltr) <- c(0.6, 0.02, 0.01)

> diffFilter(prefltr) <- c(2.2, 0, 0.01)

> ratioFilter(prefltr) <- c(1.5)

> gapFilter(prefltr) <- ¢(0.3, 0.05, 0, 0.01)

> lowFilter (prefltr) <- c(4, 3, "samples')

> highFilter(prefltr) <- c(14.5, 75, "percent")
> quantileFilter(prefltr) <- c(3, 0.05, 0.95)

> callFilter(prefltr) <- c(0.02, 80, "percent")
> str(prefltr)

Formal class 'PreFilter' [package "xps"] with 11 slots
..0@ mad :List of 2

..$ cutoff : num 0.5

..$ epsilon: num 0.01

..0 cv :List of 3
..$ cutoff : num 0.3
..$ trim : num O
..$ epsilon: num 0.01

..@ variance :List of 3

13

..$ cutoff : num 0.6
..$ trim : num 0.02
..$ epsilon: num 0.01
..0@ difference :List of 3
..$ cutoff : num 2.2

..$ trim : num O
.. ..$ epsilon: num 0.01
..0 ratio :List of 1
.. ..$ cutoff: num 1.5
..0 gap :List of 4

..$ cutoff : num 0.3

..$ window : num 0.05

..$ trim : num O
.. ..% epsilon: num 0.01
..Q@ lothreshold:List of 3

..$ cutoff : num 4

..$ parameter: num 3
.. ..$ condition: chr "samples"
..0 hithreshold:List of 3

..$ cutoff : num 14.5

..$ parameter: num 75

..$ condition: chr "percent"
..Q@ quantile :List of 3

..$ cutoff : num 3

..$ loquantile: num 0.05
.. ..$%$ hiquantile: num 0.95
..Q@ prescall :List of 3

..$ cutoff : num 0.02

..$ samples : num 80

..$ condition: chr "percent"
..Q@ numfilters : num 10

3.10 UniFilter class

Class UniFilter allows to apply different unitest filters to class ExprTreeSet, i.e. to the expression level
data.frame data.

> getClassDef ("UniFilter")

Slots:
Name: foldchange prescall unifilter unitest numfilters
Class: list list list list numeric

Extends: "Filter"
The meaning of the slots is as follows:
foldchange:Object of class "list” describing parameters for fcFilter.
prescall:Object of class "list” describing parameters for callFilter.

unifilter:Object of class "list” describing parameters for unitestFilter.

14

unitest:Object of class "list” describing parameters for uniTest.

This class must be created explicitely using the constructor function UniFilter, and is added as
parameter filter to function unifilter. Here is an example, where all filters are initialized for
demonstration purposes only:

unifltr <- UniFilter()

fcFilter (unifltr) <- c(1.5, "both")

callFilter (unifltr) <- c(0.02, 80, "percent")

unitestFilter (unifltr) <- c¢(0.01, "pval")

uniTest (unifltr) <- c("t.test", "two.sided", "wy", 5000, 0, FALSE,
0.98, TRUE)

str(unifltr)

vV + VvV VVvyVv

Formal class 'UniFilter' [package "xps"] with 5 slots
..Q@ foldchange:List of 2
..$ cutoff : num 1.5
.. ..$ direction: chr "both"
..Q@ prescall :List of 3
..$ cutoff : num 0.02
..$ samples : num 80
.. ..% condition: chr "percent"
..Q@ unifilter :List of 2
..$ cutoff : num 0.01
.. ..$ variable: chr "pval"
..Q@ unitest :List of 8

..$ type : chr "t.test"
..$ alternative: chr "two.sided"
..$ correction : chr "wy"

..$ numperm : int 5000

..$m : num O

..$ paired : logi FALSE

..$ conflevel : num 0.98

.$ varequ : logi TRUE

..0 numfilters: num 2

3.11 FilterTreeSet class

Class FilterTreeSet is obtained as result of filtering an instance of class ExprTreeSet. It contains the
filter mask in slot data.

> getClassDef ("FilterTreeSet")

Slots:

Name : filter exprset callset scheme data
Class: Filter ExprTreeSet CallTreeSet SchemeTreeSet data.frame
Name: params setname settype rootfile filedir
Class: list character character character character
Name : numtrees treenames

Class: numeric list

15

Extends:
Class "ProcesSet", directly
Class "TreeSet", by class "ProcesSet", distance 2

In addition to the slots of classes ProcesSet and TreeSet it contains the following slots:
filter:Object of class "Filter" currently providing access to the PreFilter settings.
exprset:Object of class "ExprTreeSet" providing direct access to the ExprTreeSet used for filtering.
callset:Object of class "CallTreeSet" providing direct access to the optional CallTreeSet used for

filtering.

3.12 AnalysisTreeSet class

Class AnalysisTreeSet is obtained as result of filtering an instance of class FxprTreeSet using function
unifilter. It contains currently the results of the univariate analysis in slot data.

> getClassDef ("AnalysisTreeSet")

Slots:

Name: fltrset scheme data params setname
Class: FilterTreeSet SchemeTreeSet data.frame list character
Name: settype rootfile filedir numtrees treenames
Class: character character character numeric list
Extends:

Class "ProcesSet", directly
Class "TreeSet", by class "ProcesSet", distance 2

In addition to the slots of classes ProcesSet and TreeSet it contains the following slots:

fltrset:Object of class "FilterTreeSet" providing indirect access to the ExprTreeSet used and the
UniFilter settings.

References

The ROOT team. ROOT User Guide. Technical report, CERN, 2007. URL http://root.cern.ch/
root/doc/RootDoc.htmll

16

http://root.cern.ch/root/doc/RootDoc.html
http://root.cern.ch/root/doc/RootDoc.html

	Introduction
	XPS and ROOT
	ROOT File
	ROOT Tree

	XPS S4 classes
	TreeSet class
	SchemeTreeSet class
	ProcesSet class
	DataTreeSet class
	ExprTreeSet class
	CallTreeSet class
	ProjectInfo class
	Filter class
	PreFilter class
	UniFilter class
	FilterTreeSet class
	AnalysisTreeSet class

