An Introduction to the Oligo Package

Benilton Carvalho

March, 2007

1 Introduction

The oligo package is designed to support all microarray designs provided by
Affymetrix and NimbleGen: expression, tiling, SNP and exon arrays. As of
now, chip-specific packages are built via makePlatformDesign and transitioning
to the pdInfoBuilder package, which creates the data packages for the Affymetrix
SNP arrays.

2 Analyzing Affymetrix SNP Arrays
Genotyping can be performed using oligo and you will need:

¢ oligo and its dependencies;

e Chip specific data package, eg. pd.mappingb0k.xba240: package that con-
tains the array specifications and SNP annotation.

e CEL files.

We will start by loading the oligo package and importing the CEL files avail-
able on the hapmap100kxba package. An output directory should also be defined
and that is the location where the summary files, including genotype calls and
confidences are stored.

R> library("oligo")
R> library("hapmap100kxba")
R> pathCelFiles <- system.file("celFiles", package = "hapmapl100kxba')
R> fullFilenames <- list.celfiles(path = pathCelFiles,
full.names = TRUE)
R> outputDir <- file.path(getwd(), "crlmmTest")

The density of the SNP arrays increased in a way that it is not interesting to
store the intensity matrix in memory; efficient methods to handle this situations
have been developed and batches of SNPs are analyzed one at a time.

The genotyping algorithm implemented in oligo is described in [1]. The whole
process can be described in three steps:

1. Normalization against a reference distribution;
2. Summarization via SNPRMA;
3. Genotype calling via CRLMM.

The normalization step is done by equalizing the observed intensities ac-
cordingly to a reference distribution, based on the 270 Hapmap samples. These
samples are available to the public at http://www.hapmap.org. The normaliza-
tion step will remove systematic biases, which are not due to biological factors.

The SNPRMA algorithm is responsible for summarizing the data. The de-
sign of the SNP arrays is such that up to the 250K density, there are probes for
both alleles on both strands. On the SNP 6.0 platform, given a SNP, there are
probes only on one strand.

Therefore, for the designs up to 250K, SNPRMA will create summaries at the
SNP-Allele-Strand-level. For each SNP there are four numbers (04— ,0p_,04,05+),
which are proportional to the log-intensities in each of these combinations of
allele and strand (—: antisense; +: sense). They are represented by four ma-
trices: antisenseThetal, antisenseThetaB, senseThetalA and senseThetaB,
which are the components of the Snp@Set object. One can extract these objects
using accessors of the same name.

For the SNP 6.0 array, a similar approach is taken, but the summaries are
given at the SNP-Allele-level and there will be only (04,0p) estimates for each
SNP. An object of class SnpCnv@Set is returned and contains two matrices:
thetaA and thetaB. Accessors with the same name are provided.

Average intensities and log-ratios are defined as across allele and within
strand, ie:

As _ 0A,s ';‘ GB,S (1)

Ms = 9A,s - 93,57 (2)

where s defines the strand (antisense or sense). These quantities can be obtained
via getA() and getM methods, which return high-dimensional arrays with di-
mensions corresponding to SNP’s; samples and strands, respectively. These
measures are later used for genotyping.

The CRLMM algorithm can be applied on a Snp@Set or SnpCnv@Set object
in order to produce genotype calls. It involves running a mixture of regressions
via EM algorithm to adjust for average intensity and fragment length in the
log-ratio scale. These adjustments may take long time to run, depending on the
combination of number of samples and computer resources available.

R> crlmm(fullFilenames, outputDir, verbose = FALSE)

The crlmm method does not return an object to the R session. Instead, it
saves the objects to disk, as not all systems are guaranteed to meet the mem-
ory requirements that SnpCallSetPlus (for 100K and 500K arrays) or SnpCn-
vCallSetPlus (for SNP 5.0 and SNP 6.0 arrays) objects might need. For conve-
nience, the getCrlmmSummaries will read the information from disk and make
a SnpCallSetPlus or SnpCnvCallSetPlus object available to the user.

R> crlmmOut <- getCrlmmSummaries (outputDir)
R> calls(crimmOut) [1:5, 1:2]

SNP_A-1507972
SNP_A-1510136
SNP_A-1511055
SNP_A-1518245
SNP_A-1641749

3

W N W w

NA06985.CEL NA06991.CEL

W wwww

R> callsConfidence (crlmmQOut) [1:5, 1:2]

SNP_A-1507972
SNP_A-1510136
SNP_A-1511055
SNP_A-1518245
SNP_A-1641749

0.9999254
0.9999254
0.9999254
0.9997851
0.9997838

NA06985.CEL NA06991.CEL

0.9998893
0.9999254
0.9999254
0.9999254
0.9997551

R> crlmmCalls <- readSummaries("calls", outputDir)
R> crlmmConf <- readSummaries("conf", outputDir)
R> crlmmCalls[1:5, 1:2]

SNP_A-1507972
SNP_A-1510136
SNP_A-1511055
SNP_A-1518245
SNP_A-1641749

3

W N W w

R> crlmmConf[1:5, 1:2]

SNP_A-1507972
SNP_A-1510136
SNP_A-1511055
SNP_A-1518245
SNP_A-1641749

NA06985.CEL

0.9999254
0.9999254
0.9999254
0.9997851
0.9997838

NA06985.CEL NA06991.CEL

W wwww

NA06991.CEL
0.9998893
0.9999254
0.9999254
0.9999254
0.9997551

The genotype calls are represented by 1 (AA), 2 (AB) and 3 (BB). The
confidence is the predicted probability that the algorithm made the right call.

Summaries generated by the algorithm can also be accessed from the R
session. The options for summaries are “alleleA”, “alleleB”, “alleleA-sense”,
“alleleA-antisense”, “alleleB-sense”, “alleleB-antisense”. The options “alleleA”
and “alleleB” must be used only with SNP 5.0 and SNP 6.0 platforms. The
remaining options must be used with 50K and 250K arrays.

R> alleleAsense <- readSummaries("alleleA-sense",
outputDir) [1:5,]

R> alleleBsense <- readSummaries("alleleB-sense",
outputDir) [1:5,]

R> log.ratios.sense <- alleleAsense - alleleBsense

R> log.ratios.sense[, 1:2]

NA06985.CEL NA06991.CEL
SNP_A-1507972 -2.1105518 -2.074544
SNP_A-1510136 -2.3079444 -2.332064
SNP_A-1511055 -1.5782634 -1.495551
SNP_A-1518245 0.3572502 -1.528293
SNP_A-1641749 -1.6593009 -1.441162

2.1 Exploring the Annotation Package

The user who is willing to make deeper investigation using the annotations pro-
vided for each SNP array can use SQL queries to access more other information
that might not be directly exposed.

The example below demonstrates how to see the available tables, fields and
extract chromosome, physical location and cytoband for the first five SNP’s
(probes querying specific SNP’s have names starting with the string “SNP”).

R> conn <- db(pd.mapping50k.xba240)
R> dbListTables (conn)

[1] "featureSet" "mmfeature" "pm_mm"
[4] "pmfeature" "gcmmfeature" "qcpm_qcmm"
[7] "qcpmfeature" '"sequence" "sqlite_statl"

[10] "table_info"

R> dbListFields(conn, "featureSet')

[1] "fsetid" "man_fsetid" "affy_snp_id"
[4] "dbsnp_rs_id" "chrom" "physical_pos"
[7] "strand" "cytoband" "allele_a"
[10] "allele_b" "gene_assoc" "fragment_length"
[13] "dbsnp" "cnv"

R> sql <- "SELECT man_fsetid, chrom, physical_pos FROM featureSet WHERE man_fsetid LIKE 'SNI
R> dbGetQuery(conn, sql)

man_fsetid chrom physical_pos

1 SNP_A-1650338 2 168433267
2 SNP_A-1716667 19 40749462
3 SNP_A-1712945 19 53411226
4 SNP_A-1711654 21 31501701
5 SNP_A-1717655 1 15312743

References

[1] Benilton Carvalho, Henrik Bengtsson, Terence P Speed, and Rafael A
Irizarry. Exploration, normalization, and genotype calls of high density
oligonucleotide snp array data. Biostatistics, Dec 2006.

3 Details

This document was written using:
R> sessionInfo()

R version 2.7.0 (2008-04-22)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;I

attached base packages:
[1] splines tools stats graphics grDevices
[6] utils datasets methods base

other attached packages:
[1] pd.mapping50k.xba240_0.4.1 hapmapl00kxba_1.3

[3] oligo_1.4.0 oligoClasses_1.2.0
[6] affxparser_1.12.0 AnnotationDbi_1.2.0
[7] preprocessCore_1.2.0 RSQLite_0.6-8

[9] DBI_0.2-4 Biobase_2.0.0

