Basic infrastructure for using oligonucleotide microarray reporter
sequence information for preprocessing and quality assessment

Wolfgang Huber and Robert Gentleman

August 26, 2008

Contents
1 Overview 1
2 Using probe packages 2
2.1 Basic functions L e 2
2.1.1 Complementary SEqUENCE o it e e e e 2
2.1.2 Reverse seqUENCE ot e e e e e e 2
2.1.3 Matching sets of probes against each other 3
2.1.4 Basecontent e 3
2.2 Relating to the features of an AffyBatch 3
3 CombineAffyBatch 4
4 Some sequence related “preprocessing and quality” plots 6
5 Creating probe packages 7
5.1 For Affymetrix genechips L L 7
5.2 For other chiptypes e 8

1 Overview

This package provides some basic and simple tools for dealing with the oligonucleotide microarray reporter
sequence information in the Bioconductor probe packages. This information is used, for example, in the
gcrma package.

For general work with genomic sequences, this package is inadequate. Please refer to the
Biostrings package for that.

As an example, the package hgu95av2 provides microarray reporter sequences for Affymetrix’ HgU95a
version 2 genechip, and for almost all major Affymetrix genechips, the corresponding packages can be
downloaded from the Bioconductor website. If you have the reporter sequence information of a particular
chip, you can also create such a package yourself. This is described in section 5.

First, let us load the matchprobes package and some other packages we will use.

> library("matchprobes")

> library("affy")

> library("hgu95av2cdf")

> library("hgu9bav2probe")

2 Using probe packages

Help for the probe sequence data packages can be accessed through
> 7 hgu95av2probe

matchprobes is an infrastructure package. Using it requires basic familiarity with R and with the
design of the AffyBatch class in the affy package, Bioconductor’s basic container for Affymetrix genechip
data. One of the issues that you have to deal with is that the probe packages do not provide the reporter
sequences of all the features present in an AffyBatch. Some sequences are missing, some are implied; in
particular, the data structure in the probe packages does not contain explicitely contain the sequences
of the mismatch probes, since they are implied by the perfect match probes. Also, some other features,
typically harbouring control probes or empty, do not have sequences. This is the choice that Affymetrix
made when they made files with probe sequences available, and we followed it.

Practically, this means that the vector of probe sequences in a probe package does not align 1:1 with
the rows of the corresponding AffyBatch; you need to keep track of this mapping, and some tools for
this are provided and explained below (see Section 2.2). It also means that some functions from the affy
package, such as pm, cannot be used when the sequences of the probes corresponding to their result are
needed; since pm reports the intensities, but not the identity of the probes it has selected, yet the latter
would be needed to retrieve their sequences.

2.1 Basic functions

Let us look at some basic operations on the sequences.

2.1.1 Complementary sequence

> example (complementSeq)
cmplmS> seq <- c("AAACT", "GGGTT")

cmplmS> complementSeq(seq)
[1] "TTTGA" "CCCAA"

cmplmS> seq <- c("CGACTGAGACCAAGACCTACAACAG", "CCCGCATCATCTTTCCTGTGCTCTT")

cmplmS> complementSeq(seq, start=13, stop=13)
[1] "CGACTGAGACCATGACCTACAACAG" "CCCGCATCATCTATCCTGTGCTCTT"

2.1.2 Reverse sequence

> example (reverseSeq)
rvrsSq> w <- c("hey there", "you silly fool")

rvrsSq> reverseSeq(w)
[1] "ereht yeh" "loof yllis uoy"

rvrsSq> w <- "able was I ere I saw Elba"

rvrsSq> reverseSeq(w)
[1] "ablE was I ere I saw elba"

rvrsSq> rnal <- "UGCA"

rvrsSq> revcompRNA(rnal)
[1] "UGCA"

rvrsSqg> dnal <- "TGCA"

rvrsSq> revcompDNA (dnal)
[1] "TGCA"

2.1.3 Matching sets of probes against each other

> pm <- hgu95av2probe$sequence

> pmdup <- c(pm, pm)

> query <- hgu9bav2probe$sequence[21:23]
> m = matchprobes(query, pmdup)

> unlist (m)

matchl match2 match3 match4 matchb match6
21 201821 22 201822 23 201823

2.1.4 Base content

The base content (number of occurence of each character) of the sequences can be computed with the
function basecontent.

> bcpm <- basecontent (hgu95av2probe$sequence)
> head (bcpm)

AT CG
1 810 6
510 55
6 12 4 3
4 6 78
4 8 58
210 7 6

2.2 Relating to the features of an AffyBatch
> nr = hgu95av2dim$NROW

[1] 640
> nc = hgu95av2dim$NCOL
[1] 640

Each column of an AffyBatch corresponds to an array, each row to a certain probe on the arrays. The
probes are stored in a way that is related to their geometrical position on the array. For example, the
hgu95av2 array is geometrically arranged into 640 rows and 640 columns; we also call them the z- and
y-coordinates. This results in 640 x 640 = 409600 rows of the AffyBatch; we also call them indices. To

convert between z- and y-coordinates and indices, you can use the functions xy2indices and indices2xy
from the affy package.

The sequence data in the probe packages is addressed by their x and y—coordinates. Let us construct
a vector abseq that aligns with the rows of an hgu95av2 AffyBatch and fill in the sequences:

> abseq = rep(as.character(NA), nr*nc)

> ipm = with(hgu95av2probe, xy2indices(x, y, nr=nr))
> abseql[ipm] = pm

> table(is.na(abseq))

FALSE TRUE
201800 207800

The mismatch sequences are not explicitely stored in the probe packages. They are implied by the
match sequences, by flipping the middle base. This can be done with the function complementSeq. For
Affymetrix GeneChips the length of the probe sequences is 25, and since we start counting at 1, the
middle position is 13.

We compute imm, the indices of the mismatch probes, by noting that each mismatch has the same
z-coordinate as its associated perfect match, while its y-coordinate is increased by 1.

> mm <- complementSeq(pm, start=13, stop=13)
> cat(pm[1], mm[1], sep="\n")

TGGCTCCTGCTGAGGTCCCCTTTCC
TGGCTCCTGCTGTGGTCCCCTTTCC

> imm = with(hgu95av2probe, xy2indices(x, y+1, nr=nr))
> abseq[imm] = mm
> table(is.na(abseq))

FALSE TRUE
403600 6000

See Figures 3-5 for some applications of the probe sequence information to preprocessing and data quality
related plots.

3 CombineAffyBatch

In this section, we show how to combine the data from two different array types whose reporter sequences
are partially the same.

> library("hu6800cdf")
> library("hu6800probe")

Load the data.

f1 <- system.file("extdata", "118T1.cel", package="matchprobes")

f2 <- system.file("extdata", "CL2001032020AA.cel", package="matchprobes")

pdl <- new("AnnotatedDataFrame", data=data.frame(fromFile=I(f1), row.names="f1"))
pd2 <- new("AnnotatedDataFrame", data=data.frame(fromFile=I(f2), row.names="f2"))
x1 <- read.affybatch(filenames=f1, compress=TRUE, phenoData=pd1)

x2 <- read.affybatch(filenames=f2, compress=TRUE, phenoData=pd2)

vV V.V Vv VvV

f : HDDDDDE_D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 20 69

number of probes per probeset

Figure 1: The distribution of the number of common probes per probeset.

f1 and £2 contain the filenames of the CEL files. In practice, they will be vectors with many filenames per
array type, here, for demonstration, we only use one single CEL file per array type, which are provided
in the subdirectory extdata of the package.

Combine the data. For this to work it is required that the packages hu6800probe and hgu95av2probe
are installed.

> res <- combineAffyBatch(list(x1, x2), c("hu6800probe", "hgu95av2probe"), newcdf="comb")

package :hu6800probe hu6800probe
package:hgu9bav2probe hgu95av2probe
34431 unique probes in common

The function returns a list res with two elements: an AffyBatch data and a CDF enviroment newcdf.

\%

comb <- res$cdf
>z <- rma(res$dat)

First, let us look at the distribution of the number of common probes per probeset (see Figure 1).

prs <- mget(ls(comb), comb, ifnotfound=NA)
nrprobes <- sapply(prs, function(x) nrow(x))
barplot (table (nrprobes),
xlab="number of probes per probeset",
ylab="frequency")

+ + v Vv VvV

Let us also make scatterplots of the two combined arrays, first on the probe and then at the probe set
level (see Figure 2).

> png("matchprobes-scp.png", width=900, height=480)
> par (mfrow=c(1,2))

> plot(exprs(res$dat), main="after combine",

+ pch=".", asp=1, xlab="f1", ylab="f2", log="xy")
> plot(exprs(z), main="after RMA",

+ pch=".", asp=1, xlab="f1", ylab="f2")

> dev.off()

after combine after RMA

f2

T T T T T T T T T T T T
500 1000 2000 D000 10000 20000 50000 4 6 8 10 12 14

1 1

Figure 2: Comparison of the intensity data from common probes (left panel) and probesets (right panel)
of the two array platforms.

Here, we explicitely used the png device to write this plot to; this circuments the default choice of Sweave,
PDF, which can become cumbersomely large in size for feature-rich plots such as this one.

4 Some sequence related “preprocessing and quality” plots

The function basecontent counts the number of occurences of each of the four bases A, C, G, T in each
probe sequence.

> bc = basecontent (abseq)
> head(na.omit (bc))

A TCG
[1,] 6 298
[2,] 5 398
[3,] 6 397
[4,] 6 586
[5,] 4 687
[6,] 511 5 4

Let us define an ordered factor variable for GC content:

> GC = ordered(bc[,"G"] + bc[,"C"])
> colores = rainbow(nlevels(GC))

Figure 3 shows a barplot of the frequencies of counts in GC:
> barplot (table(GC), col=colores, xlab="GC", ylab="number")
Figure 4:

> boxplot (log2(exprs(x2)[,1]) ~ GC, outline=FALSE,
+ col=colores, , xlab="GC", ylab=expression(log[2] intensity))

30000 50000
| |

number

10000
|

SRy | |5 5 | |

0
|

|IIII__
15 17 19 21 23

Figure 3: Distribution of probe GC content. The height of each bar corresponds to the number of probes
with the corresponing GC content.

1 2 3 45 6 7 89 11 13

GC

Figure 5:

> png("matchprobes-p2p.png", width=900, height=480)
> plot(exprs(x2) [ipm,1], exprs(x2)[imm,1], asp=1, pch=".", log="xy",

+ xlab="PM", ylab="MM", col=colores[GC[ipm]])
> abline(a=0, b=1, col="#404040", 1ty=3)
> dev.off()

5 Creating probe packages

Probe packages are a convenient way for distributing and storing the probe sequences and related infor-
mation.

5.1 For Affymetrix genechips

In this section we see how a probe package can be created for Affymetrix genechips from the tabulator-
separated sequence files that can be obtained from the vendor (at http://www.affymetrix.com/support).
As an example, the file HG-U95Av2_probe_tab.gz is provided in the extdata subdirectory of the match-
probes package.

> filename <- system.file("extdata”, "HG-U95Av2_probe_tab.gz",
+ package="matchprobes")

> outdir <- tempdir()

> me <- "Wolfgang Huber <w.huber@dkfz.de>"

> species <- "Homo_sapiens"

> makeProbePackage ("HG-U95Av2",

+
+
+

datafile = gzfile(filename, open="r"),
outdir = outdir,
maintainer = me,

http://www.affymetrix.com/support

14
|

R R
e

-
- T !
~ -0 -
> - ! ' | f Il 1
= oo , o T
7} e T
f]:) ! | ' 1 : : Il '
E S - B
N [T S T e
E T
! |
© - S
- Q e
- ! : ! : ' : ' !
ﬁ;;ééééEEgg R
© - s S T _:_ _:_ o _:_ o+
T T
1 2 3 456 7 8 9 11 13 15 17 19 21 23

Figure 4: Boxplots of log, intensity stratified by probe GC content.

+ species = species,
+ version = "0.0.1",
+ force = TRUE)

Importing the data.

Creating package in /tmp/RtmpKtldRO/hgu95av2probe
Writing the data.

Checking the package.

Building the package.

[1] "hgu95av2probe"

> dir(outdir)

[1] "hgu95av2probe" "hgu9bav2probe_0.0.1.tar.gz"

5.2 For other chiptypes

To deal with different file formats and additional types of probe annotation data from public or in-house
databases, the function makeProbePackage offers a great deal of flexibility. The user can specify her own
import function through the argument importfun. By default, its value is getProbeDataAffy, a function
that reads tabular Affymetrix genechip sequence files. Import functions for other types of arrays can be
adapted from this prototype.

The help pages and R code contained in the produced packages are derived from a template directory
that obeys the usual R package conventions [1]. A prototype for such a directory is provided within the
package matchprobes. To facilitate the automated production of large numbers of similar packages, we
provide a text substitution mechanism similar to the one used in the GNU configure system.

The input parameters of an import function are

e a character string naming the array type

e the input data files

MM

20 100 200 200 1000 2000 5000 10000 20000

PM

Figure 5: Scatterplot of PM vs MM intensities, colored by probe GC content.

e a character string with the directory name of a package template directory, containing at least a file
DESCRIPTION, a directory man with a file QPKGNAMEQ.Rd, a directory data, and possible other
directories and files, conforming to the usual R package conventions.

e ... any sort of further parameters, as necessary.
The output of an import function is a named list with elements
e pkgname: a character string with the package name.

e dataEnv: an environment containing an arbitrary number of data objects; these make the core of
the package. Among these, there should be a data frame whose name is the value of pkgname with
a column sequence. This data frame may have other columns such as the z- and y-position of
the probes on the array, identifiers linking a probe to genomic databases, or its length and relative
position within the gene it represents. The objects in the environment will be saved as individual
.rda files of the same name into the data directory of the produced package. Documentation needs
to be provided for the columns of the data frame, as well as for the other objects.

e symVals: a named list, containing the symbol-value substitutions that are used in the text process-
ing. It must at least contain the elements

— ARRAYTYPE: name of the array

— DATASOURCE: a textual description of how the data were obtained. It should contain the URL,
or the name of the company / person.

For more details, please refer to the help files for the functions makeProbePackage and getProbe-
DataAffy. For an example, refer to the source code of getProbeDataAffy.

References
[1] R Foundation (1999). Writing R Extensions. http://www.r-project.org.

8

http://www.r-project.org

	Overview
	Using probe packages
	Basic functions
	Complementary sequence
	Reverse sequence
	Matching sets of probes against each other
	Base content

	Relating to the features of an AffyBatch

	CombineAffyBatch
	Some sequence related ``preprocessing and quality'' plots
	Creating probe packages
	For Affymetrix genechips
	For other chiptypes

