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1 Introduction

Newton et al. (2001) and Kendziorski et al. (2003) introduced the Gamma-
Gamma model to analyze microarray data, an elegant and parsimonious hi-
erachical model that allows for the borrowing of information between genes.
Rossell (2007) showed that the assumptions of this model are too simplistic,
which resulted in a rather poor fit to several real datasets, and developed
two extensions of the model: GaGa and MiGaGa. The gaga library imple-
ments the GaGa and MiGaGa generalizations, which can be used both to
find differentially expressed genes and to predict the class of a future sample
(e.g. given the mRNA measurements for a new patient, predict whether the
patient has cancer or is healthy).

We now briefly outline the GaGa and MiGaGa models. Let xij be the
expression measurement for gene i in array j, and let zj indicate the group
to which array belongs to (e.g. zj = 0 for normal cells and zj = 1 for cancer
cells). The GaGa models envisions the observations as arising from a gamma
distribution, i.e. xij ∼ Ga(αi,zj

, αi,zj
/λi,zj

) (λi,zj
is the mean), where αi,zj

and
λi,zj

arise from a gamma and an inverse gamma distribution, respectively:

λi,k|δi, α0, ν ∼ IGa(α0, α0/ν), indep. for i = 1 . . . n

αi,k|δi, β, µ ∼ Ga(β, β/µ), indep. for i = 1 . . . n

δi|π ∼ Mult(1, π), indep. for i = 1 . . . n. (1)

δ1 . . . δn are latent variables indicating what expression pattern each gene
follows (see Section 3 for more details). For example, if there are only two
groups δi indicates whether gene i is differentially expressed or not. The
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Bayesian model is completed by specifying priors on the hyper-parameters
that govern the hierarchy:

α0 ∼ Ga(aα0 , bα0); ν ∼ IGa(aν , bν)

β ∼ Ga(aβ, bβ); µ ∼ IGa(aµ, bµ)

π ∼ Dirichlet(p). (2)

The gaga library provides some default values for the prior parameters
that are a reasonable choice when the data has been normalized via the func-
tion just.rma from the R library affy Irizarry et al. (2005) or just.gcrma
from the R library just.gcrma. The MiGaGa model extends GaGa by spec-
ifying a mixture of inverse gammas for ν. Both models are fit using the
routine fit.gg: the argument nclust indicates the number of components
in the mixture (nclust=1 corresponds to the GaGa model).

In the remainder of this document we generate a simulated dataset and
we show how to analyze it with the routines provided with the gaga library.
In Section 2 we simulate a dataset based on the parameter estimates obtained
from the Armstrong dataset Armstrong et al. (2002), as described in Rossell
(2007). Section 3 shows how to fit the model via MCMC sampling and in
Section 4 we assess its goodness-of-fit. Finally, in Sections 5 and 6 we conduct
inference. Section 5 shows how to find differentially expressed genes, while
Section 6 addresses class prediction.

2 Simulating the data

We start by loading the library and simulating mRNA expression levels for
n=100 genes and 2 groups, each with 6 samples. We set the seed for random
number generation so that you can reproduce the results presented here. As
we shall see in the future sections, we use the first five samples from each
group to fit the model. We will then use the model to predict the class for
the sixth sample.

> library(gaga)

> set.seed(10)

> n <- 100

> m <- c(6, 6)

> a0 <- 25.5

> nu <- 0.109

> balpha <- 1.183

> nualpha <- 1683



> probpat <- c(0.95, 0.05)

> xsim <- sim.gg(n, m, p.de = probpat[2], a0, nu, balpha, nualpha)

The object xsim is a list with 3 components. x is a matrix containing the
expression levels for the 100 genes and 12 samples. a is a matrix containing
the gene-specific α parameters (a[,1] contains parameters for the first group,
a[,2] for the second), and l contains the gene-specific means λ.

> names(xsim)

[1] "x" "a" "l"

> dim(xsim$x)

[1] 100 12

> dim(xsim$a)

[1] 100 2

> dim(xsim$l)

[1] 100 2

Figure 1(a) shows the marginal distribution (kernel density estimate) of
the simulated gene expression levels. Figure 1(b) plots the simulated (α, λ)
pairs. The plots can be obtained with the following syntax:

> plot(density(xsim$x), xlab = "Expression levels", main = "")

> plot(xsim$l, xsim$a, xlab = "Mean", ylab = "1/sqrt(CV)")

3 Model fit

To fit the model we use the function fit.gg. First we need to specify a vector
groups that indicates the group to which each sample belongs to. Second,
we need to specify the gene expression patterns or hypotheses that we wish
to entertain. In our example, since we have two groups there really are only
two possible expression patterns:

Pattern 0 (null hypotheses): group 1 = group 2
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Figure 1: (a): marginal density of the simulated data; (b): plot of the simu-
lated (α, λ) pairs

Pattern 1 (alternative hypothesis): group 1 6= group 2.

More precisely, under pattern 0 we have that αi1 = αi2 and λi1 = λi2,
while under pattern 1 αi1 6= αi2 and λi2 6= λi2. We specify the patterns with
a matrix with as many rows as patterns and as many columns as groups. For
each row of the matrix (i.e. each hypothesis), we indicate that two groups
are equal by assigning the same number to their corresponding columns. For
example, in our two hypothesis case we would specify:

> groups <- rep(1:2, each = 5)

> patterns <- matrix(c(0, 0, 0, 1), 2, 2)

> patterns

[,1] [,2]

[1,] 0 0

[2,] 0 1

For illustration, suppose that instead we had 3 groups and 4 hypotheses,
as follows:

Pattern 0: GROUP 1 = GROUP 2 = GROUP 3

Pattern 1: GROUP 1 6= GROUP 2 = GROUP 3



Pattern 2: GROUP 1 = GROUP 2 6= GROUP 3

Pattern 3: GROUP 1 6= GROUP 2 6= GROUP 3

In this case we would specify

> patterns <- matrix(c(0,0,0,0,1,1,0,0,1,0,1,2),ncol=3,byrow=TRUE)

> patterns

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 1 1

[3,] 0 0 1

[4,] 0 1 2

That is, the second row indicates that under the second hypothesis groups
2 and 3 are equal, since they both have a 1 in their entries. The last row
indicates that they are all different by specifying a different number in each
entry.

Now, to fit the GaGa model to our simulated data we use fit.gg, with
nclust=1 (to fit the MiGaGa model we would set nclust to the number of
components that we want in the mixture). We remove columns 6 and 12
from the dataset, i.e. we do not use them for the fit so that we can evaluate
the out-of-sample behavior of the classifier built in Section 6. Here we use
the option trace=FALSE to prevent iteration information from being printed.
By default the routine performs B=1000 MCMC iterations, which is typically
enough for a GaGa model and it can be done reasonably fast.

> patterns <- matrix(c(0, 0, 0, 1), 2, 2)

> ggfit <- fit.gg(xsim$x[, c(-6, -12)], groups, patterns = patterns,

+ nclust = 1, trace = FALSE)

We can obtain iteration plots to visually assess the convergence of the
chain. The component mcmc of ggfit contains an object of type mcmc, as
defined in the library coda. Therefore, simply typing plot(ggfit$mcmc)

produces the plots in Figure 2 (only first plot shown). For more formal
convergence diagnostics, see the documentation of the library coda. We see
that convergence was reached very quickly.

> plot(ggfit$mcmc)

To obtain parameter estimates and the posterior probability that each
gene is differentially expressed we use the function parest. We discard the
first 100 MCMC iterations with burnin=100, and we ask for 95% posterior
credibility intervals with alpha=.05. The slot ci of the returned object
contains the credibility intervals. Note that they all include the true value.
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Figure 2: Plotting MCMC output



> ggfit <- parest(ggfit, x = xsim$x[, c(-6, -12)], groups, burnin = 100,

+ alpha = 0.05)

> ggfit

GaGa hierarchical model. Fit via MCMC (900 iterations kept)

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0: Group 1 = Group 2

Pattern 1: Group 1 !=Group 2

Hyper-parameter estimates

a0 nu balpha nualpha

20.742 0.112 1.295 1425.516

probclus

1

probpat.1 probpat.2

0.942 0.058

> ggfit$ci

$a0

2.5% 97.5%

15.45334 27.13702

$nu

2.5% 97.5%

0.1067497 0.1163545

$balpha

2.5% 97.5%

0.9419924 1.7545734

$nualpha

2.5% 97.5%

1148.298 1788.879

$probclus



[1] 1 1

$probpat

probpat.1 probpat.2

2.5% 0.8767555 0.01578948

97.5% 0.9842105 0.12324451

As an alternative, one can estimate the hyper-parameters via maximum
likelihood. This is achieved by specifying method=’EBayes’ when calling
fit.gg. Fitting the model via maximum likelihood is usually quicker, and
in our experience it delivers similar results to the Bayesian fit.

> ggfit.eb <- fit.gg(xsim$x[, c(-6, -12)], groups, patterns = patterns,

+ method = "EBayes")

Initializing parameters... Done.

Refining initial estimates... Done.

Starting EM algorithm...

Iter a0 nu balpha nualpha prob log-likelihood

1 20.93963 0.111481 1.317409 1404.693 0.940913 0.059087 1569.088

2 20.97746 0.111468 1.319855 1398.438 0.939806 0.060194 1569.090

3 20.97833 0.11149 1.320031 1398.539 0.939511 0.060489 1569.090

4 20.97833 0.11149 1.320031 1398.539 0.939436 0.060564 1569.090

> ggfit.eb <- parest(ggfit.eb, x = xsim$x[, c(-6, -12)], groups,

+ alpha = 0.05)

> ggfit.eb

GaGa hierarchical model. Fit via empirical Bayes

100 genes, 2 groups, 2 hypotheses (expression patterns)

The expression patterns are

Pattern 0: Group 1 = Group 2

Pattern 1: Group 1 !=Group 2

Hyper-parameter estimates

alpha0 nu balpha nualpha

20.978 0.111 1.32 1398.539

probclus

1



probpat1 probpat2

0.939 0.061

The parameter estimates are indeed similar to those obtained from the
fully Bayesian fit. The slot pp in ggfit and ggfit.eb contains a matrix
with the posterior probability of each expression pattern for each gene. For
example, the first gene has a posterior probability of 0.993 of following pattern
0 (i.e. being equally expressed) and a probability of 0.033 of following pattern
1 (i.e. being differentially expressed) under the fully Bayesian fit, and 0.034
under the maximum likelihood fit.

> dim(ggfit$pp)

[1] 100 2

> ggfit$pp[1, ]

[1] 0.96742117 0.03257883

> ggfit.eb$pp[1, ]

[1] 0.96633383 0.03366617

4 Checking the goodness of fit

To graphically assess the goodness of fit of the model, one can used prior-
predictive or posterior-predictive checks. The latter, implemented in the
function checkfit, are based on drawing parameter values from the posterior
distribution for each gene, and possibly using then to generate data values,
and then compare the simulated values to the observed data. The data
generated from the posterior predictive is compared to the observed data in
Figure 2(a). Figure 2(b)-(d) compares draws from the posterior of α and
λ with their method of moments estimate, which is model-free. All plots
indicate that the model has a reasonably good fit. The figures were generated
with the following code:

> checkfit(ggfit, x = xsim$x[, c(-6, -12)], groups, type = "data",

+ main = "")

> checkfit(ggfit, x = xsim$x[, c(-6, -12)], groups, type = "shape",

+ main = "")



> checkfit(ggfit, x = xsim$x[, c(-6, -12)], groups, type = "mean",

+ main = "")

> checkfit(ggfit, x = xsim$x[, c(-6, -12)], groups, type = "shapemean",

+ main = "", xlab = "Mean", ylab = "1/sqrt(CV)")

It should be noted, however, that posterior-predictive plots can fail to
detect departures from the model, since there is a double use of the data.
Prior-predictive checks can be easily implemented using the function sim.gg

and setting the hyper-parameters to their posterior mean.

5 Finding differentially expressed genes

The function findgenes finds differentially expressed genes, i.e. assigns each
gene to an expression pattern. The problem is formalized as minizing the false
negative rate, subject to an upper bound on the false discovery rate, say
fdrmax=0.05. In a Bayesian sense, this is achieved by assigning to pattern
0 (null hypothesis) all genes for which the posterior probability of following
pattern 0 is above a certain threshold Müller et al. (2004). The problem
is then to find the optimal threshold, which can be done parametrically or
non-parametrically through the use of permutations (for details see Rossell
(2007)). Here we explore both options, specifying B=1000 permutations for
the non-parametric option.

> d <- findgenes(ggfit, xsim$x[, c(-6, -12)], groups, fdrmax = 0.05,

+ parametric = TRUE)

> d.nonpar <- findgenes(ggfit, xsim$x[, c(-6, -12)], groups, fdrmax = 0.05,

+ parametric = FALSE, B = 1000)

Finding clusters of z-scores for bootstrap... Done

Starting 1000 bootstrap iterations...

> dtrue <- (xsim$l[, 1] != xsim$l[, 2])

> table(d$d, dtrue)

dtrue

FALSE TRUE

0 95 1

1 0 4

> table(d.nonpar$d, dtrue)
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Figure 3: Assessing the goodness of fit. (a): compares samples from the
posterior predictive to the observed data; (b): compares samples from the
posterior of α to the method of moments estimate; (c): compares samples
from the posterior of λ to the method of moments estimate; (d): as (b) and
(c) but plots the pairs (α, λ) instead of the kernel density estimates
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Figure 4: Estimated frequenstist FDR vs. Bayesian FDR
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We set the variable dtrue to indicate which genes were actually differen-
tially expressed (easily achieved by comparing the columns of xsim$l). The
parametric version declares 4 genes to be DE, all of them true positives. It
fails to find one of the DE genes. The non-parametric lists 5 genes as DE,
one of them being a false positive. It fails to find one of the DE genes. To
obtain an estimated frequentist FDR for each Bayesian FDR one can plot
d.nonpar$fdrest. The result, shown in Figure 3, reveals that setting the
Bayesian FDR at a 0.05 level results in an estimated frequentist FDR around
0.015. That is, calling findgenes with the option parametric=TRUE results
in a slightly conservative procedure from a frequentist point of view.

> plot(d.nonpar$fdrest, type = "l", xlab = "Bayesian FDR", ylab = "Estimated frequentist FDR")

6 Class prediction

We now use the fitted model to predict the class of the arrays number 6 and
12, neither of which were used to fit the model. We assume that the prior



probability is 0.5 for each group, though in most settings this will not be
realistical. For example, if groups==2 indicates individuals with cancer, one
would expect the prior probability to be well below 0.5, say around 0.1. But
if the individual had a positive result in some test that was administered
previously, this probability would have increased, say to 0.4.

Class prediction is implemented in the function classpred. The argu-
ment xnew contains the gene expression measurements for the new individ-
uals, x is the data used to fit the model and ngene indicates the number of
genes that should be used to build the classifier. It turns out that array 6
is correctly assigned to group 1 and array 12 is correctly assigned to group
2. classpred also returns the posterior probability that the sample belongs
to each group. We see that for the dataset at hand the posterior probability
of belonging to the wrong group is essentially zero. Similarly good results
are obtained when using setting ngene to either 1 (the minimum value) or to
100 (the maximum value). The fact that adding more gene to the classifier
does not change its performance is not surprising, since the classifier assigns
little weight to genes with small probability of being DE. We have observed
a similar behavior in many datasets. The fact that the classifier works so
well with a single is typically not observed in real datasets, where it is rare
to have a gene with such a high discrimination power.

> pred1 <- classpred(ggfit, xnew = xsim$x[, 6], x = xsim$x[, c(-6,

+ -12)], groups, ngene = 50, prgroups = c(0.5, 0.5))

> pred2 <- classpred(ggfit, xnew = xsim$x[, 12], x = xsim$x[, c(-6,

+ -12)], groups, ngene = 50, prgroups = c(0.5, 0.5))

> pred1

$d

[1] 1

$posgroups

[1] 1.000000e+00 1.858797e-17

> pred2

$d

[1] 2

$posgroups

[1] 1.831219e-17 1.000000e+00
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