
Extending flowQ: how to implement QA processes

F. Hahne B. Ellis

April 30, 2008

Abstract

flowQ provides infrastructure to generate interactive quality reports based on a unified
HTML output. The software is readily extendable via modules, where each module com-
prises a single QA process. This Vignette is a brief tutorial how to create your own QA
process modules.

1 Basic idea of flowQ’s QA reports

In flowCore, flow cytometry data is organized in flowFrames and flowSets. Usually, a flowSet
comprises one experiment or one staining panel of one particular experiemnt. The initial step
of all data analysis is typically a quality assessment (QA) check. Depending on the design of
the experiment, the measurement channels and the biological question, there are various levels
on which QA makes sense and also various different parameters that have to be checked.

In flowQ we tried to implement a framework that allows to create consise QA reports for
one or several flowSets and that is readily extendable using self-defined modules. The general
design of a flowQ QA process is:

� aggregator: a qualitative or quantitative value that indicates the outcome of a QA process
or of one of its subprocesses for one single flowFrame in the set.

� summary graph: a plot summarizing the result of the QA process for the whole flowSet .

� frame graphs plots visualizing the outcome of a QA process or of one of its subprocesses
for a single flowFrame (optional).

A single QA process may contain various subprocesses, for instance looking at each mea-
surement channel in a flowFrame separately, and each of these subprocesses may have its own
aggregator and/or graphs. However, one unified aggregator indicating the overall outcome of
the QA process is mandatory.

Abstractions for each of these building blocks are avaible as classes and for each class there
are constructors which will do the dirty work behind the scenes. All that needs to be provided
by the user-defined QA functions are file paths to the respective plots and lists of aggregators
indicating the outcome (based on cutoff values that have been computed before. For each of
these classes, there are writeLine methods, which create the appropriate HTML output. The
user doesn’t have to care about this step, a fully formated report will be generated when calling
the writeQAReport function.

1



2 Aggregators

There are several subclasses of aggregators, all inheriting from the virtual parent class qaAg-
gregator , which defines a single slot, passed. This slot is the basic indicator whether the
flowFrame has passes the particular quality check. More fine-grained output can be archived
by the following types of sub-classes (see their documentation for details):

� binaryAggregator : the most basic aggregator, indicating“passed”or“not passed”by color
coding.

� discreteAggregator : allows for three different states: “passed”, “not passes” and “warn”,
also coded by colors. Not that “warn” will set the passed slot to FALSE.

� factorAggregator : multiple outcome states. The factor levels are plotted along with color
coding for the overall outcome (“passed” or “not passed”).

� stringAggregator : arbitrary character string describing the outcome. Font color indicates
the overall outcome.

� numericAggregator : a numerical value describing the outcome. Currently, the value is
plotted as a character string, but this might change in the future. Font color indicates
the overall outcome.

� rangeAggregator : a numerical value within a certain range describing the outcome. A
horizontal barplot is produced with color indicating the overall outcome.

Aggregator objects can be created using either new or the constructor functions. E.g., the
following code creates instances of each of the six aggregator types:

> binaryAggregator()

Binary quality score passing the requirements

> discreteAggregator(2)

Discrete quality score not passing the requirements with state warn

2



> factorAggregator(factor("a", levels = letters[1:3]))

Factorized quality score passing the requirements of value=a

> stringAggregator("test", passed = FALSE)

Textual quality score not passing the requirements of value=test

> numericAggregator(20)

Numeric quality score passing the requirements of value=20

> rangeAggregator(10, 0, 100)

Range quality score passing the requirements of value=10

A special class aggregatorList exists that holds multiple aggregators, not necessarily of the
same type, and this is used for QA processes with several subprocesses. The constructor takes
an arbitrary number of qaAggregator objects, or a list of such objects. This class mainly exists
for method dispatch.

> aggregatorList(bin = binaryAggregator(FALSE), disc = discreteAggregator(1))

List of 2 aggregators

3 Storing images as qaGraphs

While aggregators indicate the general outcome of a QA process, or, at most, a single quan-
titative value, the amount of information they can provide is very limited. flowQ’s design
allows to include additional diagnostic plots, both on the level of the whole flowSet and for
each flowFrame individually. Smaller bitmap versions of the plots are used for the overview
page, and each image is clickable, opening a bigger vectorized version of the plot that is bet-
ter suited for detailed inspection. To take the burden of file conversion away from the user,
the class qaGraph was implemented, which stores single images. The class constructor takes
two mandatory arguments: fileName which is a valid path to an image file (either bitmap or
vectorized), and imageDir, which is a file path to the output directory where the image files
are to be stored. If you are planning to place the final QA report on a web server, you should
make sure, that this path is accessable. The safet solution is to chose a directory below the
root directory of the QA report, e.g., qaReport/images if the root directory is /codeqaReport.

You can control the final width of the bitmap version of the image through the optional
width argument, and empty qaGraph objects can be created by setting empty=TRUE. During
object instantiation, the file type is detected automatically and the image file will be converted,
resized and copied if necessary.

> tmp <- tempdir()

> fn <- file.path(tmp, "test.jpg")

> jpeg(file = fn)

> plot(1:3)

> dev.off()

3



null device
1

> idir <- file.path(tmp, "images")

> g <- qaGraph(fn, imageDir = idir)

> g

QA process image information

> qaGraph(imageDir = idir, empty = TRUE)

QA process image information

For the special case of QA processes with multiple subprocesses (e.g., individual plots for
each channel), there is a class qaGraphList and an associated constructor, which will take a
character vector of multiple file names. This class mainly exists for method dispatch and to
facilitate batch processing of multiple image files.

4 Information for a single frame: class qaProcessFrame

All the information of a QA process for a single frame has to be bundled in objects of class
qaProcessFrame. Again, a constructor facilitates instantiating these objects; the mandatory
arguments of the constructor are:

� frameID: a unique identifier for the flowFrame. Most of the time, this will be the sam-
pleName of the frame in the flowSet . The frame will be identified by this symbol in all
of the following steps and you should make sure that you use unique values, otherwise
the downstream functions will not work.

� summaryAggregator: an object inheriting from class qaAggregator indicating the overall
outcome of the process for this frame.

Further optional arguments are:

� summaryGraph: an object of class qaGraph providing a graphical summary of the QA
process for this frame.

� frameAggregators: an object of class aggregatorList . Each aggregator in the list in-
dicates the outcome of one single subprocess for this frame, e.g., for every individual
measurement channel.

� frameGraphs: an object of class qaGraphList . Each qaGraph in the list is a graphical
overview over the outcome of one single subprocess for this frame. Note that the length
of both frameAggregators and frameGraphs have to be the same if you want to use
them. Assuming that you don’t want to include images for one of the subprocesses, you
have to provide empty qaGraph objects (see above). It is not possible to omit aggregators
for subprocesses, because they are used to link to the repsective images.

4



� details: a list of additional information that you want to keep attached to the qaPro-
cessFrame. For example, this can be the values of a quality score that was computed in
order to decide whether the QA process has passed the requirements. Such information
can be useful to update aggregators later without reproducing the images (e.g., when a
cutoff value has been changed).

5 The whole QA process: class qaProcess

Now that we have all the information for the single frames together, we can proceed and
bundle things up in a unified object of class qaProcess. Again, the constructor has a couple of
mandatory arguments:

� id: a unique identifier for this QA process. This will be used to identify the process in
all downstream functions, which will not work unless it really is unique (assuming that
you want to combine multiple QA processes in one single report).

� type: A character scalar describing the type of the QA process. This might become
useful for functions that operate on objects of class qaProcess in a type-specific way
(e.g., updating agregators).

� frameProcesses: a list of qaProcessFrame objects. You have to make sure that the
identifier for each qaProcessFrame is unique and that the length of the list is equal to
the length of the flowSet .

Further optional arguments are:

� name: The name of the process that is used as caption in the output.

� summaryGraph: An object of class qaGraph summarizing the outcome of the QA process
for the whole frame. Although this is mandatory, we strongly recommend including such
a plot, as it provides a good initial overview.

The output of you own QA process function should always be an object of class qaProcess,
which can be used in the downstream functions to produce the quality assessment report. Most
of the time, the function would have a structure similar to the following:

1. iterate over frames to create the qaProcessFrame object, possibly with an additional level
of iteration for each subprocess (e.g. each channel). Each iteration involves creation of
at least one qaGraph and qaAggregator object.

2. create an qaProcessFrame object summarizing the process for the whole set.

3. bundle things up in a qaProcess object.

5


	Basic idea of flowQ's QA reports
	Aggregators
	Storing images as qaGraphs
	Information for a single frame: class qaProcessFrame
	The whole QA process: class qaProcess

