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1 Introduction

The edd function of edd 1.2 assists in exploratory data analysis of microarray expression
data. A HOWTO document is supplied with the edd package and provides a brief
treatment of use of the edd function. This document covers the computational and
statistical details.

The objective of edd is to deliver to the user a classification of shapes of gene-specific
distributions of expression over a collection of arrays. The primary input to edd is an
ExpressionSet. The classification is carried out as follows.

e Gene-specific expression vectors (rows of the ExpressionSet’s exprs content) are
transformed to zero median and unit MAD (median absolute deviation).



e A reference catalog of transformed distributions is constructed, defining the set of
distributional shapes of interest.

e Each transformed expression vector is associated with an element of the reference
catalog. (or with 'doubt’ or 'outlier’).

Options to edd that specify the methods of constructing catalogs or associating data
with catalog elements will be spelled out in this document.

Assessment of distributional shape is a common activity in exploratory data analysis,
carried out with boxplots, histograms, density estimation and other tools. The novel
problem in the microarray setting is to deal efficiently with thousands of distributions.
If a manageable number of ’classes’ of distributions can be identified, discovery and
inference should be enhanced.

In this document, we review some basic activities related to graphically depicting
distinct distributional shapes. Section [2 provides very elementary tools for plotting cu-
mulative distribution functions (CDFs), and for plots that facilitate contrasts of distribu-
tions (QQ and QQ difference plots). Section [3| discusses creation of reference catalogs of
distributions with distinct shapes. Section [4] describes application of pattern recognition
algorithms to the problem of distribution shape classification.

Note that this document spends considerable time on graphical considerations that
have become secondary in dealing with expression density diagnostics. HOWTO-edd
gives a more concise treatment of how to work directly with the software.

2 Graphics for assessment of distributional shape

A basic tool in our approach to classifying distributions is a method for depicting de-
parture from Gaussianity, or, more generally, depicting features of distributions so that
they may be qualitatively distinguished using simple graphics.

To begin, we present some cdf plots for a few familiar distributions. Each distribution
is transformed to have mean zero and unit median absolute deviation (MAD). This allows
us to focus on graphics that expose distributional 'shape’. Figure [1| presents discretized
CDF's for the transformed distributions.

Figure [2| provides QQnormal plots of the same distributions. The motivation is that
a 45 degree line is obtained for N(0,1), departures from 45 degree line are evidence of
nonGaussianity.

The QQ difference plots (Figures [3| and [4]) express departures from normality more
effectively — a horizontal line is obtained for the standard Gaussian distribution, and de-
partures from the horizontal line are easily detected and have systematic interpretation:

Formally, these ‘flat QQ-normal’ plots are defined as

[z,y] = [® 7 (p), y; — @' (p))],

with p; ~ card{y, < y;}/n. If y,; are approximately Gaussian, this graph is close to a
horizontal line at ordinate zero.
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Figure 1: CDF plots for 4 distributions transformed to median 0 MAD 1.
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Figure 2: QQ-normal plots for the transformed distributions.
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Figure 3: QQ difference plots.
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Figure 4: QQ difference plots, continued.
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Figure 5: Flat QQnormal plots for 1000 centered and rescaled realizations from each of

four parametric distributions.

To conclude this section, we apply the flat QQ normal plotting method to several sim-
ulated datasets to illustrate the efficacy of the transformation in detection of departures
from Gaussian distributional shape. See Figure [5]



3 Catalogs of distributional shapes

3.1 Underlying data structure

The eddDist class has been defined to encapsulate information on distributions that can
be used in edd.

> print(getSlots("eddDist"))

stub parms median mad tag plotlim

"character" "numeric" "numeric" "numeric" "character" "numeric"
latexTag
"character"

” N

The stub is a string that can be prepended with "p”, ”’d”, "r”, ”q” to obtain names of
R functions that compute cdf, density, samples, or quantiles from distributions. The
parms vector specifies the parameters of this distribution, it should be named numeric.
The median and mad are sometimes not computable analytically and are obtained by
simulation and stored here for reference. The tag slot holds a convenient string name
that should clearly indicate the distribution at hand, and latexTag uses mathematical
notation if necessary for use with latex rendering. The plotlim is a numeric 2-vector
prescribing the x limits for a plot of the density of the distribution.
A list of these objects is supplied with the library:

> print(names(eddDistList))

[1] llNOlll IIT3I| I|LN01I| “CSl” IIB82H IlUOlII IIB28II lIMIXNlII I|MIXN2|I

> print(eddDistList[1:2])

$NO1
An object of class "eddDist"
Slot "stub":
[1] "norm"
Slot "parms":
mean  sd
0 1

Slot "median':
(11 O

Slot "mad":
[1] 1



Slot "tag'":
(1] "N(O,1)"

Slot "plotlim":
[1] -3 3

Slot "latexTag":
(1] "$\\Phig"

$T3

An object of class "eddDist"
Slot "stub":

[1] "t "

Slot "parms":
df
3

Slot "median':
[1] O

Slot "mad":
[1] 1.15

Slot "tag":
[1] "t(3) ]

Slot "plotlim":
[1] -4 4

Slot "latexTag":
[1] ”$t_3$"

Visualization of a distribution can be accomplished with the plotED function.

> plotED(eddDistList[[3]])
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3.2 A catalog defined by parametric cdfs

The eddDistList is a catalog defined by parametric cdfs, because the R function given
by paste("p",stub(x),sep="") for eddDist x is a computable cdf. It may thus be
employed in KS testing of goodness of fit.

3.3 A catalog defined by transformed quantiles

The function makeCandmat.theor obtains quantiles from each distribution defined by
eddDist objects in the eddDistList parameter, transformed to have median 0 and mad 1.
The number of quantiles to be computed is given by the first argument. In application
this will usually match the dimension of the expression vectors.

> print (makeCandmat.theor (5, eddDistList[1:3]))

[,1] (.21 [,3] [,4] [,5]
NO1 ~-1.1797611 -0.4972006 0 0.4972006 1.179761
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T3 -1.2776114 -0.4805167

4805167 1.277611
LNO1 -0.7870998 -0.4451921 7

0 0.
0 0.7319457 2.560906

3.4 A catalog defined by multiple transformed realizations

The function makeCandmat.raw obtains samples from each distribution defined by ed-
dDist objects in the eddDistList parameter. The generator is constructed to sample
from the distribution after transformation to have median 0 and mad 1. The sample
size is determined by the first argument, and the number of representative samples to
be obtained for each eddDistList element is given in the second argument.

> print (makeCandmat.raw(5, 2, eddDistList[1:3]))

[,1] [,2] [,3] [,4] [,5]
N(0,1) 0.7426001 0.0882876 0.31816989 0.2813880 -1.522577540
N(0,1) -0.4401463 -0.8578448 -2.292575569 -0.4702933 -1.327945420
t(3) -0.9797446 -0.5492510 1.16588535 3.0358909 -0.007730938
t(3) 0.5653767 0.3355960 0.15888243 1.3628387 1.012049950

logN(0,1) -0.2728369 -0.6715695 -0.04145501 -0.4616498 -0.482657096
logN(0,1) -0.9943953 -0.3822850 0.85787122 0.1095978 0.039054194

4 edd: associating expression vectors with catalog
elements

The edd function is used to define catalog construction and to specify the method by
which expression vectors (rows of exprs(eset)) are classified.

4.1 Test-based association

An eddDist object contains sufficient information to allow the computation of the
ks.test function for general goodness of fit testing. The maxKSp function computes
the maximum p-value of these tests over all the elements of the eddDistList.

To compute a single p-value for the goodness of fit of a given expression vector to
the distributional shape specified in an eddDist object, the testVec method is used.

setMethod ("testVec", c("numeric","eddDist","logical"),
function(x,eddd,is.centered) {
if (is.centered) x <- Mad(eddd)*x + med(eddd)
argl <- list(x, CDFname(eddd))
if (length(Parms <- parms(eddd))>0)
for (j in 1:length(Parms)) argl[[2+j]] <- Parms[j]
do.call("ks.test", argl)
b
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The idea is that (if is.centered is TRUE) the data have been transformed to have
median 0 and mad 1. The data vector is transformed once more to have the same
median and mad as the parametric distribution specified in the eddDist object.

> x <- rnorm(50)
> print(testVec(x, NO1, FALSE))

One-sample Kolmogorov-Smirnov test

data: ¢(0.459185012766368, 2.26503300588352, -0.360868521595044, 0.936486690204549,
D = 0.1569, p-value = 0.1528
alternative hypothesis: two-sided

> print(testVec(x, LNO1, FALSE))

One-sample Kolmogorov-Smirnov test

data: ¢(0.459185012766368, 2.26503300588352, -0.360868521595044, 0.936486690204549,
D = 0.46, p-value = 3.369e-10
alternative hypothesis: two-sided

We see that the p value for the appropriate model (N(0,1)) is fairly high, and that for
lognormal is very small. To visualize the discrepancy, we have plotED:

> plotED(LNO1, data = x)

12
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To use test-based association with edd, specify method="test” and provide a thresh-
old that the maximum p value must exceed for a classification to occur. If no p value
exceeds the threshold, then no catalog member is a satisfactory match to the shape of
the expression density, and ’outlier’ is declared. [If two p-values exceeded the threshold
and were close to each other, we should declare ’doubt’. This is not yet handled.]

4.2 Ek-NN association

If edd is used with method="knn” and parameters k and 1 are provided, k-nearest neigh-
bor classification is performed, treating the expression vector and the elements of the
reference catalog as n-dimensional multivariate data. The tx parameter of edd deter-
mines that the order statistics of the expression vector and catalog elements are used (if
tx=sort), or that the comparisons are conducted after transformation of both data and
catalog elements to the flatQQnorm space (if tx=fatQQNormY).

13



4.3 Neural net association

If edd is used with method="nnet” and a size (and potentially other parameters) is
specified, then classification of the expression vectors occurs using prediction from a
neural net fit to the reference catalog. The role of the tx parameter is as described in
the previous subsection.

14
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