
A package to work with E. coli genome (and other
circular DNA entities)

Laurent

April 30, 2008

Introduction

This package is a mixture of data (close the the data in the meta-data packages) and of
code. The code was not included in other packages because:

� much is still to be done, much is likely to change.

� some features do are appear completely compatible with what is existing elsewhere

Things will settle in time. . .
The package contains data on Escherichia coli but can be used with other bacterial

genomes or plamids, provided one supplies the required data.
To load the package, do:

R> library(ecolitk)

E. coli data

Data related to E. coli are included in the package. Effort was made to follow the
convention used in the meta-data packages available on bioconductor. On should refer
to the help files for further details.

In the following example, we explain how to find the positions of the genes of the
operon lactose on the genome. A first step is to load needed data structures:

> data(ecoligenomeSYMBOL2AFFY)

> data(ecoligenomeCHRLOC)

This done, we want to find the genes with names like lac*. The base function grep pro-
vides a convenient way to do it. Because the data structures are centered on Affymetrix
probeset identifiers, an extra step is need to convert the gene name into the correspond-
ing identifier. The locations of the genes can then be extracted from the environment
ecoligenomeCHRLOC. We store them in the beg.end.

1

> lac.i <- grep("^lac", ls(ecoligenomeSYMBOL2AFFY))

> lac.symbol <- ls(ecoligenomeSYMBOL2AFFY)[lac.i]

> lac.affy <- unlist(lapply(lac.symbol, get, envir = ecoligenomeSYMBOL2AFFY))

> beg.end <- lapply(lac.affy, get, envir = ecoligenomeCHRLOC)

> beg.end <- matrix(unlist(beg.end), nc = 2, byrow = TRUE)

Primitives for circular entities

> par(mfrow = c(2, 2))

> n <- 10

> thetas <- rev(seq(0, 2 * pi, length = n))

> rhos <- rev(seq(1, n)/n)

> xy <- polar2xy(rhos, thetas)

> colo <- heat.colors(n)

> plot(0, 0, xlim = c(-2, 2), ylim = c(-2, 2), type = "n")

> for (i in 1:n) linesCircle(rhos[i]/2, xy$x[i], xy$y[i])

> plot(0, 0, xlim = c(-2, 2), ylim = c(-2, 2), type = "n")

> for (i in 1:n) polygonDisk(rhos[i]/2, xy$x[i], xy$y[i], col = colo[i])

> plot(0, 0, xlim = c(-2, 2), ylim = c(-2, 2), type = "n", xlab = "",

+ ylab = "")

> for (i in 1:n) polygonArc(0, thetas[i], rhos[i]/2, rhos[i], center.x = xy$x[i],

+ center.y = xy$y[i], col = colo[i])

> plot(0, 0, xlim = c(-2, 2), ylim = c(-2, 2), type = "n", xlab = "",

+ ylab = "")

> for (i in (1:n)[-1]) {

+ linesCircle(rhos[i - 1], col = "gray", lty = 2)

+ polygonArc(thetas[i - 1], thetas[i], rhos[i - 1], rhos[i],

+ col = colo[i], edges = 20)

+ arrowsArc(thetas[i - 1], thetas[i], rhos[i] + 1, col = colo[i],

+ edges = 20)

+ }

2

−2 −1 0 1 2

−
2

−
1

0
1

2

0

0

−2 −1 0 1 2

−
2

−
1

0
1

2

0
0

−2 −1 0 1 2

−
2

−
1

0
1

2

−2 −1 0 1 2

−
2

−
1

0
1

2

Plotting toolbox for circular genomes

Plot a (circular) genome

The function cPlotCircle draws a circular chromosome.

> cPlotCircle(main.inside = "E. coli - K12")

3

E. coli − K12

The drawing of the chromosome is thought as a first step when plotting informations
on a circular genome. The following example shows how to plot the locations of the genes
for the operon lactose on the genome. (the steps leading to their respective positions
were detailed above).

plot genes on a genome

We sort the genes the lac* genes discussed in an example above according to their
positions on the genome.

> lac.o <- order(beg.end[, 1])

> lac.i <- lac.i[lac.o]

> lac.symbol <- lac.symbol[lac.o]

> lac.affy <- lac.affy[lac.o]

> beg.end <- beg.end[lac.o,]

This done, we plot them as polygons:

4

> cPlotCircle(main.inside = "E. coli - K12", main = "lac genes")

> polygonChrom(beg.end[, 1], beg.end[, 2], ecoli.len, 1, 1.4)

lac genes

E. coli − K12

Zoom in can be
achieved by playing with xlim and ylim.

> l <- data.frame(x = c(0.47, 0.48), y = c(0.87, 0.9))

> cPlotCircle(xlim = range(l$x), ylim = range(l$y), main = "lac genes")

> polygonChrom(beg.end[, 1], beg.end[, 2], ecoli.len, 1, 1.007,

+ col = rainbow(4))

> legend(0.47, 0.9, legend = lac.symbol, fill = rainbow(4))

5

lac genes

lacA
lacY
lacZ
lacI

More plots

The following plot uses several different annotation sources.
It tries to show a spatial pattern for the genes annotated as - Macromolecules (cellular

constituent) biosynthesis -. In the following plot those genes are plotted according to
their position on the genome and according to their respective strand.

> library(Biobase)

> data(ecoligenomeBNUM2STRAND)

> data(ecoligenomeBNUM)

> data(ecoligenomeBNUM2MULTIFUN)

> data(ecoligenomeCHRLOC)

> affyids <- ls(ecoligenomeCHRLOC)

> affypos <- mget(affyids, ecoligenomeCHRLOC, ifnotfound = NA)

> bnums <- unlist(mget(affyids, ecoligenomeBNUM, ifnotfound = NA))

> strands <- unlist(mget(bnums, ecoligenomeBNUM2STRAND, ifnotfound = NA))

> multifun <- mget(bnums, ecoligenomeBNUM2MULTIFUN, ifnotfound = NA)

6

> f <- function(x) {

+ if (all(is.na(x)))

+ return(FALSE)

+ length(grep("^1\\.6", x) > 0)

+ }

> is.selected <- unlist(lapply(multifun, f))

> cPlotCircle(main.inside = "E.coli K12")

> beg.end <- matrix(unlist(affypos), nc = 2, byrow = TRUE)

> good <- strands == ">" & is.selected

> linesChrom(beg.end[good, 1], beg.end[good, 2], ecoli.len, 1.4,

+ col = "red", lwd = 3)

> good <- strands == "<" & is.selected

> linesChrom(beg.end[good, 1], beg.end[good, 2], ecoli.len, 1.5,

+ col = "blue", lwd = 3)

E.coli K12

7

More complex plot

The next example is more complex: we want to compute and display the GC content
over a fragment of the genome. The fragment is decided to be of size 1 million bases,
with the origin of replication (base zero) in the middle of the fragment. We limit the size
to lower the computing ressources needed to built this document and to demonstrate
how to perform something not so trivial.

cPlotCircle(main.inside = "E. coli - K12")

data(ecoli.m52.genome)

size.frag <- 1000000

fragment.r <- substring(ecoli.m52.genome, 1, size.frag/2)

fragment.l <- substring(ecoli.m52.genome, ecoli.len - size.frag / 2, ecoli.len)

fragment <- paste(fragment.l, fragment.r, sep="")

library(matchprobes)

tmp <- wstringapply(fragment, 400, 200, basecontent)

gccontent <- unlist(lapply(tmp, function(x) sum(x[3:4]) / sum(x)))

theta0 <- chromPos2angle(0 - size.frag/2, ecoli.len)

theta1 <- chromPos2angle(size.frag/2, ecoli.len)

linesCircle(1.5, col="gray", lty = 2)

linesArc(theta0, theta1, gccontent + 1)

Zooming can be performed by setting the xlim and ylim parameters of the function
cPlotCircle. In our example, there seem to be a CG rich island we would like to have
a closer look at:

par(mfrow=c(1,2))

cPlotCircle(main.inside = "E. coli - K12")

l <- data.frame(x=c(-0.7737990, -0.5286815), y=c(1.521509, 1.304151))

linesCircle(1.5, col="gray", lty = 2)

linesArc(theta0, theta1, gccontent + 1)

rect(l$x[1], l$y[1], l$x[2], l$y[2], border="red")

cPlotCircle(xlim=range(l$x), ylim=range(l$y))

box(col="red")

linesCircle(1.5, col="gray", lty = 2)

linesArc(theta0, theta1, gccontent + 1)

As the parameter SLIDE was set to 200, one can estimate from the close up that the
size of the island is roughly over 1500 base pairs.

8

Genes in operons

In procaryotes, some genes are bundled in operons. This means that a some genes
are physically located near each others on the genome, and that they are transcribed1

together. Complex mecanisms can regulate the translation2. Microarrays are designed
to measure the relative abundance of transcripts, therefore genes of the same operon
should have the same expression level.

First one has to find the Affymetrix identifiers for the genes known to be in operons:

> library(Biobase)

> data(ecoligenome.operon)

> data(ecoligenomeSYMBOL2AFFY)

> tmp <- mget(ecoligenome.operon$gene.name, ecoligenomeSYMBOL2AFFY,

+ ifnotfound = NA)

> ecoligenome.operon$affyid <- unname(unlist(tmp))

> ecoligenome.operon <- subset(ecoligenome.operon, !is.na(affyid))

For convenience, the Affymetrix probe set identifiers are stored in the data.frame. As
an exercise, the reader can write the few lines of code needed to plot the operon on the
genome (see above for plotting examples).

Once this done, grouping the Affymetrix identifiers according to the operon they
belong to is done simply:

> attach(ecoligenome.operon)

> affyoperons <- split(affyid, operon.name)

> detach(ecoligenome.operon)

> affyoperons[18:22]

$cai

[1] "caiT_b0040_st" "caiA_b0039_st" "caiB_b0038_st" "caiC_b0037_st"

[5] "caiD_b0036_st" "caiE_b0035_st"

$carAB

[1] "carA_b0032_st" "carB_b0033_st"

$celABCDF

[1] "celA_b1738_st" "celB_b1737_st" "celC_b1736_st" "celD_b1735_st"

[5] "celF_b1734_st"

$cheRBYZ

[1] "tar_b1886_st" "tap_b1885_st" "cheR_b1884_st" "cheB_b1883_st"

1The transcription is the copy of DNA into RNA
2The translation is the making of a protein from RNA

9

[5] "cheY_b1882_st" "cheZ_b1881_st"

$chpSB

[1] "chpS_b4224_st" "chpB_b4225_st"

Since we are going to use Affymetrix data, loading the affy package is needed:

> library(affy)

A bioconductor package of experimental E.coli data is used:

> library(ecoliLeucine)

> data(ecoliLeucine)

First, one should normalize the data:

> abatch.nqt <- normalize(ecoliLeucine, method = "quantiles")

The summary statistics for a probe set can be obtained simply:

> names(affyoperons)[18]

[1] "cai"

> eset <- computeExprSet(abatch.nqt, pmcorrect.method = "pmonly",

+ summary.method = "medianpolish", ids = affyoperons[[18]])

6 ids to be processed

| |

|####################|

> operons.eset <- computeExprSet(abatch.nqt, pmcorrect.method = "pmonly",

+ summary.method = "medianpolish", ids = unlist(affyoperons))

499 ids to be processed

| |

|####################|

We assumed that genes within operons should be all differentially expressed, or all
not differentially expressed.

> library(multtest)

> my.ttest <- function(x, i, j) {

+ pval <- t.test(x[i], x[j])$p.value

+ return(pval)

+ }

10

> is.lrpplus <- pData(operons.eset)$strain == "lrp+"

> is.lrpmoins <- pData(operons.eset)$strain == "lrp-"

> operons.ttest <- esApply(operons.eset, 1, my.ttest, is.lrpplus,

+ is.lrpmoins)

> operons.ttest.adj <- mt.rawp2adjp(operons.ttest, "BY")$adjp

> operons.diff.expr <- operons.ttest.adj < 0.01

One needs a little bit of bookkeeping to know what belongs to which operon. We
can build a list of indexes to know what belongs to where:

> operons.i <- split(seq(along = operons.ttest), ecoligenome.operon$operon.name)

The thrill is then to see if the results for differential expression (or non-differential
expression) are homogeneous among the genes within the same operon. . .

11

