
Description of the affyPara package:
Parallelized preprocessing methods for

Affymetrix Oligonucleotide Arrays

Markus Schmidberger Ulrich Mansmann

April 30, 2008

Contents

1 Abstract 3

2 Changes to previous Versions 3
2.1 Version 0.99.2 . 3
2.2 Version 0.99.0 . 3
2.3 Version 0.3.0 . 3
2.4 Version 0.2.0 . 4
2.5 Version 0.1.0 . 4

3 Introduction 4
3.1 Requirements . 4
3.2 Loading of package . 5
3.3 Starting and stopping cluster 5
3.4 Inputdata: CEL Files or AffyBatch 5
3.5 Background Correction . 6

3.5.1 Use Background Correction Para 7
3.6 Normalization . 7

3.6.1 Use Quantile Normalization Para 7
3.7 Summarization . 8

3.7.1 Use Summarization Para 8
3.8 Complete Preprocessing . 9

1

3.8.1 Use Preprocessing Para 9
3.8.2 Use RMA Para . 10

3.9 Distributing data . 11
3.10 Test if results are equal to serialized methods 11

4 Results and discuccion 12

2

1 Abstract

The affyPara package is part of the Bioconductor1 [1] project. The affyPara
package extends the affy package. The affy package is meant to be an exten-
sible, interactive environment for data analysis and exploration of Affymetrix
oligonucleotide array probe level data. For more details see the affy vignettes
or [2].

The affyPara package contains parallelized preprocessing methods for
high-density oligonucleotide microarray data. Partition of data could be done
on arrays and therefore parallelization of algorithms gets intuitive possible.
The partition of data and distribution to several nodes solves the main mem-
ory problems caused by the AffyBatch and accelerates the methods [5].

This document was created using R version 2.7.0 and versions 1.18.0 and
0.2-9 of the packages affy and snow respectively.

2 Changes to previous Versions

2.1 Version 0.99.2

� Compilation error in vignette removed

� Vignette extended

� Object.type as input removed from all functions

2.2 Version 0.99.0

� Finalizing for BioConductor release.

� Code cleaning.

2.3 Version 0.3.0

� Documentation added.

� Function rmaPara added.

� Modularization.

1http://www.bioconductor.org/

3

http://www.bioconductor.org/

2.4 Version 0.2.0

� Testcode implemented and code testing -> several small bugs fixed

2.5 Version 0.1.0

� Implementation / parallelization of funtions ...

– bgCorrectPara

– normalizeAffyBatchConstantPara, normalizeAffyBatchInvari-
antsetPara, normalizeAffyBatchQuantilesPara

– computeExprSetPara

– preproPara

– distributeFiles, removeDistributedFiles

3 Introduction

The functions in the affyPara package have the same functionality then the
functions in the affy package. For details see the affy vignettes. The affy-
Para package contains parallelized preprocessing methods for high-density
oligonucleotide microarray data.

The package is designed for large numbers of microarray data and solves
the main memory problems caused by the AffyBatch at only one workstation
or processor. It is very difficult to define a concrete limit for a large number
of data, because this strongly depends on the computer system (architec-
ture, main memory, operating system). A computer cluster and the affyPara
package should be used when working with more than 200 microarrays. The
partition of data and distribution to several nodes solves the main memory
problems (at one workstation) and accelerates the methods. Parallelization
of existing preprocessing methods produces, in view of machine accuracy, the
same results as serialized methods.

3.1 Requirements

The affyPara package requires the affy and snow package. From the affy
package several subfunctions for preprocessing will be used. The snow pack-
age [4] will be used as interface to a communication mechanism for parallel

4

computing. In the snow package three low level interfaces have been imple-
mented, one using PVM via the rpvm package by Li and Rossini, one using
MPI via the Rmpi [7] package by Hao Yu, and one using raw sockets that may
be useful if PVM and MPI are not available. For more details see the litera-
ture or the webpage http://www.cs.uiowa.edu/˜luke/R/cluster/cluster.html.

3.2 Loading of package

The first thing you need to do is load the package.

R> library(affyPara)

3.3 Starting and stopping cluster

After loading the library the computer cluster has to be started. Starting a
workstation cluster is the only step in using a cluster that depends explic-
itly on the underlying communication mechanism. A cluster is started by
calling the makeCluster function, but the details of the call depending on
the type of cluster. PVM and MPI clusters may also need some prelimi-
nary preparations to start the systems. For some examples see the webpage
http://www.cs.uiowa.edu/˜luke/R/cluster/cluster.html.

To start a cluster you should use

R> c1 <- makeCluster(10)

with a parameter (10) for the number of spawend slaves.
To stop a cluster you should use

R> stopCluster(c1)

Socket clusters should stop automatically, when the process that created
them terminates; however, it is still a good idea to call stopCluster.

For more details see the snow package, the R package for your communi-
cation mechanism (Rmpi , Rpvm) and the implementation of your communi-
cation mechanism.

3.4 Inputdata: CEL Files or AffyBatch

Before doing any kind of proprocessing the probe level data (CEL files) have
to be handled. As suggested in the affy package an object of class AffyBatch
can be created:

5

� Create a directory

� Move all the relevant CEL files to that directory

� Make sure your working directory contains the CEL files (getwd(),
setwd()).

� Then read in the data:

R> affybatch.example <- ReadAffy()

This AffyBatch can be used to do preprocessing (with functions from the
affyPara and affy package) on the data. Depending on the size of the dataset
and on the memory available at the computer system, you might experience
errors like ’Cannot allocate vector ...’.

The idea of the affyPara package is, that all probe level data will never be
needed at one place (computer) at the same time. Therefore it is much more
efficient and memory friendly to distribute the CEL files to the local disc
of the slave computers or to a shared memory system (e.g. samba device).
Then to build only small AffyBatches at the slaves, do preprocessing at the
slaves and rebuild the results (AffyBatch or ExpressionSet) at the master
node. This could be done using the functions from the affyPara package.

3.5 Background Correction

Background correction (BGC) methods are used to adjust intensities ob-
served by means of image analysis to give an accurate measurement of spe-
cific hybridization. Therefore BGC is essential, since part of the measured
probe intensities are due to non-specific hybridization and the noise in the
optical detection system.

In the affyPara package the same BGC methods as in the affy package
are available. To see the background correction methods that are built into
the package the variable bgcorrect.method can be used:

> bgcorrect.methods

[1] "mas" "none" "rma"

6

3.5.1 Use Background Correction Para

The function bgCorrectPara needs a cluster object (c1), an input data object
(affybatch.example) and the background correction method (method=”rma”)
as input parameters.

R> affyBatchGBC <- bgCorrectPara(c1, affybatch.example,

method="rma")

If you do not want to use an AffyBatch as input data, you can directly
give the CEL files and a vector of the CEL files location respectively to the
function bgCorrectPara:

R> files <- list.celfiles(full.names=TRUE)

R> affyBatchGBC <- bgCorrectPara(c1, files,

method="rma")

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see chapter 3.9.

3.6 Normalization

Normalization methods make measurements from different arrays compa-
rable. Multi-chip methods have proved to perform very well. We paral-
lelized the methods contrast (-> normalizeAffyBatchConstantPara), in-
variantset (-> normalizeAffyBatchInvariantsetPara) and quantile (-
> normalizeAffyBatchQuantilesPara) available from the affy package in
the function normalize.

The parallelized normalization functions need a cluster object, an in-
put data object and the coresponding normalization parameters as input
paramters.

3.6.1 Use Quantile Normalization Para

The function normalizeAffyBatchQuantilesPara needs a cluster object
(c1), an input data object (affybatch.example) and quantil normalization
parameters as input parameters (type = ”pmonly”).

R> affyBatchNORM <- normalizeAffyBatchQuantilesPara(c1,

affybatch.example, type = "pmonly")

7

If you do not want to use an AffyBatch as input data, you can directly
give the CEL files and a vector of the CEL files location respectively to the
function normalizeAffyBatchQuantilesPara:

R> files <- list.celfiles(full.names=TRUE)

R> affyBatchNORM <- normalizeAffyBatchQuantilesPara(c1,

files, type = "pmonly")

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see chapter 3.9.

3.7 Summarization

Summarization is the final step in preprocessing raw data. It combines the
multiple probe intensities for each probeset to produce expression values.
These values will be stored in the class called ExpressionSet. Compared
to the AffyBatch class, the ExpressionSet requires much less main mem-
ory, because there are no more multiple data. Therefore the complete pre-
processing functions in the affyPara are very effizient, because no complete
AffyBatch has to be build, see chapter 3.8.

The parallelized summarization functions need a cluster object, an in-
put data object and the coresponding summarization parameters as input
paramters. To see the summarization methods and PM correct methods that
are built into the package the variable express.summary.stat.methods and
pmcorrect.methods can be used:

> express.summary.stat.methods

[1] "avgdiff" "liwong" "mas" "medianpolish" "playerout"

> pmcorrect.methods

[1] "mas" "pmonly" "subtractmm"

3.7.1 Use Summarization Para

The function computeExprSetPara needs a cluster object (c1), an input data
object (affybatch.example) and the summarization parameters as input pa-
rameters (pmcorrect.method = ”pmonly”, summary.method = ”avgdiff”).

8

R> esset <- computeExprSetPara(c1,

affybatch.example,

pmcorrect.method = "pmonly",

summary.method = "avgdiff")

If you do not want to use an AffyBatch as input data, you can directly
give the CEL files and a vector of the CEL files location respectively to the
function computeExprSetPara:

R> files <- list.celfiles(full.names=TRUE)

R> esset <- normalizeAffyBatchQuantilesPara(c1,

files,

pmcorrect.method = "pmonly",

summary.method = "avgdiff")

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see chapter 3.9.

3.8 Complete Preprocessing

By combining the background correction, normalization and summarization
methods to one single method for preprocessing an efficient method can be
obtained. For parallelization, the combination has the big advantage of re-
ducing the exchange of data between master and slaves. Moreover, at no
point a complete AffyBatch needs to be built, and the time-consuming re-
building of the Affy-Batches is no longer necessary.

3.8.1 Use Preprocessing Para

It is important to note that not every preprocessing method can be combined
together. For more details see the vignettes in the affyPara package.

The function preproPara needs a cluster object (c1), an input data ob-
ject (affybatch.example) and the parameters for BGC, normalization and
summarization as input parameters.

R> esset <- preproPara(c1,

affybatch.example,

bgcorrect = TRUE, bgcorrect.method = "rma2",

normalize = TRUE, normalize.method = "quantil",

pmcorrect.method = "pmonly",

summary.method = "avgdiff")

9

The function works very similar to the expresso function from the affy pack-
age. It is not very reasonable to have an AffyBatch as input data object for
this function. Because therefore you have to create a complete AffyBatch

(very memory intensive).
It is much better to use a vector of CEL files as input data object. And

at no point a complete AffyBatch needs to be built:

R> files <- list.celfiles(full.names=TRUE)

R> esset <- preproPara(c1,

files,

bgcorrect = TRUE, bgcorrect.method = "rma2",

normalize = TRUE, normalize.method = "quantil",

pmcorrect.method = "pmonly",

summary.method = "avgdiff")

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see chapter 3.9.

3.8.2 Use RMA Para

RMA is a famous [3] complete preprocessing method. This function converts
an AffyBatch into an ExpressionSet using the robust multi-array average
(RMA) expression measure. There exists a function justRMA in the affy
package, which reads CEL files and computes an expression measure without
using an AffyBatch.

The parallelized version of rma is called rmaPara and is a ’simple’ wrapper
function for the function preproPara.

R> esset <- rmaPara(c1,affybatch.example)

It is not very reasonable to have an AffyBatch as input data object for this
function. Because therefore you have to create a complete AffyBatch (very
memory intensive).

It is much better to use a vector of CEL files as input data object. And
at no point a complete AffyBatch needs to be built:

R> files <- list.celfiles(full.names=TRUE)

R> esset <- rmaPara(c1, files)

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see chapter 3.9.

10

3.9 Distributing data

At a workstation cluster the CEL files could be available by a shared memory
system. At a workstation cluster, this is often done by a samba device. But
this could be the bottle neck for communication traffic. For distributed mem-
ory systems, the function distributeFiles for (hierarchically) distributing
files from the master to a special directory (e.g. ’/tmp/’) at all slaves was
designed. R or the faster network protocols SCP or RCP can be used for the
process of distributing.

R> path <- "tmp/CELfiles" # path at local computer system (master)

R> files <- list.files(path,full.names=TRUE)

R> distList <- distributeFiles(c1, CELfiles, protocol="RCP")

R> eset <- rmaPara(c1, distList$CELfiles)

With the paramteter hierarchicallyDist hierarchically distribution could
be used. If hierarchicallyDist = TRUE data will be hierarchically dis-
tributed to all slaves. If hierarchicallyDist = FALSE at every slave only a
part of data is available. This function and the corresponding input data ob-
ject (distList$CELfiles) could be used for every parallelized preprocessing
method in the affyPara package.

There is also a function to remove distributed files:

R> removeDistributedFiles(c1, "/usr1/tmp/CELfiles")

3.10 Test if results are equal to serialized methods

In view of machine accuracy, the parallelized functions produce same results
as serialized methods. To compare results from different functions you can
use the functions identical or all.equal from the base package.

R> affybatch1 <- bg.correct(affybatch.example,

method="rma")

R> affybatch2 <- bgCorrectPara(c1, affybatch.example,

method="rma")

R> identical(exprs(affybatch1),exprs(affybatch2))

[1] TRUE

R> all.equal(exprs(affybatch1),exprs(affybatch2))

[1] TRUE

11

Attention: If you directly compare the AffyBatches or ExpressionSets

there are some warnings or not similar results. This is being caused by
different values of the ’Title’ and ’notes’ slots in experimentData. Using
the function exprs to get the expression data shows equal results in view of
machine accuracy.

4 Results and discuccion

This article proposes the new package called affyPara for parallelized prepro-
cessing of high-density oligonucleotide microarrays. Parallelization of existing
preprocessing methods produces, in view of machine accuracy, the same re-
sults as serialized methods. The partition of data and distribution to several
nodes solves the main memory problems and accelerates the methods.

The cluster at the Department for Medical Information, Biometrics and
Epidemiology (IBE, University of Munich) consists of 32 personal computers
with 8 GB main memory and two dual core Intel Xeon DP 5150 processors.
Using this cluster, about 16.000 (32 nodes · approximately 500 CEL files)
microarrays of the type HGU-133A can be preprocessed using the function
preproPara. By expanding the cluster, the number of microarrays can be
increased to any given number.

References

[1] Robert C. Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bol-
stad, Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier,
Yongchao Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Hu-
ber, Stefano Iacus, Rafael Irizarry, Friedrich Leisch, Cheng Li, Martin
Maechler, Anthony J. Rossini, Gunther Sawitzki, Colin Smith, Gordon
Smyth, Luke Tierney, Jean Y. H. Yang, and Jianhua Zhang. Bioconduc-
tor: Open software development for computational biology and bioinfor-
matics. Genome Biology, 5:R80, 2004.

[2] R. Irizarry, L. Gautier, and L. Cope. An r package for analyses of
affymetrix oligonucleotide arrays. In G. Parmigiani, E.S. Garrett, R.A.
Irizarry, and S.L. Zeger, editors, The Analysis of Gene Expression Data:
Methods and Software. Springer, New York, 2002.

12

[3] Rafael A Irizarry, Bridget Hobbs, Francois Collin, Yasmin D Beazer-
Barclay, Kristen J Antonellis, Uwe Scherf, and Terence P Speed. Ex-
ploration, normalization, and summaries of high density oligonucleotide
array probe level data. Biostatistics, 4(2):249–264, Apr 2003.

[4] Anthony Rossini. Simple parallel statistical computing in r. UW Bio-
statistics Working Paper Series, 193, 2003.

[5] Markus Schmidberger and Ulrich Mansmann. Parallelized preprocessing
algorithms for high-density oligonucleotide array data. In 22th Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2008),
2008.

[6] R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2007. ISBN 3-900051-07-0.

[7] Hao Yu. The Rmpi Package. Department of Statistical and Actuarial
Sciences; University of Western Ontario, London, Ontario N6A 5B7, 04
2004.

13

	Abstract
	Changes to previous Versions
	Version 0.99.2
	Version 0.99.0
	Version 0.3.0
	Version 0.2.0
	Version 0.1.0

	Introduction
	Requirements
	Loading of package
	Starting and stopping cluster
	Inputdata: CEL Files or AffyBatch
	Background Correction
	Use Background Correction Para

	Normalization
	Use Quantile Normalization Para

	Summarization
	Use Summarization Para

	Complete Preprocessing
	Use Preprocessing Para
	Use RMA Para

	Distributing data
	Test if results are equal to serialized methods

	Results and discuccion

