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1 Introduction

Chromosomal DNA is characterized by variation between individuals at the level of entire chromosomes
(e.g. aneuploidy in which the chromosome copy number is altered), segmental changes (including
insertions, deletions, inversions, and translocations), and changes to small genomic regions (including
single nucleotide polymorphisms). A variety of alterations that occur in chromosomal DNA, many of
which can be detected using high density single nucleotide polymorphism (SNP) microarrays, are linked
to normal variation as well as disease and therefore of particular interest. These include changes in copy
number (deletions and duplications) and genotype (e.g. the occurrence of regions of homozygosity).
Hidden Markov models (HMM) are particularly useful for detecting such abnormalities, modeling the
spatial dependence between neighboring SNPs. Here, we extend previous approaches that utilize HMM
frameworks for inference in high throughput SNP arrays by integrating copy number, genotype calls,
and the corresponding measures of uncertainty when available. Using simulated and real data, we
demonstrate how confidence scores control smoothing in a probabilistic framework. The goal of this
vignette is to provide a simple interface for fitting HMMs and plotting functions to help visualize the
predicted states alongside the experimental data.

2 Simple Usage

2.1 Vanilla HMM

> library(VanillaICE)

Before fitting the HMM, the data must be organized into one of the following classes for high-
throughput SNP data:

� SnpCallSet (genotype calls)

� SnpCopyNumberSet (copy number estimates)

� oligoSnpSet (genotype calls and copy number estimates)

� RatioSnpSet (genotype calls and ratios of A and B allele intensities)

When pre-processing Affymetrix SNP chips with the R package oligo, an object of one of the above
classes is created and can be used directly with the HMMs described in this vignette. These classes can
also be created from Illumina data as described in the IlluminaHowTo vignette. The simulated data
provided with this package is an instance of class oligoSnpSet
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> data(chromosome1)

> annotation(chromosome1)

[1] "pd.mapping50k.hind240,pd.mapping50k.xba240"

> chromosome1

oligoSnpSet (storageMode: lockedEnvironment)
assayData: 9165 features, 1 samples
element names: calls, callsConfidence, cnConfidence, copyNumber

experimentData: use 'experimentData(object)'
Annotation: pd.mapping50k.hind240,pd.mapping50k.xba240
phenoData
An object of class "AnnotatedDataFrame"
sampleNames: NA06993
varLabels and varMetadata description:
family: trio variable
upd: uniparental isodisomy indicator

featureData
An object of class "AnnotatedDataFrame"
rowNames: SNP_A-1677174, SNP_A-1718890, ..., SNP_A-1677548 (9165 total)
varLabels and varMetadata description:
dbsnp_rs_id: dbsnp_rs_id
chromosome: chrom
...: ...
enzyme: enzyme
(8 total)

Annotation [1] "pd.mapping50k.hind240,pd.mapping50k.xba240"

Before deciding whether to fit a HMM, plot the data:

> gp <- plotSnp(chromosome1)

> show(gp)
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The HMM assumes that the copy number estimates, conditional on the hidden state, are approxi-
mately Gaussian. A log transformation will be performed automatically provided that the copy number
estimates are all positive. See the documentation pages in the R package VanillaICE for more informa-
tion about the chromosome1 example dataset. Fitting a hidden Markov model requires the following
components:

� the hidden states

� the emission probabilities

� transition probabilities

Here, we illustrate how one may specify the hidden states and calculate the emission and transi-
tion probabilities below. We first create an instance of the class HmmOptions that contains the hidden
states and, if copy number estimates are available, the location parameters for the Gaussian distribu-
tion. Though we will model the logarithm of the copy number estimates as approximately normally
distributed, it is more natural to specify the location parameters on the original scale (e.g., 1 copy is
deletion (D), 2 copies is normal (N), etc.). Emission probabilities for the genotype calls are a homozy-
gous genotype call (probHomCall argument). Again, the ordering must correspond to the order of the
hidden states. computed from the supplied probabilities of Note that the ordering of the numeric vector
for copyNumber.location must correspond to the ordering of the states. A number of validity checks
are performed on this object and it is a good idea to check whether the instantiated object is valid.

> options <- new("HmmOptions", states = c("D", "N", "L",

+ "A"), snpset = chromosome1, copyNumber.location = c(1,

+ 2, 2, 3), probHomCall = c(0.99, 0.7, 0.99, 0.7))

> validObject(options)

[1] TRUE

From an object of class HmmOptions, we can compute the emission probabilities. The emission
probabilities are returned on the log scale. Conditional on the hidden state, we assume that the copy
number and genotype are independent. Therefore, the emission probabilities for an HMM that models
the copy number and genotypes jointly are computed by adding the emission probabilities for copy
number and genotype.

> params <- new("HmmParameter", states = states(options),

+ initialStateProbability = 0.99)

> cn.emission <- copyNumber.emission(options)

[1] "Calculating emission probabilities on the log(copy number)"

> gt.emission <- calls.emission(options)

> emission(params) <- cn.emission + gt.emission

> genomicDistance(params) <- exp(-2 * physicalDistance(options)/(100 *

+ 1e+06))

> transitionScale(params) <- scaleTransitionProbability(options)

> class(params)

[1] "HmmParameter"
attr(,"package")
[1] "VanillaICE"

We may then fit the HMM by
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> fit <- hmm(options, params)

> fit

HmmPredict (storageMode: lockedEnvironment)
assayData: 9165 features, 1 samples
element names: predictions

phenoData
sampleNames: NA06993
varLabels and varMetadata description:
family: trio variable
upd: uniparental isodisomy indicator

featureData
featureNames: SNP_A-1677174, SNP_A-1718890, ..., SNP_A-1677548 (9165 total)
fvarLabels and fvarMetadata description:
dbsnp_rs_id: dbsnp_rs_id
chromosome: chrom
...: ...
arm: NA
(9 total)

experimentData: use 'experimentData(object)'
Annotation: pd.mapping50k.hind240,pd.mapping50k.xba240
hidden states: D N L A
breakpoints:
'data.frame': 11 obs. of 9 variables:
$ id : chr "NA06993" "NA06993" "NA06993" "NA06993" ...
$ chr : chr "1" "1" "1" "1" ...
$ state: chr "N" "L" "N" "A" ...
$ size : num 48.71 4.81 15.34 3.30 101.64 ...
$ N : num 997 102 902 202 3797 ...
$ start: num 0.837 49.598 54.499 69.854 73.174 ...
$ last : num 49.5 54.4 69.8 73.2 174.8 ...
$ prev : num NA 49.5 54.4 69.8 73.2 ...
$ next : num 49.6 54.4 69.9 73.2 174.8 ...

> breakpoints(fit)

id chr state size N start last
1.1 NA06993 1 N 48.708312 997 0.836727 49.54504
1.2 NA06993 1 L 4.811945 102 49.597810 54.40975
1.3 NA06993 1 N 15.339118 902 54.498950 69.83807
1.4 NA06993 1 A 3.299434 202 69.854466 73.15390
1.5 NA06993 1 N 101.640222 3797 73.174070 174.81429
1.6 NA06993 1 D 1.985684 100 174.815096 176.80078
1.7 NA06993 1 N 39.439073 1900 176.800844 216.23992
1.8 NA06993 1 D 1.586808 99 216.286002 217.87281
1.9 NA06993 1 N 20.410491 901 217.892177 238.30267
1.10 NA06993 1 D 0.097921 5 238.319943 238.41786
1.11 NA06993 1 N 8.431130 160 238.429864 246.86099

prev next
1.1 NA 49.59781
1.2 49.54504 54.40975
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1.3 54.40975 69.85447
1.4 69.83807 73.17407
1.5 73.15390 174.81429
1.6 174.81429 176.80084
1.7 176.80078 216.28600
1.8 216.23992 217.89218
1.9 217.87281 238.31994
1.10 238.30267 238.41786
1.11 238.41786 246.86099

Summary statistics for the breakpoints (more useful when multiple chromosomes and samples are
in the fit object)

> summary(fit)

$L
Freq med(length) avg(length) sd(length) med(n.snp) avg(n.snp)

1 1 4811.945 4811.945 NA 102 102
sd(n.snp)

1 NA

$A
Freq med(length) avg(length) sd(length) med(n.snp) avg(n.snp)

1 1 3299.434 3299.434 NA 202 202
sd(n.snp)

1 NA

$D
Freq med(length) avg(length) sd(length) med(n.snp) avg(n.snp)

1 3 1586.808 1223.471 994.949 99 68
sd(n.snp)

1 54.562

See [2] for a more complete description of the simulated dataset and the features detected by this
HMM. We may plot the data along with the predictions as follows:

> gp <- plotSnp(snpset(options), fit)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "#A6611A" "white" "#80CDC1" "#018571"

> gp$abline.v <- TRUE

> show(gp)
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2.2 Integrating Confidence Estimates (ICE)

In this section, we illustrate how one may fit an HMM that incorporates confidence esimates of the SNP-
level summaries for genotype calls and copy number. Confidence scores (inverse of standard errors) are
available for this object (see Section 2.3 for how confidence scores were derived).

This information is incorporated into the HMM emission probabilities. Probably the easiest way to
do that is recreate the options object, and then recalculate the emission probabilities.

> options <- new("HmmOptions", snpset = chromosome1, states = c("D",

+ "N", "L", "A"), copyNumber.location = c(1, 2, 2,

+ 3), copyNumber.ICE = TRUE, probHomCall = c(0.99,

+ 0.75, 0.99, 0.75))

> cn.emission <- copyNumber.emission(options)

[1] "Calculating emission probabilities on the log(copy number)"
[1] "Using 1/cnConfidence(object) as standard errors for the copy number"

> emission(params) <- cn.emission + gt.emission

> fit.ice <- hmm(options, params)

[1] "Transforming copy number to log2 scale."
[1] "Fitting HMM to sample 1"

We may also incorporate the confidence scores for the genotype calls by specifying calls.ICE=TRUE.
This feature is only available for the Affymetrix 100k and 500k platforms. The slot probHomCall
stores user-specified probabilities of P(call is AA or BB | state is LOH) and P(call is AA or BB |
state is normal). These probabilities must be specified in this order. The emission probabilities for the
genotype calls will only be calculated for the states LOH (LOH is defined as a stretch of homozygous
genotype calls longer than what one would expect by chance) and Normal refers to typical ratios of
heterozygous to homozygous genotype calls. The slot term5 contains user-specified probabilities for the
P(true genotype is HET | genotype call is AB, hidden state is Normal) and P(true genotype is HET |
genotype call is AA or BB, hidden state is Normal), respectively. Default values are provided when not
specified, as the following example illustrates.

6



> options <- new("HmmOptions", snpset = chromosome1, states = c("D",

+ "N", "L", "A"), copyNumber.location = c(1, 2, 2,

+ 3), copyNumber.ICE = TRUE, calls.ICE = TRUE, probHomCall = c(0.99,

+ 0.75))

> params <- new("HmmParameter", states = states(options),

+ initialStateProbability = 0.99)

> cn.emission <- copyNumber.emission(options)

> genomicDistance(params) <- exp(-2 * physicalDistance(options)/(100 *

+ 1e+06))

> transitionScale(params) <- scaleTransitionProbability(options)

> gt.emit <- calls.emission(options)

> gt.emission <- array(NA, dim(cn.emission))

> gt.emission[, , 1:2] <- gt.emit

> gt.emission[, , 3:4] <- gt.emit

> emission(params) <- cn.emission + gt.emission

> fit.ice <- hmm(options, params)

> gp <- plotSnp(snpset(options), fit.ice)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "#A6611A" "white" "#80CDC1" "#018571"

> gp$abline.v <- TRUE

> gp$col.predict <- c("darkblue", "white", "yellow", "orange")

> show(gp)

> legend(-0.05, 10, fill = gp$col.predict[c(1, 3, 4)],

+ legend = c("< 2 copies", "copy-neutral LOH", "> 2 copies"),

+ bty = "n", title = "predicted states")

> legend(0, 0.8, legend = "predictions", bty = "n", cex = 0.8,

+ adj = 0)
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Note that the ICE HMM correctly identifies the simulated normal segments in features B and C (the
normal segments were simulated to have high confidence scores). Additionally, the ICE HMM detects
the micro-amplification in region E (also simulated to have high confidence scores).

7



2.3 Confidence scores

Confidence scores for genotype calls We suggest using the CRLMM algorithm [1] for genotype calls.
CRLMM (in the R package oligo) provides confidence scores (ScGT) of the genotype estimates (ĜT). From
269 HapMap samples assayed on the Affymetrix 50k Xba and Hind chips, we have a gold standard
of the true genotype defined by the consensus of the HapMap centers. We use kernal based density
estimates to obtain

f
n

S dHOM | dHOM, HOM
o

, f
n

S dHOM | dHOM, HET
o

, f
n

S dHET | dHET, HOM
o

, and f
n

S dHET | dHET, HET
o

(1)

separately for the Xba and Hind 50k chips. The first term in (1), for example, denotes the density of the
scores when the genotype is correctly called homozygous (ĤOM) and the true genotype is homozygous
(HOM). See [2] for a more complete description of the methods. The data needed to estimate these
densities is stored in the experiment data package callsConfidence. callsConfidence is available from the
author’s website.

Confidence scores for copy number estimates To illustrate how standard errors of the copy
number estimate could be integrated in the HMM, the R object chromosome1 contains standard errors
simulated from a shifted Gamma: Gamma(1, 2) + 0.3, where 1 is the shape parameter and 2 is the rate
parameter. To ascertain the effect of qualitatively high confidence scores on the ICE HMM, we scaled a
robust estimate of the copy number standard deviation by 1

2 . Similarly, to simulate less precise ĈN we
scaled ε by 2. For more detailed information about how the data in the chromosome1 was generated,
see the documentation for this object in the R package VanillaICE.

3 The HmmParameter class

An instance of the class is created by the method new:

> new("HmmParameter")

The object params contains all of the parameters needed for fitting the HMM, including an esti-
mate of the genomic distance between SNPs (used for calculating SNP-specific transition probabilities),
emission probabilities (slot: emission), and initial state probabilities.

Emission probabilities. The emission probabilities are stored as an array in the params object. The
emission probability array has dimension R × C × S, where S is the number of hidden states, R is
the number of rows (SNPs), and C is the number of samples. One may use [ to subset object of class
HmmParameter.

> params[5, 1, ]

Formal class 'HmmParameter' [package "VanillaICE"] with 5 slots
..@ states : chr [1:4] "D" "N" "L" "A"
..@ initialStateProbability: num [1:4] 0.00333 0.99000 0.00333 0.00333
..@ emission : num [1, 1, 1:4] -1.20 -1.54 -1.19 -1.86
.. ..- attr(*, "dimnames")=List of 3
.. .. ..$ : chr "SNP_A-1662392"
.. .. ..$ : chr "NA06993"
.. .. ..$ : chr [1:4] "D" "N" "L" "A"
..@ genomicDistance : num [1:3] 1 1 1
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..@ transitionScale : num [1:4, 1:4] 1 1 0.75 0.75 1.5 1 1.5 1.5 0.75 1 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:4] "D" "N" "L" "A"

.. .. ..$ : chr [1:4] "D" "N" "L" "A"

Transition probabilities. The probability of remaining in the same state, P (St = St+1) (the diago-
nal of the transition probability matrix) is a function of the distance (d) between SNPs: e−2d(100∗1e6).
This value is stored in the slot tau of the params object. The probability of leaving a state is ε, where
ε = 1−P (St = St+1). The ε is split among S−1 states. By default, the probability of transitioning from
an altered state back to the normal state is twice as likely as the probability of transitioning between
two altered states. The weights for ε are provided in the tau.scale matrix in the R object params

> transitionScale(params)

D N L A
D 1.00 1.5 0.75 0.75
N 1.00 1.0 1.00 1.00
L 0.75 1.5 1.00 0.75
A 0.75 1.5 0.75 1.00

and can be adjusted by the SCALE argument. For illustration, one could make the probability of
transitioning from an altered state to a normal state 10 times as likely as the probability of transitioning
between two altered states by the following commmand:

> transitionScale(params) <- scaleTransitionProbability(params,

+ SCALE = 10)

> transitionScale(params)

D N L A
D 1.00 2.5 0.25 0.25
N 1.00 1.0 1.00 1.00
L 0.25 2.5 1.00 0.25
A 0.25 2.5 0.25 1.00

4 The HmmOptions Class

To be completed . . .

5 The HmmPredict Class

The output from the HMM is an instance of the HmmPredict class and contains the predicted states as
well as the breakpoints for the different states.

> fit

HmmPredict (storageMode: lockedEnvironment)
assayData: 9165 features, 1 samples
element names: predictions

phenoData
sampleNames: NA06993
varLabels and varMetadata description:
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family: trio variable
upd: uniparental isodisomy indicator

featureData
featureNames: SNP_A-1677174, SNP_A-1718890, ..., SNP_A-1677548 (9165 total)
fvarLabels and fvarMetadata description:
dbsnp_rs_id: dbsnp_rs_id
chromosome: chrom
...: ...
arm: NA
(9 total)

experimentData: use 'experimentData(object)'
Annotation: pd.mapping50k.hind240,pd.mapping50k.xba240
hidden states: D N L A
breakpoints:
'data.frame': 11 obs. of 9 variables:
$ id : chr "NA06993" "NA06993" "NA06993" "NA06993" ...
$ chr : chr "1" "1" "1" "1" ...
$ state: chr "N" "L" "N" "A" ...
$ size : num 48.71 4.81 15.34 3.30 101.64 ...
$ N : num 997 102 902 202 3797 ...
$ start: num 0.837 49.598 54.499 69.854 73.174 ...
$ last : num 49.5 54.4 69.8 73.2 174.8 ...
$ prev : num NA 49.5 54.4 69.8 73.2 ...
$ next : num 49.6 54.4 69.9 73.2 174.8 ...

The breakpoints are provided as a data.frame:

> breaks <- breakpoints(fit)

> breaks <- breaks[breaks[, "state"] != "N", ]

One may order the altered states from biggest to smallest for each chromosome as follows:

> breaks[order(breaks[, "chr"], breaks[, "size"], decreasing = TRUE),

+ ]

id chr state size N start last prev
1.2 NA06993 1 L 4.811945 102 49.59781 54.40975 49.54504
1.4 NA06993 1 A 3.299434 202 69.85447 73.15390 69.83807
1.6 NA06993 1 D 1.985684 100 174.81510 176.80078 174.81429
1.8 NA06993 1 D 1.586808 99 216.28600 217.87281 216.23992
1.10 NA06993 1 D 0.097921 5 238.31994 238.41786 238.30267

next
1.2 54.40975
1.4 73.17407
1.6 176.80084
1.8 217.89218
1.10 238.41786

The summary method returns a list where each element in the list provides statistics for an altered
states. For each chromosome, the mean, median, and standard deviation of the size of the features
and number of SNPs involved are reported. For instance, in this HMM the altered states were loss of
heterozygosity (L), amplification of copy number (A), and deletion of copy number (D). Because we
only have one sample and one chromosome in the fit example, the summary method is not that useful:
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> summary(fit)

$L
Freq med(length) avg(length) sd(length) med(n.snp) avg(n.snp)

1 1 4811.945 4811.945 NA 102 102
sd(n.snp)

1 NA

$A
Freq med(length) avg(length) sd(length) med(n.snp) avg(n.snp)

1 1 3299.434 3299.434 NA 202 202
sd(n.snp)

1 NA

$D
Freq med(length) avg(length) sd(length) med(n.snp) avg(n.snp)

1 3 1586.808 1223.471 994.949 99 68
sd(n.snp)

1 54.562

6 HMMs for different classes of data

6.1 Copy number

The method hmm has a different set of underlying hidden states depending on whether copy number
estimates, genotype calls, or both are available. When only copy number estimates are available, the
hidden states (for autosomes) are hemizygous or homozygous deletion (one or fewer copies), normal (two
copies), and amplification (three or more copies). The corresponding data class is SnpCopyNumberSet.
To illustrate, we convert the chromosome1 example to an object of this class and fit the HMM.

> chr1.cn <- as(chromosome1, "SnpCopyNumberSet")

> options <- new("HmmOptions", snpset = chr1.cn, states = c("D",

+ "N", "A"), copyNumber.location = 1:3)

> params.cn <- new("HmmParameter", states = c("D", "N",

+ "A"))

> emission(params.cn) <- copyNumber.emission(options)

[1] "Calculating emission probabilities on the log(copy number)"

> transitionScale(params.cn) <- scaleTransitionProbability(options)

> genomicDistance(params.cn) <- exp(-2 * physicalDistance(options)/(100 *

+ 1e+06))

> fit.cn <- hmm(options, params.cn)

[1] "Transforming copy number to log2 scale."
[1] "Fitting HMM to sample 1"

> breakpoints(fit.cn)

id chr state size N start last
1.1 NA06993 1 N 43.865725 877 0.836727 44.70245
1.2 NA06993 1 D 0.040126 2 44.722116 44.76224
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1.3 NA06993 1 N 25.058717 1122 44.779351 69.83807
1.4 NA06993 1 A 3.299434 202 69.854466 73.15390
1.5 NA06993 1 N 101.640222 3797 73.174070 174.81429
1.6 NA06993 1 D 1.985748 101 174.815096 176.80084
1.7 NA06993 1 N 39.313361 1899 176.926556 216.23992
1.8 NA06993 1 D 1.586808 99 216.286002 217.87281
1.9 NA06993 1 N 20.410491 901 217.892177 238.30267
1.10 NA06993 1 D 0.097921 5 238.319943 238.41786
1.11 NA06993 1 N 8.431130 160 238.429864 246.86099

prev next
1.1 NA 44.70245
1.2 44.70245 44.76224
1.3 44.76224 69.85447
1.4 69.83807 73.17407
1.5 73.15390 174.81429
1.6 174.81429 176.80084
1.7 176.80084 216.28600
1.8 216.23992 217.89218
1.9 217.87281 238.31994
1.10 238.30267 238.41786
1.11 238.41786 246.86099

> graph.par <- plotSnp(snpset(options), fit.cn)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "#D8B365" "white" "#5AB4AC"

> graph.par$abline.v <- FALSE

> print(graph.par)

> legend(0, 0.8, fill = graph.par$col.predict[c(1, 3)],

+ legend = c("< 2 copes", "> 2 copies"), bty = "n",

+ cex = 0.8)
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6.2 Genotype calls

When only genotype calls are available, the hidden states are loss and retention (ret) of heterozygosity.
We define loss to be a sequence of homozygous SNPs longer than what we would expect to observe by
chance. Note that many long stretches of homozygosity may occur as a result of a population sharing
a common underlying haplotype structure; loss predictions from an HMM fit to an indvidual do not
necessarily reflect the ’loss’ of an allele in that individual. For illustration, we convert the chromosome1
example to an object of class HmmSnpCallSet and refit the HMM.

> chr1.calls <- as(chromosome1, "SnpCallSet")

> options <- new("HmmOptions", snpset = chr1.calls, states = c("L",

+ "N"), probHomCall = c(0.99, 0.7))

> params.calls <- new("HmmParameter", states = states(options))

> transitionScale(params.calls) <- scaleTransitionProbability(options)

> genomicDistance(params.calls) <- exp(-2 * physicalDistance(options)/(100 *

+ 1e+06))

> emission(params.calls) <- calls.emission(options)

> fit.calls <- hmm(options, params.calls)

[1] "Fitting HMM to sample 1"
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> breakpoints(fit.calls)

id chr state size N start last prev
1.1 NA06993 1 N 48.708312 997 0.836727 49.54504 NA
1.2 NA06993 1 L 4.811945 102 49.597810 54.40975 49.54504
1.3 NA06993 1 N 119.810058 4890 54.498950 174.30901 54.40975
1.4 NA06993 1 L 2.285950 109 174.418117 176.70407 174.30901
1.5 NA06993 1 N 39.439518 1902 176.800399 216.23992 176.70407
1.6 NA06993 1 L 1.485826 97 216.286002 217.77183 216.23992
1.7 NA06993 1 N 28.988981 1068 217.872013 246.86099 217.77183

next
1.1 49.59781
1.2 54.40975
1.3 174.41812
1.4 176.80040
1.5 216.28600
1.6 217.87201
1.7 246.86099

> gp <- plotSnp(snpset(options), fit.calls)

[1] "col.predict not specified in list of graphical parameters. Using the following colors:"
[1] "black" "white"

> gp$col.predict <- c("black", "white")

> gp$ylim <- c(-0.5, 1)

> gp$add.centromere <- FALSE

> gp$abline.v <- TRUE

> gp$cytoband.ycoords <- c(-0.45, -0.4)

> gp$hmm.ycoords <- c(-0.2, -0.05)

> show(gp)

> legend(0, -0.1, legend = "LOH", fill = "black", title = "predictions",

+ bty = "o", cex = 0.8)
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6.3 Genotype calls and copy number

Section 2 illustrates how one may fit the HMM to objects of class oligoSnpSet.
More documentation about the classes can be found in the documentation for the R package Vanil-

laICE.

7 Session Information

The version number of R and packages loaded for generating the vignette were:

� R version 2.7.0 (2008-04-22), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

� Base packages: base, datasets, graphics, grDevices, methods, stats, tools, utils

� Other packages: Biobase 2.0.0, oligoClasses 1.2.0, RColorBrewer 1.0-2, SNPchip 1.4.0, Vanil-
laICE 1.2.0
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