Practicalities of machine learning: applications to
high-throughput genomics with Bioconductor
MLInterfaces 2.0

VJ Carey
July 25, 2008

Contents

1 Overview|

2

Getting acquainted with machine learning via the crabs datal

[2.1 Attaching and checking the data.
[2.2 A simple classifier derived by human reasoning|.
[2.3 Prediction via logistic regression|
2.4 The cross-validation concept|
[2.5 Exploratory multivariate analysis|
[2.5.1 Scatterplots|
[2.5.2 Principal components; biplot|.
[2.5.3 Clustering
[2.6 Supervised learning|

Learning with expression arrays|

[3.1 Phenotype reduction| oL
[3.2 Nomnspecific filtering| o
[3.3 Exploratory work|
B.4 Classifier constructionl

[4 Embedding features selection in cross-validation| 29

[> Learning with array CGH 30

1 Overview

The term machine learning refers to a family of computational methods for analyzing
multivariate datasets. Each data point has a vector of features in a shared feature space,
and may have a class label from some fixed finite set.

Supervised learning refers to processes that help articulate rules that map feature
vectors to class labels. The class labels are known and function as supervisory informa-
tion to guide rule construction. Unsupervised learning refers to processes that discover
structure in collections of feature vectors. Typically the structure consists of a grouping
of objects into clusters.

This practical introduction to machine learning will begin with a survey of a low-
dimensional dataset to fix concepts, and will then address problems coming from expres-
sion arrays and array CGH data.

Some basic points to consider at the start:

e Distinguish predictive modeling from inference on model parameters. Typical work
in epidemiology focuses on estimation of relative risks, and random samples are
not required. Typical work with machine learning tools targets estimation (and
minimization) of the misclassification rate. Representative samples are required
for this task.

e “T'wo cultures” model fitters vs. algorithmic predictors. If statistical models
are correct, parameter estimation based on the mass of data can yield optimal
discriminators (e.g., LDA). Algorithmic discriminators tend to prefer to identify
boundary cases and downweight the mass of data (e.g., boosting, svm).

e Different learning tools have different capabilities. There is little a priori guidance
on matching learning algorithms to aspects of problems. While it is convenient to
sift through a variety of approaches, one must pay a price for the model search.

e Data and model/learner visualization are important, but visualization in higher
dimensional data structures is hard. Dynamic graphics can help; look at ggobi
and Rggobi for this.

e These notes provide very little mathematical background on the methods; see
for example Ripley (Pattern recognition and neural networks, 1995), Duda, Hart,
Stork (Pattern classification), Hastie, Tibshirani and Friedman (2003, Elements of
statistical learning) for copious background.

2 Getting acquainted with machine learning via the
crabs data

2.1 Attaching and checking the data

The following steps bring the crabs data into scope and illustrate aspects of its structure.
> library(MASS)

> data(crabs)

> dim(crabs)

[1] 200 8

> crabs[1:4,]

sp sex index FL RW CL CW BD

1 B M 18.16.716.1 19.0 7.0
2 B M 28.87.718.1 20.8 7.4
3 B M 39.27.819.022.4 7.7
4 B M 4 9.6 7.920.123.18.2

> table(crabs$sex)

F M
100 100

> library(lattice)
> print (bwplot(RW ~ sp | sex, data = crabs))

20

1
:
15 !
1

RW

10

- - - -

R [

We will regard these data as providing five features (FL, RW, CL, CW, BD) and a
pair of class labels (sex, sp=species). We may regard this as a four class problem, or as
two two class problems.

2.2 A simple classifier derived by human reasoning

Our first problem does not involve any computations. If you want to write R code to
solve the problem, do so, but use prose first.

e Question 1. On the basis of the lattice plot given above, comment on the prospects
for predicting species on the basis of RW. State a rule for computing the predic-
tions. Describe how to assess the performance of your rule.

2.3 Prediction via logistic regression

A simple approach to prediction involves logistic regression.

> ml = glm(sp ~ RW, data = crabs, fam = binomial)
> summary (m1)

Call:
glm(formula = sp ~ RW, family = binomial, data = crabs)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.67807 -1.08840 -0.04168 1.07160 1.88030

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.44908 0.82210 -4.195 2.72e-05 **x
RW 0.27080 0.06349 4.265 2.00e-05 **x

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 277.26 on 199 degrees of freedom
Residual deviance: 256.35 on 198 degrees of freedom
AIC: 260.35

Number of Fisher Scoring iterations: 4

e Question 2. Write down the statistical model corresponding to the R expression
above. How can we derive a classifier from this model?

e Question 3. Perform the following computations. Discuss their interpretation.
What are the estimated error rates of the two models? Is the second model better?

> table(predict(ml, type = "response'") > 0.5, crabs$sp)

> m2 = update(ml, subset sex == "F")

> table(predict (m2, type = "response") > 0.5, crabs$spl[crabs$sex ==
+ HF”J)

2.4 The cross-validation concept

Cross-validation is a technique that is widely used for reducing bias in estimation of
predictive accuracy. Briefly, the dataset is deterministically partitioned into a series of
training and test sets. The model is built for each training set and evaluated on the
test set. The accuracy measures are averaged over this series of fits. Leave-one-out
cross-validation consists of N fits, with N training sets of size N-1 and N test sets of size
1.

First let’s use MLearn from the MLInterfaces package to fit a single logistic model.
MLearn requires you to specify a training index set. We use ¢(1:30, 51:80) to choose

a training set of size 60, balanced between two species (because we know the ordering
of records). This procedure also requires you to specify a probability threshold for
classification. We use a typical default of 0.5. If the predicted probability of being "O”
exceeds 0.5, we classify to "O”, otherwise to "B”.

> library(MLInterfaces)

> fcrabs = crabs[crabs$sex == "F",]

> mll = MLearn(sp ~ RW, fcrabs, glmI.logistic(thresh = 0.5), c(1:30,
+ 51:80), family = binomial)

> ml1l

MLInterfaces classification output container

The call was:

MLearn(formula = sp ~ RW, data = fcrabs, method = glmI.logistic(thresh = 0.5),
trainInd = c(1:30, 51:80), family = binomial)

Predicted outcome distribution for test set:

1

40

Summary of scores on test set (use testScores() method for details):
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.7553 0.8861 0.9803 0.9355 0.9917 0.9997
> confuMat (ml11)

predicted
given 1

B 20

0 20

e Question 4. What does the report on ml1 tell you about predictions with this
model? Can you reconcile this with the results in model m2? [Hint — non-
randomness of the selection of the training set is a problem.]

e Question 5. Modify the MLearn call to obtain a predictor that is more successful
on the test set.

Now we will illustrate cross-validation. First, we scramble the order of records in the
ExpressionSet so that sequentially formed groups are approximately random samples.

> set.seed(123)
> sfcrabs = fcrabs[sample(1:100, size = 100, replace = FALSE),
+]

We invoke the MLearn method in two ways — first specifying a training index set,
then specifying a five-fold cross-validation.

> smll = MLearn(sp ~ RW, sfcrabs, glmI.logistic(thresh = 0.5),
+ c(1:30, 51:80), family = binomial)
> confuMat (sm11)

predicted
given 0 1

B 13 10

0 314

> smx1 = MLearn(sp ~ RW, sfcrabs, glmI.logistic(thresh = 0.5),

+ xvalSpec ("LOG", 5, function(data, clab, iternum) {
+ which(rep(1:5, each = 20) == iternum)
+ }), family = binomial)

> confuMat (smx1)

predicted
given 0 1

B 34 16

0 12 38

e Question 6. Define clearly the difference between models smll and smx1 and state
the misclassification rate estimates associated with each model.

2.5 Exploratory multivariate analysis

2.5.1 Scatterplots

e Question 7. Interpret the following code. Modify it to depict the pairwise config-
urations with different colors for crab genders.

> pairs(crabs[, -c(1:3)], col = ifelse(crabs$sp == "B", "blue",
+ "orange"))

6 10 14 18 20 40

I T I | | | | |
0| - | o
[«
FL P
b -
o]
- o (QQ'S‘ pe
<)
o | W
= 7] gf
© C
) °) 7o)
o Y
CL #oEe
o) °
§ $o - @
g n ""v' / o
F V; CcCW
g 7] 5'&" > i -
o ° o - 8
- Ly ip S
.@[d vég;é f Y L 9
A al y | <
oﬁ g& o 54
T T T TTT T T T T T T
10 15 20 15 25 35 45 10 15 20

2.5.2 Principal components; biplot

Principal components analysis transforms the multivariate data X into a new coordinate
system. If the original variables are X1, ..., Xp, then the variables in the new rep-
resentation are denoted PC1, ..., PCp. These new variables have the properties that
PC1 is the linear combination of the X having maximal variance, PC2 is the variance-
maximizing linear combination of residuals of X after projecting on PC1, and so on. If
most of the variation in X, 4, can be captured in a low dimensional linear subspace of the
space spanned by the columns of X, scatterplots of the first few principal components
will depict this.

Formally, we can compute the PC using the singular value decomposition of X, in
which X = UDV?, where Unxp and V), are orthonormal, and D is a diagonal matrix of
p nonnegative singular values. The principal components transformation is XV = UD,
and if D is structured so that D;; > D;; whenever ¢ > j, then column i of XV is PCi.
Note also that D;; = v/n — 1SD PCi.

> pcl = prcomp(crabs[, -c(1:3)])

> pairs(pcl1$x, col = ifelse(crabs$sp == "B", "blue", "orange"))

-3 -1 1
L1 1 1 1
o
% a o
f A% .
aRo A
PC1 o7 d .
00033\' o i
4 =)
: &
- - 0@ 0%
— _°°%$§éggo ° PCZ
[o?’ O 06
i o,
?
o 0% oo o ° o, ? o
offomBew © P 0 © o -
-
B in o &, ©
Po o
o~
I
o
i
o
o
o
—
|
L w
o
ot
— ©
I
T T T
-30 -10 10 -0.5 0.5

The biplot shows the data in PC space and also shows the relative contributions of
the original variables in composing the transformation.

> biplot(pcl, choices = 2:3)

0.15
|

0.10

0.05
|

PC3
-0.05 0.00

-0.10

-0.15

I I I I I I I
-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

PC2

2.5.3 Clustering

A familiar technique for displaying multivariate data in high-throughput biology is called
the heatmap. In this display, samples are clustered as columns, and features as rows.
The clustering technique used by default is R "hclust’. This procedure builds a clustering
tree for the data as follows. Distances are computed between feature vectors for all N
observations. The two closest observations are joined and are regarded as a new object,
so there are N — 1 objects (clusters) at this point. This process is repeated until 1
cluster is formed; the clustering tree shows the process by which clusters are created via
agglomeration.

There are several ways to measure distances between clusters, once these have been
formed. Single-linkage clustering takes the distance between two clusters to be the short-
est distance between any two members of the different clusters; average linkage averages
all the distances between members; complete-linkage uses hte maximum distance be-
tween any two members of the different clusters. Other methods are available in hclust.

The following figure shows cluster trees for samples and features, using all defaults
for the heatmap function. A tiled display at the top shows the species codes for the

10

samples.

> X = data.matrix(crabs[, -c(1:3)])
> heatmap(t(X), ColSideColors = ifelse(crabs$sp == "0", "orange",
+ ”blue"))

Typically clustering is done in the absence of labels — it is an example of unsupervised
machine learning. We can ask whether the clustering provided is a 'good’ one using the

measurement of a quantity called the silhouette. This is defined in R documentation as
follows:

For each observation i, the _silhouette width_ s(i) is defined as
follows:

Put a(i) = average dissimilarity between i and all other points
of the cluster to which i belongs (if i is the _only_ observation
in its cluster, s(i) := O without further calculations). For all
other clusters C, put d(i,C) = average dissimilarity of i to all
observations of C. The smallest of these d(i,C) is b(i) := min_C

11

d(i,C), and can be seen as the dissimilarity between i and its
"neighbor" cluster, i.e., the nearest one to which it does _not_
belong. Finally,

s(1) := (b(i1) - a(i)) / max(a(i), b(i)).

We can compute the silhouette for any partition of a dataset, and can use the hier-
archical clustering result to define a partition as follows:

> ¢l = hclust(dist(X))
> tr = cutree(cl, 2)
> table(tr)

tr
1 2
105 95

> library(cluster)

> sil = silhouette(tr, dist(X))
> plot(sil)

12

Silhouette plot of (x = tr, dist = dist(X))

n =200 2 clusters C;
j:nj|aveig s
1: 105 | 0.52
2: 95| 057
I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Silhouette width s;
Average silhouette width : 0.55

e Question 8. In the preceding, we have used default dist, and default clustering
algorithm for the heatmap. Investigate the impact of altering the choice of distance
and clustering method on the clustering performance, both in relation to capacity
to recover groups defined by species and in relation to the silhouette distribution.

e Question 9. The PCA shows that the data configuration in PC2 and PC3 is at
least bifurcated. Apply hierarchical and K-means clustering to the two-dimensional
data in this subspace, and compare results with respect to capturing the species
x gender labels, and with respect to silhouette values. For example, load the
exprs slot of crES [see just below for the definition of this structure] with the PCA
reexpression of the features, call the result pcrES, and then:

> ff = kmeansB(pcrES[2:3,], k=4)
> table(ff@clustIndices, crES$spsex)

13

2.6 Supervised learning

In this section we will examine procedures for polychotomous prediction. We want to
be able to use the measurements to predict both species and sex of the crab. Again we
would like to use the MLInterfaces infrastructure, so an ExpressionSet container will be
useful.

feat2 = t(data.matrix(crabs[, -c(1:3)]1))

pd2 = new("AnnotatedDataFrame", crabs[, 1:2])

crES = new("ExpressionSet", exprs = feat2, phenoData = pd2)
crES$spsex = paste(crES$sp, crES$sex, sep = ":")

table (crES$spsex)

vV V.V Vv VvV

(o9)

:F B:M O:F 0:M
50 50 50 50

We will permute the samples so that simple selections for training set indices are random
samples.

> set.seed(1234)
> crES = crES[, sample(1:200, size = 200, replace = FALSE)]

2.6.1 RPART
A classic procedure is recursive partitioning.

> library(rpart)
> trl = MLearn(spsex ~ ., crES, "rpart", 1:140)
> tril

MLOutput instance, method= rpart
Call:
MLearn(formula = formula, data = data, method = method, trainInd = trainlInd,
mlSpecials = NULL)
predicted class distribution:
B:F B:M 0:F 0:M
17 11 16 16

> confuMat (trl)

predicted
given B:F B:M 0:F 0:M
B:F 10 4 3 O
BBM 2 4 0 4
o:F 3 1 11 3
o:M 2 2 2 9

14

The actual tree is

> plot(RObject(tri))
> text (RObject (trl))

RW<, 15.9
I
CW<40.6
RW>£12.9 BD< [16.95
FL< 15.65 BD+ 12 |(_‘
r_‘ BM O:M
B:F O:F
RW>E11.3
| cl<ppes M
B:F Bp<lo.15
[1 BM
BE B:M

cludes a diagnostic tool called the cost-complexity plot:

> plotcp(RObject (trl))

15

O:F

This procedure in-

size of tree

X-val Relative Error
0.8 1.0
|

0.6

0.4

I I I I I I
Inf 0.1 0.082 0.053 0.028 0.014

cp

2.6.2 Random forests

A generalization of recursive partitioning is obtained by creating a collection of trees by
bootstrap-sampling cases and randomly sampling from features available for splitting at
nodes.

> set.seed(124)

> library(randomForest)

> rfl1 = MLearn(spsex ~ ., crES, "randomForest", 1:140)
> rf1

MLOutput instance, method= randomForest
Call:
MLearn(formula = formula, data = data, method = method, trainInd = trainInd,
mlSpecials = NULL)
predicted class distribution:
B:F B:M 0:F 0:M
18 13 17 12

16

> cm = confuMat(rf1)
> cm

predicted
given B:F B:M 0:F 0:M
B:F 156 2 0 O
0

2

B:M 1 9 0
0:F 1 0 15
o:M 1 2 2 10

The single split error rate is estimated at 18%.

e (Question 10. What is the out-of-bag error rate for rf1? Obtain a cross-validated
estimate of misclassification error using randomForest with an xvalSpec().

2.6.3 Linear discriminants

> 1d1 = MLearn(spsex ~ ., crES, "lda", 1:140)
> 1d1

MLOutput instance, method= 1lda
Call:
MLearn(formula = formula, data = data, method = method, trainInd = trainInd,
mlSpecials = NULL)
predicted class distribution:
B:F B:M 0:F 0:M
18 9 18 15

> confuMat (1d1)

predicted
given B:F B:M 0:F 0:M
B:F 17 0 0 O
0

0

B:M 1 9 0
0:F O O 18
o:M 0 O 0 15

> xvld = MLearn(spsex ~ ., crES, ldaI, xvalSpec("LOG", 5, balKfold.xvspec(5)))
> confuMat (xvl1d)

predicted
given B:F B:M 0:F 0:M
B:F 48 2 0 O
B.M 6 4 0 O
0:F O 0 47 3
o:cM 0 O 0 50

17

e Question 11. Use the balKfold function to generate an index set for partitions that
is balanced with respect to class distribution. Check the balance and repeat the
cross validation.

2.6.4 Neural net

> nnl = MLearn(spsex ~ ., crES, nnetI, 1:140, size = 3, decay = 0.1)

weights: 34

initial value 236.354190
iter 10 value 191.068212
iter 20 value 125.318872
iter 30 value 50.123864
iter 40 value 37.387002
iter 50 value 36.370167
iter 60 value 35.601717
iter 70 value 35.453834
iter 80 value 33.891860
iter 90 value 32.271953
iter 100 value 32.271118
final wvalue 32.271118
stopped after 100 iterations

> nnl

MLInterfaces classification output container

The call was:

MLearn(formula = spsex ~ ., data = crES, method = nnetI, trainInd = 1:140,
size = 3, decay = 0.1)

Predicted outcome distribution for test set:

B:F B:M 0:F 0:M
18 9 18 15
Summary of scores on test set (use testScores() method for details):
B:F B:M 0:F 0:M
0.2784297 0.1757398 0.3002084 0.2456221

> RObject(nnl)

a 5-3-4 network with 34 weights

inputs: FL RW CL CW BD

output(s): spsex

options were - softmax modelling decay=0.1

18

> confuMat (nnl1)

predicted
given B:F B:M 0:F 0:M
B:F 17 0 O O
0

0

B:M 1 9 0
0:F 0 0 18
O:M O 0 0 15

> xvnnBAD = MLearn(spsex ~ ., crES, nnetI, xvalSpec("LOG", 5, function(data,
+ clab, iternum) {

+ which(rep(1:5, each = 40) == iternum)

+ }), size = 3, decay = 0.1)

> xvnnGOOD = MLearn(spsex ~ ., crES, nnetI, xvalSpec("LOG", 5,

+ balKfold.xvspec(5)), size = 3, decay = 0.1)

> confuMat (xvnnBAD)

predicted
given B:F B:M 0:F 0O:M
B:F 48 2 0 O
B:M 7 43 0 O
0:F O O 48 2
o:M 0 O 4 46

> confuMat (xvnnGOOD)

predicted
given B:F B:M 0:F 0:M
B:F 48 2 0 O
B:.M 4 46 0 O
0:F 0 0 49 1
o:Mm 0 O 0 50

2.6.5 SVM

> svl = MLearn(spsex ~ ., crES, svmI, 1:140)
> svi

MLInterfaces classification output container

The call was:

MLearn(formula = spsex ~ ., data = crES, method = svmI, trainInd = 1:140)
Predicted outcome distribution for test set:

B:F B:M 0:F 0:M
27 8 13 12

19

> RObject(svl)

Call:
svm(formula = formula, data = trdata)

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 1
gamma: 0.2

Number of Support Vectors: 131
> confuMat (sv1)
predicted

given B:F B:M 0:F 0:M
B:F 17 0 0 O
0
0

B:M 3 7 O
0:F 5 0 13
oM 2 1 0 12

> xvsv = MLearn(spsex ~ ., crES, svmI, xvalSpec("LOG", 5, balKfold.xvspec(5)))
> confuMat (xvsv)

predicted
given B:F B:M 0:F 0:M
B:F 46 1 3 O
B:M 14 33 0 3
0:F 14 0 34 2
o:M 4 2 0 44

3 Learning with expression arrays

Here we will concentrate on ALL: acute lymphocytic leukemia, B-cell type.

3.1 Phenotype reduction

We will identify expression patterns that discriminate individuals with BCR/ABL fusion
in B-cell leukemia.

20

> library(ALL)

> data(ALL)

> bALL = ALL[, substr(ALL$BT, 1, 1) == "B"]

> fus = bALL[, bALL$mol.biol jinj, c("BCR/ABL", "NEG")]
> fus$mol.biol = factor(fus$mol.biol)

> fus

ExpressionSet (storageMode: lockedEnvironment)
assayData: 12625 features, 79 samples
element names: exprs
phenoData
rowNames: 01005, 01010, ..., 84004 (79 total)
varLabels and varMetadata description:
cod: Patient ID
diagnosis: Date of diagnosis

date last seen: date patient was last seen
(21 total)
featureData
featureNames: 1000_at, 1001_at, ..., AFFX-YELO24w/RIP1_at (12625 total)
fvarLabels and fvarMetadata description: none
experimentData: use 'experimentData(object)'
pubMedIds: 14684422 16243790
Annotation: hgu9bav2

3.2 Nonspecific filtering

We can nonspecifically filter to 300 genes (to save computing time) with largest measures
of robust variation across all samples:

> mads = apply(exprs(fus), 1, mad)
> fusk = fus[mads > sort(mads, decr = TRUE) [300],]
> fcol ifelse(fusk$mol.biol == "NEG", "green", "red")

3.3 Exploratory work

For exploratory data analysis, a heatmap is customary.

> heatmap (exprs(fusk), ColSideColors = fcol)

21

Principal components and a biplot may be more revealing. How many principal
components are likely to be important?

> PCg = prcomp (t(exprs(fusk)))

> plot (PCg)

22

PCg

> pairs(PCg$x[, 1:5], col = fcol, pch = 19)

Variances
30 40 50 60
| | | | |

20

10

23

0T O ST- 0T 0 0I- 0T § O 0T-
_____-__ | 1 1 1 1 | | I

-.-onnoo. . ’ l-ol-nl- -.- . WQM- © l-cn-.'- ° H
R B R SO N B Y PN L0
® ° ° 2° o ® 0y -
BN e B e | WA TRl &
ovonq o'o'oo . -.o'oﬁ-o.- - QMQ-O M o ao. &I. -
o . % o b o , Yo
..n.v... M . (% .ﬁ. -
., -.hﬂh’“‘h“. LYy m -ocno\oicpuu-'oo
TRy a N
"' ° . " .
™ ° ..onl-. N H
O | it ||
o ORI A
.'0- ° % o B

. L] L]
S A s o
o 20 o .
o o e QM?'N-M'.- ” C °
foeant| a
o 1
o, 8 o o oo o s,
— R I R TI ‘o A =
. 3 8 J ‘8, o) L
O | et b oo pe| [Lowee o [T
a &-n~ncuo.« * .-oftM.ﬂ. o .n.oubo o e .-.h..nt...c L
L] L] L]] " I.. Ll L]
o‘-" -o'l' N R oo'] AL . "- 000 -
20 O K) [} LX) X} e I
TTTTTTT T T T 1771
0T O G1- S G- SI-

10 -0 0 5 10
24

-10

10

-15

> biplot (PCg)

-10 -5 0 5 10 15

O
04008 -
06002
N 04016 15001 68001 o

PC2

36638_at 27004
I I I I I
-02 -0.1 0.0 0.1 0.2
PC1

e Question 12. Modify the biplot so that instead of plotting sample ID, the symbol
"0 is plotted for a NEG sample and "+ is plotted for a BCR/ABL sample.

e Question 13. Consider the following code

chkT = function (x, eset=fusk) {
t.test(exprs(eset) [x, eset$mol.b == "NEG"], exprs(eset) [x, eset$mol.b ==
"BCR/ABL"]) }

Use it in conjunction with the biplot to interpret expression patterns of genes that
appear to be important in defining the PCs.

3.4 Classifier construction
3.4.1 Demonstrations

Diagonal LDA has a good reputation. Let’s try it first, followed by neural net and
random forests. We will not attend to tuning the latter two, defaults or guesses for key
parameters are used.

25

> dldl = MLearn(mol.biol ~ ., fusk, dldaI, 1:40)
> dldi

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fusk, method = dldal, trainInd = 1:40)
Predicted outcome distribution for test set:

BCR/ABL NEG
27 12

> confuMat (d1d1)

predicted
given BCR/ABL NEG
BCR/ABL 15 1
NEG 12 11

> nnALL = MLearn(mol.biol ~ ., fusk, nnetI, 1:40, size = 5, decay = 0.01,
+ MaxNWts = 2000)

weights: 1506

initial value 30.706545
iter 10 value 27.726987
iter 20 value 25.392107

iter 30 value 9.871115
iter 40 value 1.945906
iter 50 value 1.158405
iter 60 value 0.875662
iter 70 value 0.827382
iter 80 value 0.745196
iter 90 value 0.657223
iter 100 value 0.651541

final value 0.651541
stopped after 100 iterations

> confuMat (nnALL)

predicted
given BCR/ABL NEG
BCR/ABL 15 1
NEG 8 15

> rfALL = MLearn(mol.biol ~ ., fusk, randomForestI, 1:40)
> rfALL

26

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fusk, method = randomForestI,
trainInd = 1:40)

Predicted outcome distribution for test set:

BCR/ABL NEG
22 17

> confuMat (rfALL)

predicted
given BCR/ABL NEG
BCR/ABL 15 1
NEG 7 16

None of these are extremely impressive, but the problem may just be very hard. An
interesting new proposal is RDA, regularized discriminant analysis (package rda, Guo,
Hastie, Tibshirani 2007 Biostatistics). This algorithm recognizes the fact that covariance
matrix estimation in high dimensional data is very inaccurate, so the estimator is shrunk
towards the identity. We have a rudimentary interface, in which the key parameters are
chosen by native cross-validation (in rda.cv) and then applied once to get the final object.

> rdaALL = MLearn(mol.biol ~ ., fusk, rdacvI, 1:40)
> rdaALL

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fusk, method = rdacvl,
trainInd = 1:40)

Predicted outcome distribution for test set:

BCR/ABL NEG
19 20

> confuMat (rdaALL)

predicted
given BCR/ABL NEG
BCR/ABL 14 2
NEG 5 18

A by-product of the algorithm is a set of retained genes that were found to play a role
in discrimination. This can be established as follows:

27

library(hgu95av2)

inds = as.numeric(which(RObject (rdaALL)$gene.list[, 1, 1 > 0))
saved = featureNames (fusk) [inds]

as.list (hgu95av2GENENAME) [saved[1:4]]

vV VvV Vv Vv

$<NA>
NULL

$<NA>
NULL

$<NA>
NULL

$<NA>
NULL

e Question 14. How can we assess the relative impacts of regularization (expanding
the covariance model beyond that of DLDA, which was shown above to do poorly,

but without relying on the full covariance) and implicit feature selection conducted
in RDA?

3.4.2 Gene set appraisal

e (Question 15. We can assess the predictive capacity of a set of genes by restricting
the ExpressionSet to that set and using the best classifier appropriate to the prob-
lem. We can also assess the incremental effect of combining gene sets, relative to
using them separately.

One collection of gene sets that is straightforward to use and interpret is pro-
vided by the keggorth package (see also GSEABase). Here’s how we can define
the ExpressionSets for genes annotated by KEGG to Environmental (Genetic)
Information Processing:

> library(keggorth)
> data(KOgraph)
> adj (KOgraph, nodes(KOgraph) [1])

$K0. JuneO7root

[1] "Metabolism"

[2] "Genetic Information Processing"

[3] "Environmental Information Processing"
[4] "Cellular Processes"

[5] "Human Diseases"

28

> EIP = getKOprobes("Environmental Information Processing")
> GIP = getKOprobes("Genetic Information Processing")
> length(intersect (EIP, GIP))

[1] 51

> EIPi = setdiff(EIP, GIP)

> GIP = setdiff(GIP, EIP)

> EIP = EIPi

> Efusk = fusk[featureNames (fusk) Jinj, EIP,]
> Gfusk = fusk[featureNames (fusk) /inJ, GIP,]

Obtain and assess the predictive capacity of the genes annotated to "Cell Growth
and Death”.

e Question 16. How many of the genes identified by RDA as important for dis-
criminating fusion are annotated to Genetic Information Processing in the KEGG
orthology?

4 Embedding features selection in cross-validation

We provide helper functions to conduct several kinds of feature selection in cross-
validation, see help(fs.absT). Here we pick the top 30 features (ranked by absolute t
statistic) for each cross-validation partition.

> d1dFS = MLearn(mol.biol ~ ., fusk, dldaI, xvalSpec("LOG", 5,
+ balKfold.xvspec(5), fs.absT(30)))
> d1dFS

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fusk, method = dldaI, trainInd = xvalSpec("L0OG",
5, balKfold.xvspec(5), fs.absT(30)))

Predicted outcome distribution for test set:

BCR/ABL NEG
42 37
history of feature selection in cross-validation available; use fsHistory()

> confuMat (d1ld1)

predicted
given BCR/ABL NEG
BCR/ABL 15 1
NEG 12 11

29

> confuMat (d1dFS)

predicted
given BCR/ABL NEG
BCR/ABL 34 3
NEG 8 34

5 Learning with array CGH

This section contains two parts, one of which is left as a pair of open questions. In the
first part, we use rpart as a device to perform segmentation of aCGH log intensity ratios.
In the second part, we consider how to extract features from the CGH profile to learn
about gene cluster activation and phenotype.

30

	Overview
	Getting acquainted with machine learning via the crabs data
	Attaching and checking the data
	A simple classifier derived by human reasoning
	Prediction via logistic regression
	The cross-validation concept
	Exploratory multivariate analysis
	Scatterplots
	Principal components; biplot
	Clustering

	Supervised learning
	RPART
	Random forests
	Linear discriminants
	Neural net
	SVM

	Learning with expression arrays
	Phenotype reduction
	Nonspecific filtering
	Exploratory work
	Classifier construction
	Demonstrations
	Gene set appraisal

	Embedding features selection in cross-validation
	Learning with array CGH

