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1 Abstract

This vignette shows the enhancements made for GlobalAncova. Basically, there
are four ideas implemented:

� decomposition of the sum of squares of a linear model ([2])

� a plotting function for the sequential decomposition

� pairwise comparison for factor levels

� adjustment for global covariates

The decomposition of the model sum of squares results in an ANOVA table,
which shows the sum of squares due to each term of a linear model. It can
be used either on a global basis or for a small group of genes on a gene-wise
basis. Pairwise comparisons allow conclusions about whether or not the gene
expressions of two levels of a factor are significantly different. An adjustment
for global covariates is possible in cases where not only one but two expression
sets per subject exist. If the second set describes the subject’s ’normal’ status,
it can be used to reduce the variance between subjects.
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Since a permutation approach is not (yet) implemented as it is in the basic Glob-
alAncova function, the functionalities described in this vignette may be seen
like rather descriptive tools. Large p–values indicate that there is no significant
effect, whereas small p–values have to interpreted with caution. Appropriate p–
values for testing any linear hypothesis about phenotype effects can be derived
using the basic function GlobalAncova.

This document was created using R version 2.7.0 and version 3.6.0 of the
GlobalAncova package.

2 Sequential and Type III Decomposition

Decomposition of sum of squares (SSQ) can be used so as to show the effect
of each factor of a linear model on the gene expression. Two types of decom-
position of the model SSQ are presented here: the sequential and the type III
decomposition. Both are computed using the extra sum of squares principle re-
peatedly, yet they have different approaches with regard to which factors are to
be kept or to be left out. For both decompositions an F-test can be performed.
The two methods are implemented in the function GlobalAncova.decomp and
can be selected by specifying the argument method , which can be either one of
”sequential” (default), ”type3” or ”all”. The latest yields a list of both. Other
arguments to GlobalAncova.decomp are xx specifying the expression matrix,
formula describing the model to be decomposed and model.dat determining
phenotype data. The names or indices of the group of genes to be analysed can
be set in the test.genes parameter.

Sequential Decomposition
In the sequential or hierarchical decomposition, the sum of squares of each term
of the model are calculated by adding to the model term after term and obtaining
the increase in model SSQ due the addition. Thus, each term is adjusted for
all preceding terms but not for the succeeding ones. Consequently, the order of
terms in the model is important as the following examples show. Applying an F-
test to the sequential SSQ is only meaningful if a logical or hierarchical order of
factors exists (e.g. main effects first followed by interaction effects). Only in this
case, it can be tested when the factors start to be insignificant. The following
examples are based on the van’t Veer breast cancer data set [3], which is included
in the GlobalAncova package. A subset of the data consisting of the expression
values for 96 patients without BRCA1 or BRCA2 mutations is available. The
dataset (vantVeer) is restricted to 1113 genes associated with 9 cancer related
pathways that are provided as a list named pathways. The phenotype data of
this study (phenodata) include the grade of the tumour (grade), whether or
not metastases were developed (metastases) and the estrogen receptor status
(ERstatus). Giving the assumption that all three factors measured have an
effect on gene expression, a possible linear model for the gene expressions could
be

> library(GlobalAncova)

> data(vantVeer)

> data(phenodata)

> data(pathways)
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> formula <- ~grade + metastases + ERstatus

We will now investigate which of the terms of the former model have effects
on the overall gene expression.

> GlobalAncova.decomp(xx = vantVeer, formula = formula,

+ model.dat = phenodata, method = "sequential")

SSQ df MS F p
Intercept 443.62541 1113 0.39858527 9.776182 0.000000e+00
grade 194.50524 2226 0.08737881 2.143158 4.095934e-180
metastases 53.97303 1113 0.04849329 1.189405 1.325949e-05
ERstatus 209.86860 1113 0.18856118 4.624878 0.000000e+00
error 4129.41514 101283 0.04077106 NA NA

Apparently, all factors of the model are significant. Note however, that
since expressions are correlated and have non-normal distribution, the p-values
derived from the F-distribution lead to alpha-inflation.

In oder to demonstrate the impact of the order of terms we will repeat the
analysis using the same model but in reverse order.

> formula2 <- ~ERstatus + metastases + grade

> GlobalAncova.decomp(xx = vantVeer, formula = formula2,

+ model.dat = phenodata, method = "sequential")

SSQ df MS F p
Intercept 443.62541 1113 0.39858527 9.776182 0.000000e+00
ERstatus 269.99053 1113 0.24257909 5.949786 0.000000e+00
metastases 63.67287 1113 0.05720833 1.403160 1.822444e-17
grade 124.68347 2226 0.05601234 1.373826 1.131387e-28
error 4129.41514 101283 0.04077106 NA NA

Differences in sum of squares due to different ordering of terms indicate a
non-orthogonal design matrix. One major property of the sequential method is
that the sums of squares due to the single terms add up to the full model SSQ.
This is not generally the case in the type III decomposition.

Type III Decomposition
In contrast to the sequential decomposition, the type III decomposition is cal-
culated by removing only a single term at a time from the full model. That is,
every term is adjusted for every other term in the model and is thus treated as if
ordered last. To select the type III sum of squares the option method = ”type3”
has to be set. The terms of the model derived from the van’t Veer dataset can
now be tested by using the following call

> GlobalAncova.decomp(xx = vantVeer, formula = formula,

+ model.dat = phenodata, method = "type3")

SSQ df MS F p
Intercept 186.06742 1113 0.16717648 4.100371 0.000000e+00
grade 124.68347 2226 0.05601234 1.373826 1.131387e-28
metastases 47.70751 1113 0.04286389 1.051331 1.154727e-01
ERstatus 209.86860 1113 0.18856118 4.624878 0.000000e+00
error 4129.41514 101283 0.04077106 NA NA
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The SSQ due to the last term is the same in both decompositions. All terms
but the last have generally smaller type III than sequential sums of squares. Only
in case of an orthogonal design matrix they have equal sums of squares in both
decompositions. This examples demonstrates how important the adjustment for
more than one phenotype–characterizing covariate can be. Besides the occurence
of metastases, grade and estrogen receptor status contribute substantially to the
observed differential gene expressions.

3 Testing Groups of Genes

In some studies, the interest lies not with the entire expression matrix but only
with certain groups of genes, e.g. pathways. The names or indices of these
genes can be specified in the option test.genes. As example, we use the first
three cancer relevant pathways given in the object pathways.

> GlobalAncova.decomp(xx = vantVeer, formula = formula,

+ model.dat = phenodata, method = "type3", test.genes = pathways[1:3])

$androgen_receptor_signaling
SSQ df MS F p

Intercept 31.070643 72 0.43153671 12.4661789 2.060236e-132
grade 9.448638 144 0.06561554 1.8954937 9.546578e-10
metastases 1.568993 72 0.02179157 0.6295123 9.939806e-01
ERstatus 29.125115 72 0.40451549 11.6855933 1.671092e-122
error 226.807952 6552 0.03461660 NA NA

$apoptosis
SSQ df MS F p

Intercept 33.073033 187 0.17686114 5.350719 3.067227e-107
grade 16.433991 374 0.04394115 1.329386 2.488033e-05
metastases 6.267846 187 0.03351789 1.014043 4.331773e-01
ERstatus 45.666917 187 0.24420811 7.388220 1.799784e-172
error 562.475084 17017 0.03305372 NA NA

$cell_cycle_control
SSQ df MS F p

Intercept 4.173999 31 0.13464512 3.268404 3.399027e-09
grade 8.024304 62 0.12942426 3.141672 5.765491e-15
metastases 1.397575 31 0.04508307 1.094356 3.295908e-01
ERstatus 10.863558 31 0.35043735 8.506590 9.911064e-37
error 116.213873 2821 0.04119598 NA NA

Estrogen receptor status and tumour grade are significant in all three path-
ways, whereas the indicator of the development of metastases is not significant
in any of them.

Gene-wise Analysis
For a more detailed analysis, it is furthermore possible to display the sequential
decomposition for each gene seperately. Due to the large numerical output, this
option will only be interesting for a limited number of genes. It can be chosen
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by setting genewise=TRUE. This option also serves the purpose of providing a
nummerical view of what is shown by the function Plot.sequential, see section
4. Just for demonstration we will show the gene-wise result of the sequential
decomposition for the first three genes of the first pathway.

> GlobalAncova.decomp(xx = vantVeer, formula = formula,

+ model.dat = phenodata, test.genes = pathways[[1]][1:3],

+ genewise = TRUE)

$terms
[1] "Intercept" "grade" "metastases" "ERstatus" "error"

$SSQ
Intercept grade metastases ERstatus error

AW025529 0.0047040 0.12624647 0.0639334130 0.19956603 2.116086
NM_001648 0.1137127 0.04911051 0.0016380351 0.03591376 2.068737
NM_001753 0.1944000 0.47020168 0.0001075029 0.07604684 4.033718
all 0.3128167 0.64555866 0.0656789509 0.31152663 8.218541

$df
Intercept grade metastases ERstatus error

gene 1 2 1 1 91
all 3 6 3 3 273

$MS
Intercept grade metastases ERstatus error

AW025529 0.0047040 0.06312324 0.0639334130 0.19956603 0.02325369
NM_001648 0.1137127 0.02455526 0.0016380351 0.03591376 0.02273337
NM_001753 0.1944000 0.23510084 0.0001075029 0.07604684 0.04432657
all 0.1042722 0.10759311 0.0218929836 0.10384221 0.03010455

$F
Intercept grade metastases ERstatus

AW025529 0.2022904 2.714547 2.749387475 8.582122
NM_001648 5.0020145 1.080141 0.072054202 1.579781
NM_001753 4.3856313 5.303835 0.002425247 1.715604
all 3.4636703 3.573982 0.727231813 3.449386

$p
Intercept grade metastases ERstatus

AW025529 0.65394791 0.071600418 0.1007351 0.004290456
NM_001648 0.02776149 0.343860324 0.7889766 0.212008777
NM_001753 0.03902333 0.006625639 0.9608305 0.193556935
all 0.01681092 0.001998268 0.5364938 0.017132770

4 Diagnostic Plots

In this section a graphical method will be introduced to visualize the result of
genewise sequential decomposition. This graphic can either be plotted on its own
or in combination with the function Plot.genes, see GlobalAncova vignette.
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The function Plot.sequential yields a bar plot with bars for the single genes
and one for the over all result. The segments of the bars indicate the extra sum
of squares due to each factor relative to the model SSQ of the corresponding
gene. In order to enable an easier comparison between the genes, the model
SSQ of each gene is set to 1. The arguments to this function are the expression
matrix xx , the formula of the model to be decomposed, the phenotype data
model.dat and optionally a vector of gene names or indices test.genes specifying
the gene set and the name of the gene set name.geneset (for the title of the
plot). As an example we will investigate the structure of the cell cycle pathway
genes from the van’t Veer study, see figure 1.

> Plot.sequential(vantVeer, formula = ~ERstatus + metastases +

+ grade, model.dat = phenodata, test.genes = pathways[[3]],

+ name.geneset = "cell cycle pathway")

NM_001274
NM_001262
NM_001259
NM_000321

AI445908
NM_000077
NM_000075
NM_000051

AF004819
M74093

AA868569
AK000660
AA632161

NM_005983
U09579

NM_007111
M96577

NM_003914
AI333092
AI343459

NM_002895
AI167145

NM_001924
NM_004064
NM_001800
NM_001799
NM_001798
NM_001789
NM_001786
NM_001760
NM_001759

Sequential Sum of Squares cell cycle pathway

ERstatus
metastases
grade

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Sequential decomposition of model sum of squares for the cell cycle genes

in the van’t Veer data.

In order to gain information about the significance of the factors, it is also
possible to combine the former plot with the GlobalAncova gene plot. The gene
plot shows for two given models the gene-wise extra sum of squares and the
mean square error in a barplot. In the combined plot, the gene plot is used to
show the extra sum of squares due to all factors of the model altogether. Hence,
not only the decomposition can be visualized but also the significance of the full
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model for each gene. For displaying again the effects on the cell cycle genes in
the van’t Veer data with the combined plot (figure 2) we use

> Plot.all(vantVeer, formula = ~ERstatus + metastases +

+ grade, model.dat = phenodata, test.genes = pathways[[3]],

+ name.geneset = "cell cycle pathway")

Sequential Sum of Squares − cell cycle pathway

ERstatus
metastases
grade

−MS model
MS error
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0.0 0.2 0.4 0.6 0.8 1.0
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   NM_001789   
   NM_001786   
   NM_001760   
   NM_001759   

Mean Sum of Squares

0.0 0.2 0.4 0.6 0.8 1.0

all 31 genes

0.00 0.05 0.10 0.15 0.20

Figure 2: Sequential decomposition of model sum of squares and model mean squares

for the cell cycle genes in the van’t Veer data.

From figure 2 we can conclude, that effects of the model terms vary from
gene to gene. ERstatus seems to play a major role, however one has to remem-
ber, that a sequential decomposition is displayed and ERstatus was ordered
first. This question could be answered by using a different order for the model
formula. Most importantly, the graph on the left can be used for understanding
the significane of the model displayed on the right hand graph. This graphical
method helps to investigate a lot of different and complex models, e.g. differen-
tial co-expression.

5 Pairwise Comparisons of Factor Levels

Some studies focus on the connection between a single factor and gene expres-
sion. This is, for instance, the case when the factor in question provides some
kind of classification. To investigate how a classification is reflected in the gene
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expression, pair-wise comparisons of factor levels can be used. The method pre-
sented here analyses for a pair of factor levels whether the genes under observa-
tion are diffentely expressed, i.e. it can detect whether the difference between
two levels is reflected in the gene expression. As measurement for the extra
sum of squares due to this difference, the method uses the decrease in resid-
ual sum of squares obtained when the two are set to the same level. Pairwise
comparisons can be performed by using the function pair.compare. Similarly
to the function GlobalAncova.decomp, pair.compare requires the arguments
xx (expression matrix), formula (model) and model.dat (phenotype data). Fur-
thermore, the argument group has to be set to the name of the factor which is to
be analysed. The function yields an ANOVA table with a row for each possible
combination of the factor levels. Since pair-wise comparison is a multiple testing
problem, not only the p-values based on the permutation test are returned but
also the Bonferroni-Holm adjusted p-values.
As an example we will perform pair-wise comparisons of the three levels of
tumour grade in the van’t Veer data.

> pair.compare(xx = vantVeer, formula = ~grade, model.dat = phenodata,

+ group = "grade", perm = 100)

SSQ df MS F p.perm
1 : 2 43.80796 1113 0.03936025 0.9273622 0.64
1 : 3 103.10757 1113 0.09263932 2.1826641 0.00
2 : 3 114.99741 1113 0.10332202 2.4343578 0.00
error 4393.25676 103509 0.04244323 NA NA

There are essential differences between stages 1 and 3 and 2 and 3, respec-
tively, whereas stages 1 and 2 seem to be rather similar.

6 Adjusting for a Global Covariate

Considerable variability between patients is the rule in medical statistics. There-
fore, adjustment for covariates is often applied so as to reduce variance. Natural
candidates for adjustement are covariates representing the baseline status of pa-
tients. For microarray data, gene expressions from normal (non-cancer) tissue
of a patient might play this role of giving baseline status, which can then be
compared to the tumour probe of the same patient. Analogously, tumour probes
of a former biopsy might be used to trace changes.
The adjustment for covariates is also implemented in the GlobalAncova.decomp
call. It uses the arguments zz and zz.per.gene. The former defines the expres-
sion matrix of the global covariate, and the later is a logical value specifying
whether or not different parameters should be used for each gene.

The data for the following examples are taken from the colon cancer study
of [1]. In this study, tumour as well as normal tissue expressions were measured.
Just for demonstration we picked a set of 1747 genes which are associated with
cell proliferation and which are measured in tumour and normal tissue of 12
colon cancer patients. The most important factors considered are the carci-
noma stage (UICC.stage), the gender (sex) and the location of the tumour
(distal/proximal). At first a type III decomposition will be performed only
for the tumour data in order to show potential differences made by the later
adjustment:

8



> data(colon.tumour)

> data(colon.normal)

> data(colon.pheno)

> formula <- ~UICC.stage + sex + location

> GlobalAncova.decomp(xx = colon.tumour, formula = formula,

+ model.dat = colon.pheno, method = "type3")

SSQ df MS F p
Intercept 742527.9761 1747 425.0303241 2345.1917477 0.00000000
UICC.stage 242.3041 1747 0.1386973 0.7652905 1.00000000
sex 269.6725 1747 0.1543632 0.8517306 0.99999380
location 339.0278 1747 0.1940628 1.0707814 0.02669185
error 2532.9374 13976 0.1812348 NA NA

In this analysis neither UICC stage nor sex seem to have an influence on gene
expression. We will see wehter this conclusion remains true after adjustment.
In order to adjust for the expression in normal state the of cells, intuitively
we could use the difference between tumour and normal tissue expression for
analysis:

> GlobalAncova.decomp(xx = colon.tumour - colon.normal,

+ formula = formula, model.dat = colon.pheno, method = "type3")

SSQ df MS F p
Intercept 2062.5365 1747 1.1806162 4.5956873 0.00000000
UICC.stage 459.3349 1747 0.2629278 1.0234775 0.25531679
sex 428.9081 1747 0.2455112 0.9556814 0.89368340
location 482.5561 1747 0.2762199 1.0752183 0.02022423
error 3590.3861 13976 0.2568965 NA NA

In this example the adjustment does not yield a significant difference to the
previous result. Note however, that for the UICC status a considerable reduction
in p–value is achieved (see type3 results).

Adjustment by using one parameter for all genes
A more general way is to adjust by xx − β · zz allowing β to be different from
1. The parameter β is estimated as the least square estimate of the model
xx = β · zz. Thus, we account for a relatively different ground level in the two
expression sets. This kind of adjustment can be chosen by specifying zz as the
gene expression matrix of the global covariate:

> GlobalAncova.decomp(xx = colon.tumour, formula = formula,

+ model.dat = colon.pheno, method = "all", zz = colon.normal)

$adjustment
ssq df

adjustment 2017200 1

$sequential
SSQ df MS F p

Intercept 4779.2569 1747 2.7356937 10.6058621 0.00000000
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UICC.stage 374.1633 1747 0.2141747 0.8303224 0.99999978
sex 431.1914 1747 0.2468182 0.9568760 0.88723374
location 484.2787 1747 0.2772059 1.0746844 0.02092398
error 3604.7348 13975 0.2579417 NA NA

$typeIII
SSQ df MS F p

Intercept 2026.3657 1747 1.1599117 4.4967985 0.00000000
UICC.stage 461.6535 1747 0.2642550 1.0244760 0.24661362
sex 431.2039 1747 0.2468253 0.9569038 0.88708056
location 484.2787 1747 0.2772059 1.0746844 0.02092398
error 3604.7348 13975 0.2579417 NA NA

Adjustment by using a different parameter for every gene
In the last approach using the model xx = zzβ for adjustment, the parameter
vector β is estimated on a gene-wise basis. This adjustement can be selected
by additionally setting the option zz.per.gene = TRUE . However, the biological
meaning of this model seems unclear.

> GlobalAncova.decomp(xx = colon.tumour, formula = formula,

+ model.dat = colon.pheno, method = "all", zz = colon.normal,

+ zz.per.gene = TRUE)

$adjustment
ssq df

adjustment 2021963 1747

$sequential
SSQ df MS F p

Intercept 5.552879 1747 0.003178522 0.01076723 1.0000000
UICC.stage 370.891238 1747 0.212301796 0.71917107 1.0000000
sex 437.010911 1747 0.250149348 0.84737942 0.9999962
location 486.723097 1747 0.278605093 0.94377309 0.9428552
error 3610.043251 12229 0.295203471 NA NA

$typeIII
SSQ df MS F p

Intercept 222.9053 1747 0.1275932 0.4322213 1.0000000
UICC.stage 462.8026 1747 0.2649128 0.8973905 0.9983780
sex 436.9670 1747 0.2501242 0.8472943 0.9999962
location 486.7231 1747 0.2786051 0.9437731 0.9428552
error 3610.0433 12229 0.2952035 NA NA
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