
Using the GEOmetadb package

Jack Zhu∗and Sean Davis†

Genetics Branch, National Cancer Institute, National Institutes of Health

September 10, 2008

Contents

1 Overview of GEOmetadb 1
1.1 What is GEOmetadb? . 2
1.2 Conversion capabilities . 3
1.3 What GEOmetadb is not . 3

2 Getting Started 3
2.1 Getting the GEOmetadb database . 3
2.2 A word about SQL . 4

3 Examples 5
3.1 Interacting with the database . 5
3.2 Writing SQL queries and getting results . 6
3.3 Conversion of GEO entity types . 9
3.4 More advanced queries . 10

1 Overview of GEOmetadb

The NCBI Gene Expression Omnibus (GEO) represents the largest repository of microarray
data in existence. One difficulty in dealing with GEO is finding the microarray data that
is of interest. As part of the NCBI Entrez search system, GEO can be searched online
via web pages or using NCBI Eutils. However, the web search is not as full-featured as it
could be, particularly for programmatic access. NCBI Eutils offers another option for finding
data within the vast stores of GEO, but it is cumbersome to use, often requiring multiple
complicated Eutils calls to get at the relevant information. We have found it absolutely

∗zhujack@mail.nih.gov
†sdavis2@mail.nih.gov

1

gse
bioc-package
…

gse table

gpl
…

gpl table

gsm
gpl
…

gsm table

gds
…

gds_subset

gse
gpl

gse_gpl

gse
gsm

gse_gsm

gds
gpl
gse
…

gds table

gse
gpl

sMatrix

Figure 1: A graphical representation (sometimes called an Entity-Relationship Diagram) of
the relationships between the tables in the GEOmetadb SQLite database

critical to have ready access not just to the microarray data, but to the metadata describing
the microarray experiments. To this end we have created GEOmetadb.

1.1 What is GEOmetadb?

The GEOmetadb is an attempt to make querying the metadata describing microarray exper-
iments, platforms, and datasets both easier and more powerful. At the heart of GEOmetadb
is a SQLite database that stores nearly all the metadata associated with all GEO data types
including GEO samples (GSM), GEO platforms (GPL), GEO data series (GSE), and curated
GEO datasets (GDS), as well as the relationships between these data types. This database
is generated by our server by parsing all the records in GEO and needs to be downloaded
via a simple helper function to the user’s local machine before GEOmetadb is useful. Once
this is done, the entire GEO database is accessible with simple SQL-based queries. With the
GEOmetadb database, queries that are simply not possible using NCBI tools or web pages
are often quite simple. The relationships between the tables in the GEOmetadb SQLite
database can be seen in figure 1.

2

1.2 Conversion capabilities

A very typical problem for large-scale consumers of GEO data is to determine the relation-
ships between various GEO accession types. As examples, consider the following questions:

� What samples are associated with GEO platform“GPL96”, which represents the Affymetrix
hgu133a array?

� What GEO Series were performed using “GPL96”?

� What samples are in my favorite three GEO Series records?

� How many samples are associated with the ten most popular GEO platforms?

Because these types of questions are common, GEOmetadb contains the function geoConvert

that addresses these questions directly and efficiently.

1.3 What GEOmetadb is not

We have faithfully parsed and maintained in GEO when creating GEOmetadb. This means
that limitations inherent to GEO are also inherent in GEOmetadb. We have made no attempt
to curate, semantically recode, or otherwise“clean up”GEO; to do so would require significant
resources, which we do not have.

GEOmetadb does not contain any microarray data. For access to microarray data from
within R/Bioconductor, please look at the GEOquery package. In fact, we would expect that
many users will find that the combination of GEOmetadb and GEOquery is quite powerful.

2 Getting Started

Once GEOmetadb is installed (see the Bioconductor website for full installation instructions),
we are ready to begin.

2.1 Getting the GEOmetadb database

This package does not come with a pre-installed version of the database. This has the
advantage that the user will get the most up-to-date version of the database to start; the
database can be re-downloaded using the same command as often as desired. First, load the
library.

> library(GEOmetadb)

The download and uncompress steps are done automatically with a single command,
getSQLiteFile.

> getSQLiteFile()

3

[1] "Unzipping..."

[1] "Metadata associate with downloaded file"

name value

1 schema version 1.0

2 creation timestamp 2008-09-06 06:30:14

[1] "/home/biocbuild/bbs-2.2-bioc/meat/GEOmetadb/inst/doc/GEOmetadb.sqlite"

The default storage location is in the current working directory and the default filename
is “GEOmetadb.sqlite”; it is best to leave the name unchanged unless there is a pressing
reason to change it.

Since this SQLite file is of key importance in GEOmetadb, it is perhaps of some interest
to know some details about the file itself.

> file.info("GEOmetadb.sqlite")

size isdir mode

GEOmetadb.sqlite 638556160 FALSE 644

mtime

GEOmetadb.sqlite 2008-09-10 02:50:09

ctime

GEOmetadb.sqlite 2008-09-10 02:50:09

atime uid gid uname

GEOmetadb.sqlite 2008-09-10 02:50:10 691 692 biocbuild

grname

GEOmetadb.sqlite compbio

Now, the SQLite file is available for connection. The standard DBI functionality as
implemented in RSQLite function dbConnect makes the connection to the database. The
dbDisconnect function disconnects the connection.

> con <- dbConnect(SQLite(), "GEOmetadb.sqlite")

> dbDisconnect(con)

[1] TRUE

The variable con is an RSQLite connection object.

2.2 A word about SQL

The Structured Query Language, or SQL, is a very powerful and standard way of working
with relational data. GEO is composed of several data types, all of which are related to
each other; in fact, NCBI uses a relational SQL database for metadata storage and querying.
SQL databases and SQL itself are designed specifically to work efficiently with just such data.
While the goal of many programming projects and programmers is to hide the details of SQL

4

from the user, we are of the opinion that such efforts may be counterproductive, particularly
with complex data and the need for ad hoc queries, both of which are characteristics with
GEO metadata. We have taken the view that exposing the power of SQL will enable users
to maximally utilize the vast data repository that is GEO. We understand that many users
are not accustomed to working with SQL and, therefore, have devoted a large section of the
vignette to working examples. Our goal is not to teach SQL, so a quick tutorial of SQL is
likely to be beneficial to those who have not used it before. Many such tutorials are available
online and can be completed in 30 minutes or less.

3 Examples

3.1 Interacting with the database

The functionality covered in this section is covered in much more detail in the DBI and
RSQLite package documentation. We cover enough here only to be useful.

Again, we connect to the database.

> con <- dbConnect(SQLite(), "GEOmetadb.sqlite")

The dbListTables function lists all the tables in the SQLite database handled by the
connection object con.

> geo_tables <- dbListTables(con)

> geo_tables

[1] "gds" "gds_subset"

[3] "geoConvert" "geodb_column_desc"

[5] "gpl" "gse"

[7] "gse_gpl" "gse_gsm"

[9] "gsm" "metaInfo"

[11] "sMatrix"

There is also the dbListFields function that can list database fields associated with a
table.

> dbListFields(con, "gse")

[1] "ID" "title"

[3] "gse" "status"

[5] "submission_date" "last_update_date"

[7] "pubmed_id" "summary"

[9] "type" "contributor"

[11] "web_link" "overall_design"

[13] "repeats" "repeats_sample_list"

[15] "variable" "variable_description"

[17] "contact" "supplementary_file"

5

Sometimes it is useful to get the actual SQL schema associated with a table. As an
example of doing this and using an RSQLite shortcut function, sqliteQuickSQL, we can get
the table schema for the gpl table.

> sqliteQuickSQL(con, "PRAGMA TABLE_INFO(gpl)")

cid name type notnull dflt_value pk

1 0 ID REAL 0 <NA> 0

2 1 title TEXT 0 <NA> 0

3 2 gpl TEXT 0 <NA> 0

4 3 status TEXT 0 <NA> 0

5 4 submission_date TEXT 0 <NA> 0

6 5 last_update_date TEXT 0 <NA> 0

7 6 technology TEXT 0 <NA> 0

8 7 distribution TEXT 0 <NA> 0

9 8 organism TEXT 0 <NA> 0

10 9 manufacturer TEXT 0 <NA> 0

11 10 manufacture_protocol TEXT 0 <NA> 0

12 11 coating TEXT 0 <NA> 0

13 12 catalog_number TEXT 0 <NA> 0

14 13 support TEXT 0 <NA> 0

15 14 description TEXT 0 <NA> 0

16 15 web_link TEXT 0 <NA> 0

17 16 contact TEXT 0 <NA> 0

18 17 data_row_count REAL 0 <NA> 0

19 18 supplementary_file TEXT 0 <NA> 0

20 19 bioc_package TEXT 0 <NA> 0

3.2 Writing SQL queries and getting results

Select 5 records from the gse table and show the first 7 columns.

> rs <- dbGetQuery(con, "select * from gse limit 5")

> rs[, 1:7]

ID

1 1

2 2

3 3

4 4

5 5

title

1 NHGRI_Melanoma_class

2 Cerebellar development

6

3 Renal Cell Carcinoma Differential Expression

4 Diurnal and Circadian-Regulated Genes in Arabidopsis

5 Global profile of germline gene expression in C. elegans

gse status submission_date

1 GSE1 Public on Jan 22 2001 2001-01-22

2 GSE2 Public on Apr 26 2001 2001-04-19

3 GSE3 Public on Jul 19 2001 2001-07-19

4 GSE4 Public on Jul 20 2001 2001-07-20

5 GSE5 Public on Jul 24 2001 2001-07-24

last_update_date pubmed_id

1 2005-05-29 10952317

2 2005-05-29 NA

3 2005-05-29 11691851

4 2005-05-29 11158533

5 2005-07-18 11030340

Get the GEO series accession and title from GEO series that were submitted by “Sean
Davis”. The “

> rs <- dbGetQuery(con, paste("select gse,title from gse where",

+ "contributor like '%Sean%Davis%'", sep = " "))

> rs

gse

1 GSE2553

2 GSE4406

3 GSE5357

4 GSE7376

5 GSE8486

6 GSE9328

title

1 NHGRI_Sarcoma_Baird

2 Gene expression profiling of CD4+ T-cells and GM6990 lymphoblastoid cell lines

3 NHGRI Menin ChIP-Chip

4 Detection of novel amplification units in prostate cancer

5 Whole genome DNAse hypersensitivity in human CD4+ T-cells

6 ATF2 knockout in papillomas

As another example, GEOmetadb can find all samples on GPL96 (Affymetrix hgu133a)
that have .CEL files available for download.

> rs <- dbGetQuery(con, paste("select gsm,supplementary_file",

+ "from gsm where gpl='GPL96'", "and supplementary_file like '%CEL.gz'"))

> dim(rs)

7

[1] 9953 2

But why limit to only GPL96? Why not look for all Affymetrix arrays that have .CEL
files? And list those with their associated GPL information, as well as the Bioconductor
annotation package name?

> rs <- dbGetQuery(con, paste("select gpl.bioc_package,gsm.gpl,",

+ "gsm,gsm.supplementary_file", "from gsm join gpl on gsm.gpl=gpl.gpl",

+ "where gpl.manufacturer='Affymetrix'",

+ "and gsm.supplementary_file like '%CEL.gz' "))

> rs[1:5,]

bioc_package gpl gsm

1 hu6800 GPL80 GSM575

2 hu6800 GPL80 GSM576

3 hu6800 GPL80 GSM577

4 hu6800 GPL80 GSM578

5 hu6800 GPL80 GSM579

supplementary_file

1 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM575/GSM575.cel.gz

2 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM576/GSM576.cel.gz

3 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM577/GSM577.cel.gz

4 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM578/GSM578.cel.gz

5 ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/supplementary/samples/GSMnnn/GSM579/GSM579.cel.gz

Of course, we can combine programming and data access. A simple sapply example
shows how to query each of the tables for number of records.

> getTableCounts <- function(tableName, conn) {

+ sql <- sprintf("select count(*) from %s",

+ tableName)

+ return(dbGetQuery(conn, sql)[1, 1])

+ }

> do.call(rbind, sapply(geo_tables, getTableCounts,

+ con, simplify = FALSE))

[,1]

gds 2089

gds_subset 11858

geoConvert 1144612

geodb_column_desc 104

gpl 4962

gse 9581

gse_gpl 12950

8

gse_gsm 280919

gsm 250301

metaInfo 2

sMatrix 11979

3.3 Conversion of GEO entity types

Large-scale consumers of GEO data might want to convert GEO entity type from one to
others, e.g. finding all GSM and GSE associated with ’GPL96’. Function goeConvert does
the conversion with a very fast mapping between entity types.

Covert ’GPL96’ to other possible types in the GEOmetadb.sqlite.

> conversion <- geoConvert("GPL96")

Check what GEO types and how many entities in each type in the conversion.

> lapply(conversion, dim)

$gse

[1] 579 2

$gsm

[1] 18101 2

$gds

[1] 254 2

$sMatrix

[1] 596 2

> conversion$gse[1:5,]

from_acc to_acc

1 GPL96 GSE1000

2 GPL96 GSE10024

3 GPL96 GSE10043

4 GPL96 GSE10072

5 GPL96 GSE10089

> conversion$gsm[1:5,]

from_acc to_acc

1 GPL96 GSM100454

2 GPL96 GSM100455

3 GPL96 GSM100456

4 GPL96 GSM100457

5 GPL96 GSM100458

9

> conversion$gds[1:5,]

from_acc to_acc

1 GPL96 GDS1023

2 GPL96 GDS1036

3 GPL96 GDS1050

4 GPL96 GDS1062

5 GPL96 GDS1063

> conversion$sMatrix[1:5,]

from_acc to_acc

1 GPL96 GSE1000_series_matrix.txt.gz

2 GPL96 GSE10024_series_matrix.txt.gz

3 GPL96 GSE10043_series_matrix.txt.gz

4 GPL96 GSE10072_series_matrix.txt.gz

5 GPL96 GSE10089_series_matrix.txt.gz

3.4 More advanced queries

Now, for something a bit more complicated, we would like to find all the human breast
cancer-related Affymetrix gene expression GEO series.

> sql <- paste("SELECT DISTINCT gse.title,gse.gse",

+ "FROM", " gsm JOIN gse_gsm ON gsm.gsm=gse_gsm.gsm",

+ " JOIN gse ON gse_gsm.gse=gse.gse", " JOIN gse_gpl ON gse_gpl.gse=gse.gse",

+ " JOIN gpl ON gse_gpl.gpl=gpl.gpl", "WHERE",

+ " gsm.molecule_ch1 like '%total RNA%' AND",

+ " gse.title LIKE '%breast cancer%' AND",

+ " gpl.organism LIKE '%Homo sapiens%'",

+ sep = " ")

> rs <- dbGetQuery(con, sql)

> dim(rs)

[1] 90 2

> print(rs[1:5,], right = FALSE)

gse.title

1 A Modular Analysis of Breast Cancer Reveals a Novel Low-Grade Molecular Signature in Estrogen Receptor-Positive Tumors

2 A Phase II Study of Neoadjuvant Gemcitabine Plus Doxorubicin Followed by Gemcitabine Plus Cisplatin in Breast Cancer

3 A gene expression signature predicting the recurrence of tamoxifen-treated primary breast cancer.

4 A genomic view of estrogen actions in human breast cancer cells

5 A molecular 'signature' of primary breast cancer cultures; patterns resembling tumor tissue.

10

gse.gse

1 GSE2294

2 GSE8465

3 GSE9893

4 GSE1864

5 GSE4000

Finally, it is probably a good idea to close the connection, please see DBI for detail.

> dbDisconnect(con)

[1] TRUE

If you want to remove old GEOmetadb.sqlite file before retrieve a new version from the
server, execute the following codes:

> file.remove("GEOmetadb.sqlite")

[1] TRUE

11

	Overview of GEOmetadb
	What is GEOmetadb?
	Conversion capabilities
	What GEOmetadb is not

	Getting Started
	Getting the GEOmetadb database
	A word about SQL

	Examples
	Interacting with the database
	Writing SQL queries and getting results
	Conversion of GEO entity types
	More advanced queries

