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1 The Biostrings-based genome data packages

The Bioconductor project provides data packages that contain the full genome sequences of
a given organism. These packages are called Biostrings-based genome data packages because
the sequences they contain are stored in some of the basic containers defined in the Biostrings
package, like the DNAString , the DNAStringSet or the MaskedDNAString containers. Regard-
less of the particular sequence data that they contain, all the Biostrings-based genome data
packages are very similar and can be manipulated in a consistent and easy way. They all require
the BSgenome package in order to work properly. This package, unlike the Biostrings-based
genome data packages, is a software package that provides the infrastructure needed to support
them (this is why the Biostrings-based genome data packages are also called BSgenome data
packages). The BSgenome package itself requires the Biostrings package.

See the man page for the available.genomes function (?available.genomes) for more
information about how to get the list of all the BSgenome data packages currently available
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in your version of Bioconductor (you need an internet connection so that available.genomes
can query the Bioconductor package repositories).

More genomes can be added if necessary. Note that the process of making a BSgenome
data package is not yet documented but you are welcome to ask for help on the bioc-devel
mailing list (http://bioconductor.org/docs/mailList.html) if you need a genome that is
not yet available.

2 Finding an arbitrary nucleotide pattern in a chromosome

In this section we show how to find (or just count) the occurences of some arbitrary nucleotide
pattern in a chromosome. The basic tool for this is the matchPattern (or countPattern)
function from the Biostrings package.

First we need to install and load the BSgenome data package for the organism that we
want to look at. In our case, we want to search chromosome I of Caenorhabditis elegans.

UCSC provides several versions of the C. elegans genome: ce1, ce2 and ce4. These versions
correspond to different releases from WormBase, which are the WS100, WS120 and WS170
releases, respectively. See http://genome.ucsc.edu/FAQ/FAQreleases#release1 for the list
of all UCSC genome releases and for the correspondance between UCSC versions and release
names.

The BSgenome data package for the ce2 genome is BSgenome.Celegans.UCSC.ce2 . Note
that ce1 and ce4 are not available in Bioconductor but they could be added if there is demand
for them.

See ?available.genomes for how to install BSgenome.Celegans.UCSC.ce2 . Then load the
package and display the single object defined in it:

> library(BSgenome.Celegans.UCSC.ce2)

> ls("package:BSgenome.Celegans.UCSC.ce2")

[1] "Celegans"

> Celegans

C. elegans genome
|
| organism: Caenorhabditis elegans
| provider: UCSC
| provider version: ce2
| release date: Mar. 2004
| release name: WormBase v. WS120
|
| single sequences (see '?seqnames'):
| chrI chrII chrIII chrIV chrV chrX chrM
|
| multiple sequences (see '?mseqnames'):
| upstream1000 upstream2000 upstream5000
|
| (use the '$' or '[[' operator to access a given sequence)
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Celegans is a BSgenome object:

> class(Celegans)

[1] "BSgenome"
attr(,"package")
[1] "BSgenome"

When displayed, some basic information about the origin of the genome is shown (organism,
provider, provider version, etc...) followed by the index of single sequences and eventually an
additional index of multiple sequences. Methods (adequately called accessor methods) are
defined for individual access to this information:

> organism(Celegans)

[1] "Caenorhabditis elegans"

> provider(Celegans)

[1] "UCSC"

> providerVersion(Celegans)

[1] "ce2"

> seqnames(Celegans)

[1] "chrI" "chrII" "chrIII" "chrIV" "chrV" "chrX" "chrM"

> mseqnames(Celegans)

[1] "upstream1000" "upstream2000" "upstream5000"

See the man page for the BSgenome class (?BSgenome) for a complete list of accessor
methods and their descriptions.

Now we are ready to display chromosome I:

> Celegans$chrI

15080483-letter "DNAString" instance
seq: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA...TTAGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC

Note that this chrI sequence corresponds to the forward strand (aka direct or sense or
positive or plus strand) of chromosome I. UCSC, and genome providers in general, don’t provide
files containing the nucleotide sequence of the reverse strand (aka indirect or antisense or
negative or minus or opposite strand) of the chromosomes because these sequences can be
deduced from the forward sequences by taking their reverse complements. The BSgenome
data packages are no exceptions: they only provide the forward strand sequence of every
chromosome. See ?reverseComplement for more details about the reverse complement of a
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DNAString object. It is important to remember that, in practice, the reverse strand sequence
is almost never needed. The reason is that, in fact, a reverse strand analysis can (and should)
always be transposed into a forward strand analysis. Therefore trying to compute the reverse
strand sequence of an entire chromosome by applying reverseComplement to its forward strand
sequence is almost always a bad idea. See the Finding an arbitrary nucleotide pattern in an
entire genome section of this document for how to find arbitrary patterns in the reverse strand
of a chromosome.

The number of bases in this sequence can be retrieved with:

> chrI <- Celegans$chrI

> length(chrI)

[1] 15080483

Some basic stats:

> afI <- alphabetFrequency(chrI)

> afI

A C G T M R W S Y K
4838561 2697177 2693544 4851201 0 0 0 0 0 0

V H D B N - +
0 0 0 0 0 0 0

> sum(afI) == length(chrI)

[1] TRUE

Count all exact matches of pattern "ACCCAGGGC":

> p1 <- "ACCCAGGGC"

> countPattern(p1, chrI)

[1] 0

Like most pattern matching functions in Biostrings, the countPattern and matchPat-
tern functions support inexact matching. One form of inexact matching is to allow a few
mismatching letters per match. Here we allow at most one:

> countPattern(p1, chrI, max.mismatch=1)

[1] 235

With the matchPattern function, the locations of the matches are stored in an XStringViews
object:

> m1 <- matchPattern(p1, chrI, max.mismatch=1)

> m1[4:6]
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Views on a 15080483-letter DNAString subject
subject: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCT...AGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC
views:

start end width
[1] 187350 187358 9 [ACCCAAGGC]
[2] 213236 213244 9 [ACCCAGGGG]
[3] 424133 424141 9 [ACCCAGGAC]

> class(m1)

[1] "XStringViews"
attr(,"package")
[1] "Biostrings"

The mismatch function (new in Biostrings 2) returns the positions of the mismatching
letters for each match:

> mismatch(p1, m1[4:6])

[[1]]
[1] 6

[[2]]
[1] 9

[[3]]
[1] 8

Note: The mismatch method is in fact a particular case of a (vectorized) alignment func-
tion where only “replacements” are allowed. Current implementation is slow but this will be
addressed.

It may happen that a match is out of limits like in this example:

> p2 <- DNAString("AAGCCTAAGCCTAAGCCTAA")

> m2 <- matchPattern(p2, chrI, max.mismatch=2)

> m2[1:4]

Views on a 15080483-letter DNAString subject
subject: GCCTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCT...AGGCTTAGGCTTAGGCTTAGGTTTAGGCTTAGGC
views:

start end width
[1] -1 18 20 [ GCCTAAGCCTAAGCCTAA]
[2] 5 24 20 [AAGCCTAAGCCTAAGCCTAA]
[3] 11 30 20 [AAGCCTAAGCCTAAGCCTAA]
[4] 17 36 20 [AAGCCTAAGCCTAAGCCTAA]

> p2 == m2[1:4]
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[1] FALSE TRUE TRUE TRUE

> mismatch(p2, m2[1:4])

[[1]]
[1] 1 2

[[2]]
integer(0)

[[3]]
integer(0)

[[4]]
integer(0)

The list of exact matches and the list of inexact matches can both be obtained with:

> m2[p2 == m2]

> m2[p2 != m2]

Note that the length of m2[p2 == m2] should be equal to countPattern(p2, chrI, max.mismatch=0).

3 Finding an arbitrary nucleotide pattern in an entire genome

Now we want to extend our analysis to the forward and reverse strands of all the C. elegans
chromosomes. More precisely, here is the analysis we want to perform:

� The input dictionary: Our input is a dictionary of 50 patterns. Each pattern is a short
nucleotide sequence of 15 to 25 bases (As, Cs, Gs and Ts only, no Ns). It is stored in a
FASTA file called "ce2dict0.fa". See the Finding all the patterns of a constant width
dictionary in an entire genome section of this document for a very efficient way to deal
with the special case where all the patterns in the input dictionary have the same length.

� The target: Our target (or subject) is the forward and reverse strands of the seven C.
elegans chromosomes (14 sequences in total). We want to find and report all occurences
(or hits) of every pattern in the target. Note that a given pattern can have 0, 1 or several
hits in 0, 1 or 2 strands of 0, 1 or several chromosomes.

� Exact or inexact matching? We are interested in exact matches only (for now).

� The output: We want to put the results of this analysis in a file so we can send it to our
collaborators for some post analysis work. Our collaborators are not necessarily familiar
with R or Bioconductor so dumping a high-level R object (like a list or a data frame) into
an .rda file is not an option. For maximum portability (one of our collaborators wants
to use Microsoft Excel for the post analysis) we choose to put our results in a tabulated
file where one line describes one hit. The columns (or fields) of this file will be (in this
order):
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– seqname: the name of the chromosome where the hit occurs.

– start: an integer giving the starting position of the hit.

– end: an integer giving the ending position of the hit.

– strand: a plus (+) for a hit in the positive strand or a minus (-) for a hit in the
negative strand.

– patternID: we use the unique ID provided for every pattern in the "ce2dict0.fa"
file.

Let’s start by loading the input dictionary with:

> ce2dict0_file <- system.file("extdata", "ce2dict0.fa", package="BSgenome")

> ce2dict0 <- read.DNAStringSet(ce2dict0_file, "fasta")

> ce2dict0

A DNAStringSet instance of length 50
width seq names

[1] 18 GCGAAACTAGGAGAGGCT pattern01
[2] 25 CTGTTAGCTAATTTTAAAAATAAAT pattern02
[3] 24 ACTACCACCCAAATTTAGATATTC pattern03
[4] 24 AAATTTTTTTTGTTGCAAATTTGA pattern04
[5] 25 TCTTCTTGGCTTTGGTGGTACTTTT pattern05
[6] 16 AACAATTATCTATAAT pattern06
[7] 22 GGTTTTGGAGAGTGATGCACGT pattern07
[8] 21 TTTAATGAACCCCAGCAACTC pattern08
[9] 18 TACTGAAACTCCCGCGAG pattern09
... ... ...
[42] 22 AAAATAAGATTCTATTAAAATA pattern42
[43] 15 GTTTTAATTCTAATT pattern43
[44] 18 CATCGTTTCAACCGTTCG pattern44
[45] 19 TAAAAAATCAAAACTTTTG pattern45
[46] 24 TTTTGAACAAAGCATGTCTAACTA pattern46
[47] 20 TAAACGAATTTAGGATATAT pattern47
[48] 19 AAGGACCAGGATTGGCACG pattern48
[49] 24 AAATAACTGCGTAAAAACACAATA pattern49
[50] 22 AAAATGCCGGAGCATTTTAAAG pattern50

Here is how we can write the functions that will perform our analysis:

> writeHits <- function(seqname, matches, strand, file="", append=FALSE)

+ {

+ if (file.exists(file) && !append)

+ warning("existing file ", file, " will be overwritten with 'append=FALSE'")

+ if (!file.exists(file) && append)

+ warning("new file ", file, " will have no header with 'append=TRUE'")

+ hits <- data.frame(seqname=rep.int(seqname, length(matches)),
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+ start=start(matches),

+ end=end(matches),

+ strand=rep.int(strand, length(matches)),

+ patternID=names(matches),

+ check.names=FALSE)

+ write.table(hits, file=file, append=append, quote=FALSE, sep="\t",

+ row.names=FALSE, col.names=!append)

+ }

> runAnalysis1 <- function(dict0, outfile="")

+ {

+ library(BSgenome.Celegans.UCSC.ce2)

+ seqnames <- seqnames(Celegans)

+ seqnames_in1string <- paste(seqnames, collapse=", ")

+ cat("Target:", providerVersion(Celegans),

+ "chromosomes", seqnames_in1string, "\n")

+ append <- FALSE

+ for (seqname in seqnames) {

+ subject <- Celegans[[seqname]]

+ cat(">>> Finding all hits in chromosome", seqname, "...\n")

+ for (i in seq_len(length(dict0))) {

+ patternID <- names(dict0)[i]

+ pattern <- dict0[[i]]

+ plus_matches <- matchPattern(pattern, subject)

+ names(plus_matches) <- rep.int(patternID, length(plus_matches))

+ writeHits(seqname, plus_matches, "+", file=outfile, append=append)

+ append <- TRUE

+ rcpattern <- reverseComplement(pattern)

+ minus_matches <- matchPattern(rcpattern, subject)

+ names(minus_matches) <- rep.int(patternID, length(minus_matches))

+ writeHits(seqname, minus_matches, "-", file=outfile, append=append)

+ }

+ cat(">>> DONE\n")

+ unload(Celegans, seqname)

+ }

+ }

Some important notes about the implementation of the runAnalysis1 function:

� subject <- Celegans[[seqname]] is the code that actually loads a chromosome se-
quence into memory. After it’s not needed anymore, the sequence is removed from mem-
ory by calling unload(Celegans, seqname). Using only one sequence at a time and
unloading it after it’s not needed anymore is a good practice to avoid memory allocation
problems on a machine with a limited amount of memory. For example, loading all the
human chromosome sequences in memory would require more than 3GB of memory!

� We have 2 nested for loops: the outer loop walks thru the target (7 chromosomes) and
the inner loop walks thru the set of patterns. Doing the other way around would be very
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inefficient, especially with a bigger number of patterns because this would require to load
each chromosome sequence into memory as many times as the number of patterns. Trying
to minimize the number of loading/unloading cycles for each target sequence during an
analysis is good practice because this cycle takes a long time. The runAnalysis1 does
this only once for each target sequence.

� We find the matches in the minus strand (minus_matches) by first taking the reverse
complement of the current pattern (with rcpattern <- reverseComplement(pattern))
and NOT by taking the reverse complement of the current subject.

Now we are ready to run the analysis and put the results in the "ce2dict0_ana1.txt" file:

> runAnalysis1(ce2dict0, outfile="ce2dict0_ana1.txt")

Target: ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM
>>> Finding all hits in chromosome chrI ...
>>> DONE
>>> Finding all hits in chromosome chrII ...
>>> DONE
>>> Finding all hits in chromosome chrIII ...
>>> DONE
>>> Finding all hits in chromosome chrIV ...
>>> DONE
>>> Finding all hits in chromosome chrV ...
>>> DONE
>>> Finding all hits in chromosome chrX ...
>>> DONE
>>> Finding all hits in chromosome chrM ...
>>> DONE

Here is some very simple example of post analysis:

� Get the total number of hits:

> hits1 <- read.table("ce2dict0_ana1.txt", header=TRUE)

> nrow(hits1)

[1] 79

� Get the number of hits per chromosome:

> table(hits1$seqname)

chrI chrII chrIII chrIV chrM chrV chrX
11 5 16 8 8 15 16

� Get the number of hits per pattern:

9



> hits1_table <- table(hits1$patternID)

> hits1_table

pattern01 pattern02 pattern03 pattern04 pattern06 pattern07 pattern08 pattern09
1 1 1 1 2 1 1 1

pattern10 pattern11 pattern12 pattern13 pattern14 pattern15 pattern16 pattern17
1 1 1 1 1 1 1 1

pattern18 pattern19 pattern20 pattern21 pattern22 pattern23 pattern24 pattern25
1 9 1 10 2 1 1 1

pattern26 pattern27 pattern28 pattern29 pattern30 pattern31 pattern32 pattern33
1 1 1 1 1 1 1 1

pattern34 pattern35 pattern36 pattern37 pattern38 pattern39 pattern40 pattern41
2 1 1 7 1 1 1 1

pattern42 pattern43 pattern44 pattern45 pattern46 pattern47 pattern48 pattern49
1 5 1 1 1 1 1 1

pattern50
1

� Get the pattern(s) with the higher number of hits:

> hits1_table[hits1_table == max(hits1_table)] # pattern(s) with more hits

pattern21
10

� Get the pattern(s) with no hits:

> setdiff(names(ce2dict0), hits1$patternID) # pattern(s) with no hits

[1] "pattern05"

� And finally a function that can be used to plot the hits:

> plotGenomeHits <- function(bsgenome, seqnames, hits)

+ {

+ ## Retrieve the sequence lengths

+ seqlengths <- integer(length(seqnames))

+ for (i in seq_len(length(seqnames))) {

+ seqname <- seqnames[i]

+ seqlengths[i] <- length(bsgenome[[seqname]])

+ unload(bsgenome, seqname)

+ }

+ XMAX <- max(seqlengths)

+ YMAX <- length(seqnames)

+ plot.new()

+ plot.window(c(1, XMAX), c(0, YMAX))

+ axis(1)
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+ axis(2, at=seq_len(length(seqnames)), labels=rev(seqnames), tick=FALSE, las=1)

+ ## Plot the chromosomes

+ for (i in seq_len(length(seqnames)))

+ lines(c(1, seqlengths[i]), c(YMAX + 1 - i, YMAX + 1 - i), type="l")

+ ## Plot the hits

+ for (i in seq_len(nrow(hits))) {

+ seqname <- hits$seqname[i]

+ y0 <- YMAX + 1 - match(seqname, seqnames)

+ if (hits$strand[i] == "+") {

+ y <- y0 + 0.05

+ col <- "red"

+ } else {

+ y <- y0 - 0.05

+ col <- "blue"

+ }

+ lines(c(hits$start[i], hits$end[i]), c(y, y), type="l", col=col, lwd=3)

+ }

+ }

Plot the hits found by runAnalysis1 with:

> plotGenomeHits(Celegans, seqnames(Celegans), hits1)

4 Some precautions when using matchPattern

Improper use of matchPattern (or countPattern) can affect performance.
If needed, the matchPattern and countPattern methods convert their first argument (the

pattern) to an object of the same class than their second argument (the subject) before they
pass it to the subroutine that actually implements the fast search algorithm.

So if you need to reuse the same pattern a high number of times, it’s a good idea to convert
it before to pass it to the matchPattern or countPattern method. This way the conversion is
done only once:

> library(hgu95av2probe)

> tmpseq <- DNAStringSet(hgu95av2probe$sequence)

> someStats <- function(v)

+ {

+ GC <- DNAString("GC")

+ CG <- DNAString("CG")

+ sapply(seq_len(length(v)),

+ function(i) {

+ y <- v[[i]]

+ c(alphabetFrequency(y)[1:4],

+ GC=countPattern(GC, y),

+ CG=countPattern(CG, y))

+ }
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+ )

+ }

> someStats(tmpseq[1:10])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
A 1 5 6 4 4 2 4 5 9 2
C 10 5 4 7 5 7 10 8 7 10
G 6 5 3 8 8 6 4 5 4 4
T 8 10 12 6 8 10 7 7 5 9
GC 2 1 1 4 3 2 2 2 1 1
CG 0 0 0 2 1 1 0 0 0 0

5 Masking the chromosome sequences

Starting with Bioconductor 2.2, some BSgenome data packages provide built-in masks for the
chromosome sequences. For example, each chromosome in BSgenome.Hsapiens.UCSC.hg18
has 3 masks on it: the mask of assembly gaps, the mask of repeat regions that were determined
by the RepeatMasker software, and the mask of repeat regions that were determined by the
Tandem Repeats Finder software (where only repeats with period less than or equal to 12 were
kept).

> library(BSgenome.Hsapiens.UCSC.hg18)

> chrY <- Hsapiens$chrY

> chrY

57772954-letter "MaskedDNAString" instance (# for masking)
seq: CTAACCCTAACCCTAACCCTAACCCTAACCCTAACC...GGGTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGGT
masks:
maskedwidth maskedratio active names

1 32120000 0.55596949 FALSE assembly gaps
2 15884416 0.27494554 FALSE RepeatMasker
3 584387 0.01011523 FALSE Tandem Repeats Finder [period<=12]
all masks together:
maskedwidth maskedratio

48042573 0.8315755
all active masks together:
maskedwidth maskedratio

0 0

Note that the built-in masks are always inactive by default. When displaying a masked
sequence (here a MaskedDNAString object), the masked width and masked ratio are reported
for each individual mask, as well as for all the masks together, and for all the active masks
together. The masked width is the total number of nucleotide positions that are masked and
the masked ratio is the masked width divided by the length of the sequence.

To activate a mask, use the active replacement method in conjonction with the masks
method. For example, to activate the first mask (assembly gaps), do:
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> active(masks(chrY))[1] <- TRUE

> chrY

57772954-letter "MaskedDNAString" instance (# for masking)
seq: CTAACCCTAACCCTAACCCTAACCCTAACCCTAACC...GGGTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGGT
masks:
maskedwidth maskedratio active names

1 32120000 0.55596949 TRUE assembly gaps
2 15884416 0.27494554 FALSE RepeatMasker
3 584387 0.01011523 FALSE Tandem Repeats Finder [period<=12]
all masks together:
maskedwidth maskedratio

48042573 0.8315755
all active masks together:
maskedwidth maskedratio

32120000 0.5559695

As you can see, the masked width for all the active masks together (i.e. the total number
of nucleotide positions that are masked by at least one active mask) is now the same as for the
first mask. This represents a masked ratio of about 55.6%.

Now when we use a mask aware function like alphabetFrequency, the masked regions of
the input sequence are ignored:

> alphabetFrequency(unmasked(chrY))

A C G T M R W S
7667357 5099042 5153198 7733357 0 0 0 0

Y K V H D B N -
0 0 0 0 0 0 32120000 0
+
0

> alphabetFrequency(chrY)

A C G T M R W S Y K
7667357 5099042 5153198 7733357 0 0 0 0 0 0

V H D B N - +
0 0 0 0 0 0 0

This output indicates that, for this chromosome, the assembly gaps correspond exactly to
the regions in the sequence that were filled with the letter N.

When coercing a MaskedXString object to an XStringViews object, each non-masked region
in the original sequence is converted into a view on the sequence:

> as(chrY, "XStringViews")
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Views on a 57772954-letter DNAString subject
subject: CTAACCCTAACCCTAACCCTAACCCTAACCCTAA...GTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGGT
views:

start end width
[1] 1 34821 34821 [CTAACCCTAACCCTAACCCTAA...AGGTCTCATTGAGGACAGATA]
[2] 84822 171384 86563 [GATCCACCCATCTCGGTCTCCC...CGATCTCGTGACCTCGTGATC]
[3] 201385 967557 766173 [GATCGGGGTATCCCAGCTGCTA...GTGATCCAAGGGACTGAATTC]
[4] 1017558 1054113 36556 [ATTAAAGAAGGAGAGAGACTGG...GTGTGTGTGTGCATGCATGCT]
[5] 1104114 1184234 80121 [GATTGAACCAGCCCACTCCACG...CTGGCCAACATGGGGAAACCC]
[6] 1274235 2028238 754004 [ATCCACCTGCCTCGGCCTCCTA...GTCATAACAAGAACCAAGATC]
[7] 2128239 8974955 6846717 [CCCTTCCAGGATGGTCCTTCTC...GGGATATATTAGCCAAAGCTT]
[8] 9024956 9301322 276367 [GATCATGAGCTAAGGAGTTTGA...TTACTTTCTAATTCTGAATTC]
[9] 9901323 10714553 813231 [GAATTCGTTTTCTCTGCCTCCT...CAAAGAACTATGTCGGAATTC]
[10] 11214554 11253954 39401 [GACACATCACAAAGAAGTTTCT...CCATTCCTTTCCACTGAATTC]
[11] 11653955 12208578 554624 [GATCACATTTCTTTTCACTATT...TAATGGAATGGAATGGAATTC]
[12] 12308579 22310816 10002238 [GAATTCATTCGAATAGAATTGA...TTCAAAAACTTTATGGAATTC]
[13] 22360817 27228749 4867933 [AAGCTTTGGCTAATATATCTCT...GAGTGGTGCAGAGTGGAATTC]
[14] 57228750 57327044 98295 [GAATTCCATTCCATTCCAATCC...CCCTTCCATTCCAATGAATTC]
[15] 57377045 57772954 395910 [GAATTCAACATTATTCTTGTTT...GGTGTGGTGTGTGGGTGTGGT]

This can be used in conjonction with the gaps method to see the gaps between the views
i.e. the masked regions themselves:

> gaps(as(chrY, "XStringViews"))

To extract the sizes of the assembly gaps:

> width(gaps(as(chrY, "XStringViews")))

[1] 50000 30000 50000 50000 90000 100000 50000 600000
[9] 500000 400000 100000 50000 30000000 50000

Note that, if applied directly to chrY, gaps returns a MaskedDNAString object with a
single mask masking the regions that are not masked in the original object:

> gaps(chrY)

57772954-letter "MaskedDNAString" instance (# for masking)
seq: ####################################...####################################
masks:
maskedwidth maskedratio active

1 25652954 0.4440305 TRUE

> alphabetFrequency(gaps(chrY))

A C G T M R W S
0 0 0 0 0 0 0 0
Y K V H D B N -
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0 0 0 0 0 0 32120000 0
+
0

In fact, for any MaskedDNAString object, the following should always be TRUE, whatever
the masks are:

> af0 <- alphabetFrequency(unmasked(chrY))

> af1 <- alphabetFrequency(chrY)

> af2 <- alphabetFrequency(gaps(chrY))

> all(af0 == af1 + af2)

[1] TRUE

With all chrY masks active:

> active(masks(chrY)) <- TRUE

> af1 <- alphabetFrequency(chrY)

> af1

A C G T M R W S Y K
2978843 1871661 1883042 2996835 0 0 0 0 0 0

V H D B N - +
0 0 0 0 0 0 0

> gaps(chrY)

57772954-letter "MaskedDNAString" instance (# for masking)
seq: CTAACCCTAACCCTAACCCTAACCCTAACCCTAACC...GGGTGTGGGTGTGTGGGTGTGGTGTGTGGGTGTGG#
masks:
maskedwidth maskedratio active

1 9730381 0.1684245 TRUE

> af2 <- alphabetFrequency(gaps(chrY))

> af2

A C G T M R W S
4688514 3227381 3270156 4736522 0 0 0 0

Y K V H D B N -
0 0 0 0 0 0 32120000 0
+
0

> all(af0 == af1 + af2)

[1] TRUE
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Now let’s compare three different ways of finding all the occurences of the "CANNGT" con-
sensus sequence in chrY. The Ns in this pattern need to be treated as wildcards i.e. they must
match any letter in the subject.

Without the mask feature, the first way to do it would be to use the fixed=FALSE option
in the call to matchPattern (or countPattern):

> Ebox <- "CANNGT"

> active(masks(chrY)) <- FALSE

> countPattern(Ebox, chrY, fixed=FALSE)

[1] 32224073

The problem with this method is that the Ns in the subject are also treated as wildcards
hence the abnormally high number of matches. A better method is to specify the side of the
matching problem (i.e. pattern or subject) where the Ns should be treated as wildcards:

> countPattern(Ebox, chrY, fixed=c(pattern=FALSE,subject=TRUE))

[1] 104132

Finally, countPattern being mask aware, this can be achieved more efficiently by simply
masking the assembly gaps:

> active(masks(chrY))[1] <- TRUE

> countPattern(Ebox, chrY, fixed=FALSE)

[1] 104132

Note that with chromosomes that have Ns outside the assembly gaps like chromosome 2,
you need to use fixed=c(pattern=FALSE,subject=TRUE) even when the mask of assembly
gaps is active:

> chr2 <- Hsapiens$chr2

> active(masks(chr2))[1] <- TRUE

> alphabetFrequency(chr2)

A C G T M R W S
70967972 47802677 47841066 71098079 0 0 0 0

Y K V H D B N -
0 0 0 0 0 0 2855 0
+
0

> countPattern(Ebox, chr2, fixed=FALSE)

[1] 942474

> countPattern(Ebox, chr2, fixed=c(pattern=FALSE,subject=TRUE))
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[1] 939636

Or, alternatively, you could mask the Ns yourself with the maskMotif function:

> chr2_noNs <- maskMotif(unmasked(chr2), "N")

> alphabetFrequency(chr2_noNs)

A C G T M R W S
70967972 47802677 47841066 71098079 0 0 0 0

Y K V H D B N -
0 0 0 0 0 0 0 0
+
0

> countPattern(Ebox, chr2_noNs, fixed=FALSE)

[1] 939636

Note that not all functions that work with an XString input are mask aware but more
will be added in the near future. However, there is no plan to do this in a systematic way
since the usefulness of supporting masks depends on the function itself. For example it’s clear
that making dinucleotideFrequency mask aware is going to provide a lot of convenience, but
doing so for reverseComplement would not really make sense from a biological point of view.
Or maybe it will, but we haven’t seen any use case for this at the moment. Anyway, most of
the times there is a systematic way to exclude some arbitrary regions from an analysis without
having to use mask aware functions. This is described below in the Hard masking section.

6 Hard masking

coming soon...

7 Injecting known SNPs in the chromosome sequences

coming soon...

8 Finding all the patterns of a constant width dictionary in an
entire genome

The matchPDict function can be used instead of matchPattern for the kind of analysis de-
scribed in the Finding an arbitrary nucleotide pattern in an entire genome section but it will
be much faster (between 100x and 10000x faster depending on the size of the input dictio-
nary). Note that a current limitation of matchPDict is that it only works with a dictionary
of DNA patterns where all the patterns have the same number of nucleotides (constant width
dictionary). See ?matchPDict for more information.

Here is how our runAnalysis1 function can be modified in order to use matchPDict instead
of matchPattern:
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> runOneStrandAnalysis <- function(dict0, bsgenome, seqnames, strand,

+ outfile="", append=FALSE)

+ {

+ cat("\nTarget: strand", strand, "of", providerVersion(bsgenome),

+ "chromosomes", paste(seqnames, collapse=", "), "\n")

+ if (strand == "-")

+ dict0 <- reverseComplement(dict0)

+ pdict <- PDict(dict0)

+ for (seqname in seqnames) {

+ subject <- bsgenome[[seqname]]

+ cat(">>> Finding all hits in strand", strand, "of chromosome", seqname, "...\n")

+ mindex <- matchPDict(pdict, subject)

+ matches <- extractAllMatches(subject, mindex)

+ writeHits(seqname, matches, strand, file=outfile, append=append)

+ append <- TRUE

+ cat(">>> DONE\n")

+ unload(bsgenome, seqname)

+ }

+ }

> runAnalysis2 <- function(dict0, outfile="")

+ {

+ library(BSgenome.Celegans.UCSC.ce2)

+ seqnames <- seqnames(Celegans)

+ runOneStrandAnalysis(dict0, Celegans, seqnames, "+", outfile=outfile, append=FALSE)

+ runOneStrandAnalysis(dict0, Celegans, seqnames, "-", outfile=outfile, append=TRUE)

+ }

Remember that matchPDict only works if all the patterns in the input dictionary have
the same length so for this 2nd analysis, we will truncate the patterns in ce2dict0 to 15
nucleotides:

> ce2dict0cw15 <- DNAStringSet(ce2dict0, end=15)

Now we can run this 2nd analysis and put the results in the "ce2dict0cw15_ana2.txt"
file:

> runAnalysis2(ce2dict0cw15, outfile="ce2dict0cw15_ana2.txt")

Target: strand + of ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM
>>> Finding all hits in strand + of chromosome chrI ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrII ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrIII ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrIV ...
>>> DONE
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>>> Finding all hits in strand + of chromosome chrV ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrX ...
>>> DONE
>>> Finding all hits in strand + of chromosome chrM ...
>>> DONE

Target: strand - of ce2 chromosomes chrI, chrII, chrIII, chrIV, chrV, chrX, chrM
>>> Finding all hits in strand - of chromosome chrI ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrII ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrIII ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrIV ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrV ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrX ...
>>> DONE
>>> Finding all hits in strand - of chromosome chrM ...
>>> DONE

9 Session info

> sessionInfo()

R version 2.7.1 (2008-06-23)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

attached base packages:
[1] tools stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] BSgenome.Hsapiens.UCSC.hg18_1.3.7 hgu95av2probe_2.2.0
[3] matchprobes_1.12.0 affy_1.18.2
[5] preprocessCore_1.2.1 affyio_1.8.1
[7] BSgenome.Celegans.UCSC.ce2_1.3.4 BSgenome_1.8.4
[9] Biostrings_2.8.17 Biobase_2.0.1
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