SQLForge

Marc Carlson, Herve Pages, Nianhua Li

June 17, 2008

1 Introduction

The AnnotationDbi package provides a series of functions that can be used
to build annotation packages for supported organisms. This collection of
functions is called SQLForge.

In order to use SQLForge you really only need to have one kind of in-
formation and that is a list of paired IDs. These IDs are to be stored in a
tab delimited file that is formatted in the same way that they used to be
for the older AnnBuilder package. For those who are unfamiliar with the
AnnBuilder package, this just means that there are two collumns separated
by a tab where the column on the left contains probe or probeset identifiers
and the column on the right contains some sort of widely accepted gene
accession. This file should NOT contain a header. SQLForge will then use
these IDs along with it’s own support databases to make an AnnotationDbi
package for you. Here is how these IDs should look if you were to read them
into R:

R> library(AnnotationDbi)
R> read.table(system.file("extdata", "hcgl110_ID",
package="AnnotationDbi"),
sep = "\t", header = FALSE, as.is = TRUE)[1:5,]

Vi V2
1 1000_at X60188
2 1001_at X60957
3 1002_f_at X65962
4 1003_s_at X68149
5 1004_at X68149

In the example above, Genbank IDs are demonstrated. But it is also
possible to use entrez gene IDs, refseq IDs or unigene accessions as the gene

identifiers. If refseq IDs are used, it is preferable to strip off the version
extensions that can sometimes be added on by some vendors. The version
extensions are digits that are sometimes tacked onto the end of a refseq
ID and separated from the accession by a dot. As an example consider
"NM_000193.2” . The "NM_000193” portion would be the actual accession
number and the ”.2” would be the version number. These version numbers
are not used by these databases and their presence in your input can cause
less than desirable results.

Alternatively, if you have an annotation file for an Affymetrix chip, you
can use a parameter called affy that will automatically parse such a file and
produce a similar mapping from that. It is important to understand however
that despite that rather rich contents of an Affymetrix annotation file, almost
none of these data are used in the making of an annotation package with
SQLForge. Instead, the relevant IDs are stripped out, and then passed along
to SQLForge as if you had created a file like is seen above. The option here
to use such a file is offered purely as a convenience because the platform is
so popular.

If you have additional information about your probes in the form of
other kinds of supported gene IDs, you can pass these in as well by using
the otherSrc parameter. These IDs must be formatted using the same two
column format as described above, and if there are multiple source files, then
you can pass them in as a list of strings that correspond to the file paths for
these files.

Once you have your IDs ready, SQLForge will read them in, and use
the gene IDs to compare to an intermediate database. The data from this
database is what is used to make the specialized database that is placed
inside of an annotation package.

At the present time, it is possible to make annotation packages for 6
unique model organisms. These include human, mouse, rat, fly, yeast and
arabidposis.

For each of these model organisms another support package will be main-
tained and updated biannually which will include all the basic data gathered
for this organism from sources such as NCBI, GO, KEGG and Flybase etc.
These support packages will each be named after the organism they are in-
tended for and will each include a large sqlite database with all the support-
ing information for that organism. Please note that support databases are
not necessary unless you intend to actually make a new annotation package
for one of the supported organisms. In the case where you want to make an-
notation packages, the support databases are only required for the organism
in question. When SQLForge makes a new database, it uses the information

supplied by the support database as the data source to make the annota-
tion package. So the relevant support packages needs to be updated to the
latest version in order to guarantee that the annotation packages you pro-
duce will be made with information from the last biannual update. These
support packages are not meant to be annotation packages themselves and
they come with no schema of their own. Instead these are merely a way to
distribute the data to those who want to make custom annotation packages.

2 How to use SQLForge

To get the latest organism package you should only need to use biocLite.
Lets begin by making sure we have the latest organism package.

R> source("http://bioconductor.org/biocLite.R")
R> biocLite ("human.db0")

Since each organism will have different kinds of data available, the schemas
that will be needed for each organism will also change. SQLForge provides
support functions for each of the model organisms that will create a sqlite
database that complies with a specified database schema. To make an an-
notation package, these database populating functions are called along with
additional code to wrap the database into a complete annotation package.

For each combination of organism and database schema, there must be a
database populating function. As an example, the schema that defines chip
packages for Homo sapiens is called HUMANCHIP_DB and the database
populating function for that schema is called popHUMANCHIPDB(). Most of
the metadata that is required by a database populating function is provided
internally and is ultimately derived from the intermediate databases. But
some information has to be supplied by the user such as the manufacturer
etc. Additionally, the database populating functions have an option to out-
put the schema that they use in the form of the SQL create statements
that were declared internally. This allows the schema definitions to be kept
synchronized with the code that generates the databases.

The following example will not only generate a database, but at the same
time will also output a .sql file that will correspond to the HUMANCHIP_DB
database schema. We will begin by getting an example file that we have
included in the AnnotationDbi package and then setting up the metadata
to be passed in to the popHUMANCHIP () function.

R> hcgl110_IDs = system.file("extdata",
"hcg110_ID",

package="AnnotationDbi")
R> myMeta = c("DBSCHEMA"="HUMANCHIP_DB",
"ORGANISM"="Homo sapiens",
"SPECIES"="Human",
"MANUFACTURER"="Affymetrix",
"CHIPNAME"="Human Cancer G110 Array ",
"MANUFACTURERURL"="http://www.affymetrix.com")

For illustration purposes I will write this example to put the sqlite
database into a temporary directory.

R> tmpout = tempdir ()

R> popHUMANCHIPDB(affy = FALSE, prefix = "hcgl10Test",
fileName = hcgl110_IDs, metaDataSrc = myMeta,
baseMapType = "gb", outputDir = tmpout)

The preceeding code has generated a file in the working directory called
hegl10.sqlite, which can be wrapped into an annotation package with the
following;:

R> seed <- new("AnnDbPkgSeed",
Package = "hcgl110Test.db",
Version = "1.0.0",
PkgTemplate = "HUMANCHIP.DB",
AnnObjPrefix = "hcgl10Test")
R> makeAnnDbPkg (seed,
file.path(tmpout, "hcgl10Test.sqlite"),
dest_dir = tmpout)

Of course, most of the time you only want to make an annotation package
for a particular chip. So we have made some wrapper functions to combine
all of the previous steps. The following shows how you could make the same
exact package as above but with a lot less hassle:

R> makeHUMANCHIP_DB(affy=FALSE,
prefix="hcgl110",
fileName=hcg110_IDs,
baseMapType="gb",
outputDir = tmpout,
version="1.0.0",
manufacturer = "Affymetrix",

chipName = "Human Cancer G110 Array",
manufacturerUrl = "http://www.affymetrix.com")

Wrapper functions are provided for making all 6 of the different kinds of
chip based package types that are presently defined. These are named after
the schemas that they correspond to. So for example makeHUMANCHIP_DB ()
corresponds to the HUMANCHIP_DB schema, and is used to produce chip

based annotation packages of that type.

3 Session Information

The version number of R and packages loaded for generating the vignette
were:

R version 2.7.0 (2008-04-22)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=C;LC_MESSAGES=

attached base packages:
[1] tools stats graphics grDevices utils datasets
[7] methods base

other attached packages:
[1] hgu9bav2.db_2.2.0 AnnotationDbi_1.2.2 RSQLite_0.6-9
(4] DBI_0.2-4 Biobase_2.0.1

loaded via a namespace (and not attached):
[1] hgu95av2_2.2.0

