
Triform: peak finding in ChIP-Seq enrichment

profiles for transcription factors

Karl Kornacker∗and Tony H̊andstad†

April 4, 2013

A guide for using the Triform algorithm to predict transcription factor
binding sites from ChIP-Seq data

Contents

1 Licensing 2

2 Introduction 2

3 Overview of Triform 3

4 Parameters and configuration file 4

5 Preprocessing BED files 5

6 Running Triform 5

7 Session info 6

∗kornacker@midohio.twcbc.com
†tony.handstad@gmail.com

1

1 Licensing

This package is available under the GPL 2.0. license.

2 Introduction

Chromatin immunoprecipitation combined with high throughput sequencing
(ChIP-Seq) is currently the method of choice for genome-wide mapping of
binding sites for transcription factors on DNA. An essential step in the anal-
ysis of ChIP-Seq data is the genome-wide identification of enriched (peak)
regions. As ChIP-seq data can be noisy Park (2009), it can be challenging
to identify all significantly enriched regions in a reliable way, and with an
acceptable false discovery rate Rye et al. (2011).

The Triform algorithm Kornacker et al. (2012) represents an improved
approach for automatic identification of peaks in ChIP-Seq enrichment pro-
files. The method uses model-free statistics to identify peak-like distribu-
tions of sequencing reads, taking advantage of improved peak definition in
combination with known characteristics of ChIP-Seq data.

The statistical test in Triform is fully nonparametric, i.e. free from any
assumed relationships or fitted parameters. In particular, the test is free
from any assumed background model and is therefore more robust than
model-based tests, which depend on locally uniform background models and
fitted background parameters.

The algorithm identifies triangle-peak-like shapes from the distribution
profile of ChIP-Seq reads. A peak region is defined as a region with a signif-
icantly negative mean second derivative of the read coverage profile. Such
regions have inherently limited width, core sub-regions are directly identi-
fied, and these can be used to test for well-defined shifts between overlapping
profiles on opposite strands. The test can also handle overlapping peaks.
Consequently, the Triform algorithm is able to reject false positive noisy
plateaus, thereby increasing specificity with little or no loss of sensitivity.

Like other related algorithms (e.g. FindPeaks Fejes et al. (2008)), Tri-
form tests for local peak-like coverage distributions, but achieves greater
sensitivity, specificity and control of FDR by utilizing the Hoel test for detec-
tion of significant Poisson inhomogeneities Hoel (1945). Triform computes
Hoel test statistics at each position x on each strand, testing whether the
reads coverage at x is significantly higher than the average coverage at the
two flanking positions x− d and x + d (default d=150bp). The probability
distribution of the Hoel test statistic is approximately standard normal for

2

arbitrary nonzero coverage, enabling accurate calculation of p-values which
are generally low enough to assure strong control of false discovery rate.

Triform takes advantage of multiple peak profile characteristics. These
characteristics include the shift property, which occurs because the full se-
quence fragments, typically with an average length around 200bp, are se-
quenced only 25-50bp from each side. The algorithm can use independent
control samples, and handles biological replicates.

Triform has been shown to outperform several existing methods in the
identification of representative peak profiles in curated benchmark data sets
for the transcription factors NRSF/REST, SRF and MAX Rye et al. (2011).
In many cases, Triform is able to identify peaks that are more consistent with
biological function, compared with other methods. We refer to the paper
Kornacker et al. (2012) for further theoretical background on the method, a
full description of each step of algorithm, thorough comparisons with other
methods, and a small case-study.

3 Overview of Triform

Usage of Triform is split in two steps. In the preprocessing step, information
describing ChIP-seq tags in the form of BED-formatted files are converted to
a format that describes the tag counts along the chromosomes on the differ-
ent strands. The BED format is a tab-delimited format where each line de-
scribes the position of a mapped read (tag) in the form of space/chromosome,
start, end, name, score, strand. Triform will ignore the name and score
columns as they are not relevant here. Both control signal (i.e. ChIP-seq
reads for control experiments without a TF-specific antibody) and up to
several different TF signal files can be processed in the same run. After
the preprocessing step, triform itself can be run and will then output the
enriched regions.

Both the preprocessing step and the triform step consists of running
a single function. Both functions require certain parameters. It is easi-
est to use a configuration file to supply these parameters, but the parame-
ters can also be supplied directly to the preprocessing or triform function.
The configuration file must be in YAML format. See http://biostat.mc.

vanderbilt.edu/wiki/Main/YamlR for a description of YamlR and http:

//cran.r-project.org/web/packages/yaml/index.html for a description
of the yaml R package. An example configuration file is available under the
inst/extdata directory in the triform package, and its contents is also shown
below.

3

http://biostat.mc.vanderbilt.edu/wiki/Main/YamlR
http://biostat.mc.vanderbilt.edu/wiki/Main/YamlR
http://cran.r-project.org/web/packages/yaml/index.html
http://cran.r-project.org/web/packages/yaml/index.html

4 Parameters and configuration file

A total number of 12 parameters must be set to run Triform. These are
most easily supplied using a configuration file in the YAML-format. Each
line contains the parameter name and value separated by a colon. Some
parameters can take multiple values, these values are then given one per
line with a dash before the value. Below is an example of a configuration
file. The text after the hashes are comments, explaining the purpose of the
parameter.

READ.PATH : ./tmp ## Path to source files (reads in BED format)

COVER.PATH : ./chrcovers ## Path for chromosome coverage files

OUTPUT.PATH : ./tmp/Triform_output.csv ## Path for output file (including filename)

TARGETS :

Filenames for TF experiments

Must include replicate name (_rep1 or _rep2), and .bed file ending

- srf_huds_Gm12878_rep1.bed

- srf_huds_Gm12878_rep2.bed

CONTROLS :

Filenames for control/background experiments

Must include replicate name (_rep1 or _rep2), and .bed file ending

- backgr_huds_Gm12878_rep1.bed

- backgr_huds_Gm12878_rep2.bed

READ.WIDTH : 100 ## Extended read width (used when preprocessing data) (w)

FLANK.DELTA : 150 ## Fixed spacing between central and flanking locations (d)

MAX.P : 0.1 ## Maximum p-value (used to calculate min.z)

MIN.WIDTH : 10 ## Minimum peak width (min.n)

MIN.QUANT : 0.375 ## Minimum quantile of enrichment ratios.

MIN.SHIFT : 10 ## Minimum inter-strand lag between peak coverage distributions

CHRS : ## Chromosomes to be used in Triform peak detection

- chrY

4

5 Preprocessing BED files

Start by loading the triform package.

> library(triform)

This will make the functions “preprocess” and “triform” available. Here,
we will use sample data available in the inst/extdata directory for the pack-
age. A configuration file similar to the one shown above is also available
in this directory. For this vignette, we must get the correct paths to the
package at run-time using the system.file function and supply the paths as
additional arguments. These will override any settings (i.e. paths) in the
configuration file.

> config.file.path = system.file("extdata", "config.yml", package="triform")

> data.file.path = system.file("extdata", package="triform")

> preprocess(config.file.path, params=list(READ.PATH=data.file.path, COVER.PATH=data.file.path))

/tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_backgr_huds_Gm12878_rep1.RData

Loaded /tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_backgr_huds_Gm12878_rep1.RData

/tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_backgr_huds_Gm12878_rep2.RData

Loaded /tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_backgr_huds_Gm12878_rep2.RData

/tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_srf_huds_Gm12878_rep1.RData

Loaded /tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_srf_huds_Gm12878_rep1.RData

/tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_srf_huds_Gm12878_rep2.RData

Loaded /tmp/Rtmp2aGuyP/Rinst635a46c77bcb/triform/extdata/chrY_srf_huds_Gm12878_rep2.RData

Each replicate of each TF or control signal should be in its own BED
file. The preprocessing will first convert all files with the .bed-extension in
the READ.PATH directory to IRanges RangedData objects and save them
as RData files. Thereafter, the preprocessing will use the READ.WIDTH
parameter to divide each chromosome into segments and calculate for each
signal and strand, the number of reads in each segment. The preprocessing
ends by saving one file for each chromosome in the dataset, combining all
signals and replicate information for the given chromosome in one file.

6 Running Triform

After preprocessing, Triform can be run similarly, by supplying the config-
uration file path and COVER.PATH to the triform function:

5

> triform(config.file.path, params=list(COVER.PATH=data.file.path))

Triform will then process each chromosome and output each predicted
peak region to a file whose path was given in the OUTPUT.PATH parame-
ter.

Note that it is also possible to run preprocessing and Triform by sup-
plying all the parameters directly instead of using a configuration file. In
that case, populate a named list with the parameters and consider setting
the configPath parameter to NULL. Parameters supplied in the params list
will overwrite the values set by any parameters in the configuration file.

preprocess(configPath=NULL, params=list(READ.PATH="./inst/extdata",

COVER.PATH="./inst/extdata", READ.WIDTH=100))

triform(configPath=NULL, params=list(COVER.PATH = "./inst/extdata",

OUTPUT.PATH = "./inst/extdata/Triform_output.csv",

MAX.P = 0.1, MIN.WIDTH = 10, MIN.QUANT = 0.375, MIN.SHIFT = 10,

FLANK.DELTA = 150, CHRS = c("chrY"), CONTROLS =

c("backgr_huds_Gm12878_rep1.bed", "backgr_huds_Gm12878_rep2.bed"),

TARGETS=c("srf_huds_Gm12878_rep1.bed", "srf_huds_Gm12878_rep2.bed")))

7 Session info

> sessionInfo()

R version 3.0.0 (2013-04-03)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets methods

[8] base

6

other attached packages:

[1] triform_1.2.0 yaml_2.1.7 IRanges_1.18.0 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] stats4_3.0.0 tools_3.0.0

References

A.P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge, and S.J.
Jones. FindPeaks 3.1: a tool for identifying areas of enrichment from
massively parallel short-read sequencing technology. Bioinformatics, 24
(15):1729–1730, 2008.

P.G. Hoel. Testing the homogeneity of poisson frequencies. The Annals of
Mathematical Statistics, 16(4):362–368, 1945.

K. Kornacker, M.B. Rye, H̊andstad T., and F. Drabløs. The Triform algo-
rithm: improved sensitivity and specificity in chip-seq peak finding. BMC
Bioinformatics, 2012. In press.

Peter J. Park. ChIP-seq: advantages and challenges of a maturing technol-
ogy. Nat Rev Genet, 10(10):669–680, October 2009. ISSN 1471-0056.

M.B. Rye, P. Sætrom, and F. Drabløs. A manually curated chip-seq bench-
mark demonstrates room for improvement in current peak-finder pro-
grams. Nucleic Acids Research, 39(4):e25, 2011.

7

	Licensing
	Introduction
	Overview of Triform
	Parameters and configuration file
	Preprocessing BED files
	Running Triform
	Session info

