
Significance Analysis of Function and Expression

William T. Barry ∗ Alexander B. Sibley Fred Wright Yihui Zhou

April 4, 2013

1 Introduction

This vignette demonstrates the utility and flexibility of the R package safe in conducting
tests of functional categories for gene expression studies. Significance Analysis of Function
and Expression (SAFE) is a resampling-based method that is applicable to many different
experimental designs and functional categories. SAFE extends and builds on an approach
first employed in Virtaneva et al. (2001), and defined more rigorously in Barry et al. (2005
and 2008). More recently, it was demonstrated in Gatti et al. (2010) that many applications
for pathway analysis continue to utilize methods which are grossly anti-conservative, and
would therefore lead to a very high false-positive rate in the literature. Lastly, in Zhou et al.
(under review), we developed a series of novel analytical approximations of permutation-
based tests of pathways, which have improved properties over the use of random sampling in
selecting permutations, and greatly reduce the computational requirements when inferences
are based on the extreme tails of empirical distributions. It is suggested that users refer to
these publications to understand the SAFE terminology and principles in greater detail.

2 Citing safe

When using the results from the safe package, please cite:

Barry, W.T., Nobel, A.B. and Wright, F.A. (2005) ‘Significance analysis of func-
tional categories in gene expression studies: a structured permutation approach’,
Bioinformatics, 21(9), 1943–1949.

and

Barry, W.T., Nobel, A.B. and Wright, F.A. (2008) ‘A Statistical Framework for
Testing Functional Categories in Microarray Data’, Annals of Applied Statistics,
2(1), 286–315.

The above articles describe the methodological framework behind the safe package.

3 Updates in version 3.0

The following lists summarize the changes and extended capability of safe that are included
in version 3.0. Examples of their implementation are illustrated in subsequent sections, and
additional details are given in help documents.

∗bbarry@jimmy.harvard.edu

1

3.1 Major extensions

� A new method for including covariates in safe is implemented with the option argu-
ment Z.mat, and relies on the internal function getXYresiduals. The extension is
discussed in Zhou et al. (under review), and an example is given in subsection 6.7.

� A new approach for pathway-analyses with right-censored time-to-event data is also
discussed in Zhou et al. (under review), and an example is given in subsection 6.6.
The computationally intensive method included in version 2.0 (local = "z.COXPH")
is depreciated and has been removed.

� safe is modified to include the novel analytic approximations to permutation-testing
proposed in Zhou et al. (under review) using a dependent package, safeExpress.
Users interested in this method should contact any of the co-authors for the package
source, which can be installed on any operating system.

� New functionality is added to safe to implement parallel processing. Usage instruc-
tions and examples of improved execution times are given in section 10.

� The internal function getCmatrix is updated for improved efficiency and a new op-
tional argument, by.gene = TRUE, to consider pathways at the gene-level instead of
the probeset-level.

� For basic experimental designs, safe automatically switches to exhaustive permuta-
tion when there are fewer than what is specified by the default or user. The default
for method = "permutation" remains Pi.mat = 1000.

3.2 Minor changes

� Names are attached to all slots of object of class SAFE.

� safe.toptable is added for tabulating the output from safe.

� Several new options are included in safeplot for visualizing the output from safe.

� The user-controlled argument epsilon = 1e-10 corrects a numerical precision issue
when computing empirical p-values in small data sets (n < 15).

� The default manner for accounting for multiple testing is switched from error =

"none" to error = "FDR.BH" to adjust p-values by the Benjamini-Hochberg (1995)
estimate of the false discovery rate.

4 SAFE implementation and output

The following Bioconductor packages are required for applying safe to an Affymetrix breast
cancer dataset from Miller et al. (2005).

> library(breastCancerUPP)

> library(hgu133a.db)

> library(safe)

2

Every SAFE analysis requires as input three elements from an experiment: (1) gene
expression data, (2) phenotype/response information associated with the samples, and (3)
category assignments that are either pre-built or generated from Bioconductor annotation
packages for the array platform.

The expression data should be in the form of an m × n matrix (m = the number of
features in the array platform, n = the number of samples), where appropriate normalization
and other pre-processing steps have been taken. It should be noted that missing values are
not allowed in the expression data, and must be imputed prior to analysis.

This tutorial will use the ExperimentData package breastCancerUPP, containing the
object upp, an ExpressionSet of normalized expression estimates (for 251 samples) that are
concatenated from the Affymetrix U133A and U133B platforms.

One sample characteristic of interest is p53 mutation status, that we append to the
phenotype data for upp. p53 mutation status is taken from the NCBI’s Gene Expression
Omnibus (Edgar et al., 2002), accession GSE3494 (Miller et al., 2005), where p53+ = 1 and
p53− = 0.

> data(upp)

> ex.upp <- exprs(upp)

> p.upp <- pData(upp)

> data(p53.stat)

> p.upp <- cbind(p.upp, p53 = p53.stat$p53)

For the purposes of this vignette, the phenotype and expression data are restricted to
only those samples indicated as Grade 3, and the expression matrix is reduced to only the
non-control probesets on the Affymetrix hgu133a array.

> grade.3 <- which(p.upp$grade == 3)

> p3.upp <- p.upp[grade.3,]

> genes <- unlist(as.list(hgu133aSYMBOL))

> drop <- grep("AFFX", names(genes))

> genes <- genes[-drop]

> e3.upp <- ex.upp[match(names(genes), rownames(ex.upp)),

+ grade.3]

> table(p53 = p3.upp$p53)

p53

0 1

23 31

Probeset IDs are necessary as row names in e3.upp for building gene categories. Here,
the functional categories of interest are KEGG pathways. The KEGG categories are iden-
tified internally by the safe function; the process of generating categories is discussed in
more detail in section 5.

> set.seed(12345)

> results <- safe(e3.upp, p3.upp$p53, platform = "hgu133a.db",

+ annotate = "KEGG", print.it = FALSE)

3

Building KEGG categories from hgu133aPATH

228 catgories formed

The SAFE framework for testing gene categories is a two-stage process, where “local”
statistics assess the association between expression and the response of interest in a feature-
by-feature manner, and a “global” statistic measures the extent of association in features
assigned to a category relative to the complement. The default local statistic for the two-
sample comparison of p53+ and p53− is the Student’s t-statistic, and the default global
statistic is the Wilcoxon rank sum. Empirical p-values for local and global statistics are
calculated by permutation.

The basic output from safe is an object of class SAFE. Showing objects of class SAFE
will print details on the type of analysis and the categories that attain a certain level of
significance. In addition, the function safe.toptable is included in version 3.0 of the
safe package to return annotated results as a data.frame for categories with the strongest
association to response/phenotype. This includes (a) category name; (b) the category
size; (c) the global statistic; (d) nominal empirical p-values; (e) adjusted p-values; and (f)
descriptions of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
categories, or Protein Families (PFAM), if available.

> safe.toptable(results, number = 10)

GenesetID Size Statistic P.value Adj.p.value Description

1 KEGG:00260 44 640206 0.003 0.5700 Glycine, serine and threonine metabolism

2 KEGG:04114 189 2367168 0.005 0.5700 Oocyte meiosis

3 KEGG:00604 18 266076 0.009 0.5700 Glycosphingolipid biosynthesis - ganglio series

4 KEGG:03030 49 773179 0.010 0.5700 DNA replication

5 KEGG:00650 43 582250 0.015 0.6080 Butanoate metabolism

6 KEGG:00230 211 2562479 0.016 0.6080 Purine metabolism

7 KEGG:04540 180 2233496 0.020 0.6514 Gap junction

8 KEGG:00140 67 865614 0.026 0.7347 Steroid hormone biosynthesis

9 KEGG:00520 49 640652 0.029 0.7347 Amino sugar and nucleotide sugar metabolism

10 KEGG:00250 50 651963 0.047 0.8957 Alanine, aspartate and glutamate metabolism

NOTE: As in standard feature-by-feature analyses, it is of critical importance to ac-
count for multiple comparisons when considering a number of categories simultaneously.
By default, safe provides Benjamini-Hochberg (1995) adjusted p-values to control for the
false-discovery rate. Several other options for correcting for multiple testing are discussed
in detail in Section 8.

Feature-specific results within a category can be extracted by the gene.results func-
tion. This is useful for investigators interested in knowing which members of a category are
contributing to its significance. The following example demonstrates how the direction and
magnitude of differential expression are displayed by default. A list of two data.frames

can also be returned with the argument print.it = FALSE.

> gene.results(results, cat.name = "KEGG:00072", gene.names = genes)

Category gene-specific results:

Local: t.Student

Method: permutation

KEGG:00072 consists of 10 gene features

4

Upregulated Genes

Gene.Names Local.Stat Emp.pvalue

209608_s_at ACAT2 3.306 0.002

205822_s_at HMGCS1 1.921 0.067

221750_at HMGCS1 1.660 0.107

202780_at OXCT1 1.498 0.152

220256_s_at OXCT2 0.939 0.354

218285_s_at BDH2 0.311 0.755

Downregulated Genes

Gene.Names Local.Stat Emp.pvalue

205412_at ACAT1 -1.635 0.108

211715_s_at BDH1 -0.808 0.441

202772_at HMGCL -0.593 0.555

204607_at HMGCS2 -0.465 0.637

A summary of gene-specific results for a category is also available from the safeplot

function. The process of generating SAFE-plots and a more detailed description of the
image are given in section 11.1.

> safeplot(results, cat.name = "KEGG:00072", gene.names = genes)

A
C

AT
1

B
D

H
1

H
M

G
C

L

H
M

G
C

S
2

B
D

H
2

O
X

C
T

2

O
X

C
T

1
H

M
G

C
S

1
H

M
G

C
S

1

A
C

AT
2

Local statistics (on ranked scale)

5000 10000 15000 20000

0
0.

25
0.

5
0.

75
1

KEGG:00072
p = 0.055
Synthesis and degradation of ketone bodies

5 Building categories from annotation packages

For the example in section 4, KEGG categories were formed internally in safe as any term
which is annotated to at least two Affymetrix probesets in the filtered dataset (identified by
the rownames of e3.upp). Categories can also be created externally from safe, and stored
efficiently as a sparse matrix using the SparseM package as follows:

5

> C.mat <- getCmatrix(gene.list = as.list(hgu133aPATH),

+ present.genes = rownames(e3.upp))

228 catgories formed

> C.mat$col.names <- paste("KEGG:", C.mat$col.names, sep = "")

NOTE: For many instances, when performing pathway-analyses in R, it will improve
computational time to create sparse matrices of categories first, and then apply them (or
appropriately subsetted objects) to runs of safe with varying expression datasets or response
vectors. For instance, we will do so in section 6 to illustrate the different experimental
designs that safe can accommodate.

Functional categories can also be derived from other sources of information commonly
provided in Bioconductor AnnotationData packages. For example, the Protein Families
database can be used to generate categories using the argument annotate = "PFAM", or
externally from safe as:

> C.mat2 <- getCmatrix(gene.list = as.list(hgu133aPFAM),

+ present.genes = rownames(e3.upp))

2776 catgories formed

Gene Ontology pathways can also be created from Bioconductor metadata packages.
The argument annotate = "GO.ALL" will form categories from all three ontologies, while
"GO.CC", "GO.BP", or "GO.MF" will restrict sets to Cellular Compartment, Biological Process
or Molecular Function, respectively. It is important to note that in the hierarchical structure
of the GO vocabularies, a gene category is generally thought of as containing the set of array
features directly annotated to a term, and also to any terms beneath it in the ontology. The
C matrix of each can be externally built, under user-defined size restrictions, with the
getCmatrix function, as follows, :

> GO.list <- as.list(hgu133aGO2ALLPROBES)

> C.mat.CC <- getCmatrix(keyword.list = GO.list, GO.ont = "CC",

+ present.genes = rownames(e3.upp), min.size = 10,

+ max.size = 200)

540 catgories formed

Statistical methods for pathway-analyses are generally applicable to any other biological
reason for creating a gene-set, but are normally underutilized because of the bioinformatic
challenge of creating, storing, and implementing sets. With safe, the function getCmatrix

gives a user the capability, albeit in a somewhat limited fashion, of storing user-defined
gene-sets in an ordered manner for analyses. For example, the genes that are measured
by the Oncotype DX recurrence score for breast cancer (either all 21 genes, or the 16 non-
housekeeper genes), can be tested as a set as:

> RS.list <- list(Genes21 = c("ACTB","RPLP0","MYBL2","BIRC5","BAG1","GUSB",

+ "CD68","BCL2","MMP11","AURKA","GSTM1","ESR1",

+ "TFRC","PGR","CTSL2","GRB7","ERBB2","MKI67",

6

+ "GAPDH","CCNB1","SCUBE2"),

+ Genes16 = c("MYBL2","BIRC5","BAG1","CD68","BCL2","MMP11",

+ "AURKA","GSTM1","ESR1","PGR","CTSL2","GRB7",

+ "ERBB2","MKI67","CCNB1","SCUBE2"))

> RS.list <- lapply(RS.list,function(x)

+ return(names(genes[which(genes %in% x)])))

> C.mat2 <- getCmatrix(keyword.list = RS.list,

+ present.genes = rownames(e3.upp))

2 catgories formed

> results1 <- safe(e3.upp, p3.upp$er, C.mat2, print.it = FALSE)

> safe.toptable(results1, number = 2, description = FALSE)

GenesetID Size Statistic P.value Adj.p.value

1 Genes21 53 825429 0.003 0.006

2 Genes16 40 586880 0.007 0.007

As shown, the 16- and 21-gene sets in the Oncotype Dx assay are significantly correlated
with ER status by IHC, which is expected as one of the gene members (”ESR1” above), and
as a widely known prognostic factor for breast cancer. Conversely, no significant association
to p53 is seen (data not shown).

Lastly, with version 3.0 of safe, a new definition of “soft categories” allows for tests
of association to be conducted at the gene-level, instead of the feature-level, of the given
platform. This is performed by using an optional argument to getCmatrix, by.gene =

TRUE, and passing the gene annotation as a character vector to gene.names. In brief,
probesets are downweighted as 1

mg
, where mg is the number of probesets annotated to

a given gene. As such, the size of the category becomes the number of genes, and the
default global statistic becomes a rank-based Wilcoxon linear score statistic. A manuscript
is in preparation on “soft categories”, and their application to gene-level analysis and other
unique biological contexts for pathway-analysis.

6 Experimental designs and local statistics

The two-sample comparison of p53 mutant versus p53 wild type samples is one of several
experimental designs that safe can automatically accommodate. This section describes the
variety of designs, and the corresponding local statistics, along with the arguments in safe

to execute them. NOTE: To decrease computation time in some of the following examples,
permutation testing is bypassed using the argument Pi.mat = 1.

6.1 Two-sample comparisons

For two-sample comparisons, the response vector can either be given as a (0, 1) vector, or
a character vector with two unique elements. When a character vector is passed to safe

as the response, the assignment of the first element of the array becomes Group 1, and is
printed as a warning in the output from gene.results and safeplot. It is critical for the
user to be aware of this assignment and how it defines the direction of differential expression.
By default, a Student’s t-statistic is employed for categorical comparisons, but if unequal

7

variances are assumed, the Welch t-statistic can be selected using local = "t.Welch". As
shown below, feature-by-feature results are highly correlated between the two statistics, as
expected.

> results2 <- safe(e3.upp, p3.upp$p53, C.mat, local = "t.Welch",

+ Pi.mat = 1, print.it = FALSE)

> cor(results2@local.stat, results@local.stat)

[1] 0.9992205

6.2 Multi-class designs

For multi-class designs, response vectors should be character or numeric vectors with unique
values for each group. If a character vector with more than two elements is supplied for
y.vec, an ANOVA F-statistic is computed by default; otherwise, an ANOVA test can be
specified with the argument local = "f.ANOVA" for numeric class assignments.

> y.vec <- c("p53-/er-","p53-/er+","p53+/er-",

+ "p53+/er+")[1+p3.upp$er+2*p3.upp$p53]

> table(PHENO = y.vec)

PHENO

p53+/er+ p53+/er- p53-/er+ p53-/er-

18 13 15 8

> results2 <- safe(e3.upp, y.vec, C.mat, print.it = FALSE)

> safe.toptable(results2, number = 10, description = FALSE)

GenesetID Size Statistic P.value Adj.p.value

1 KEGG:04114 189 2434920 0.002 0.1900

2 KEGG:00650 43 609915 0.002 0.1900

3 KEGG:04110 233 3106291 0.004 0.1900

4 KEGG:03030 49 786976 0.004 0.1900

5 KEGG:00280 71 964053 0.005 0.1900

6 KEGG:00640 51 745552 0.005 0.1900

7 KEGG:00240 106 1360907 0.007 0.2280

8 KEGG:00072 10 157920 0.013 0.3705

9 KEGG:03430 32 475375 0.015 0.3800

10 KEGG:00230 211 2562027 0.023 0.4975

6.3 Continuous phenotypes

The example below demonstrates how safe can also be used to examine continuous re-
sponses, such as tumor size for the breast cancer data set. Simple linear regression is
performed if a numeric vector with more than two unique values is supplied, or by using
the argument local = "t.LM".

> results2 <- safe(e3.upp, p3.upp$size, C.mat, print.it = FALSE)

> safe.toptable(results2, number = 10, description = FALSE)

8

GenesetID Size Statistic P.value Adj.p.value

1 KEGG:00601 44 608979 0.007 0.7817

2 KEGG:00524 6 100063 0.015 0.7817

3 KEGG:04350 141 1761616 0.017 0.7817

4 KEGG:04744 37 500237 0.018 0.7817

5 KEGG:00920 14 225169 0.019 0.7817

6 KEGG:00430 12 180688 0.021 0.7817

7 KEGG:00052 30 398602 0.024 0.7817

8 KEGG:00051 55 711147 0.032 0.9120

9 KEGG:00100 30 401559 0.055 0.9970

10 KEGG:04710 38 486941 0.062 0.9970

6.4 Paired two-sample comparisons

safe includes the paired t-test for matched experiments that are 1 : 1. To implement
this, samples are identified by +/− pairs of integers. Internally, the permutation algorithm
changes from random sampling without replacement, to randomly flipping the signs of each
paired sample.

> y.vec <- rep(1:27,2)*rep(c(-1,1), each = 27)

> results2 <- safe(e3.upp, y.vec, C.mat, local = "t.paired",

+ Pi.mat = 1, print.it = FALSE)

6.5 User-defined local statistics

In addition to these predefined local statistics, safe is structured such that the user can
specify alternative local statistics by defining a function with the following structure. The
primary requirement is that a generic function be loaded which takes as inputs data, the
matrix of expression data, and vector, the response information, as illustrated below. Local
statistics should have a null value of 0, whether they are one-sided or two-sided, to be used
under default arguments. Additional information can be passed as objects in the optional
list, args.local. Here, we create a function for a Wilcoxon signed rank, as a non-parametric
alternative to the paired t-test described above. NOTE: This choice of local statistic should
not be confused with the default global statistic.

> local.WilcoxSignRank<-function(X.mat, y.vec, ...){

+ return(function(data, vector = y.vec, ...) {

+ n <- ncol(data)/2

+ x <- data[, vector > 0][, order(vector[vector > 0])]

+ y <- data[, vector < 0][, order(-vector[vector < 0])]

+ ab <- abs(x-y)

+ pm <- sign(x-y)

+ pm.rank <- (pm == 1) * t(apply(ab, 1, rank))

+ return(as.numeric(apply(pm.rank, 1, sum) - n*(n+1)/4))

+ })

+ }

> results3 <- safe(e3.upp, y.vec, C.mat, local = "WilcoxSignRank",

+ Pi.mat = 1, print.it = FALSE)

9

> cbind(Student = round(results2@local.stat[1:3], 3),

+ Sign.Rank = results3@local.stat[1:3])

Student Sign.Rank

1007_s_at -3.372 -132

1053_at 1.267 46

117_at -0.793 -67

As a resampling-based method, safe is computationally intensive, so considerations of
efficiency should be made when programming user-defined functions for local and global
statistics. The above example, while simple, is much slower than the default paired t-test
in safe because of its reliance on the apply function. Interfacing with C or another foreign
language is highly suggested for any statistic without a closed solution that can be written
using scalar and matrix operations. Complete instructions on how to design and include
user-defined functions will not be included in this vignette.

6.6 New method for survival analysis

A new approach for pathway-analyses with right-censored time-to-event data is provided
in safe version 3.0, which computes martingale residuals (Therneau et al., 1990) for the
right-censored clinical data, and a score statistic for the association of the continuous resid-
uals to the gene expression estimates. This method is substantially more computationally
efficient when compared to using conventional proportional hazards regression models in our
resampling-based approaches, and has also been applied to other pathway-analysis tools for
gene expression data for this reason (e.g., globaltest (Goeman et al., 2005)). The following
code illustrates how this approach can be applied to the 17 recurrent and 34 non-recurrent
samples in the Grade 3 subset of the breast cancer dataset.

> library(survival)

> layout(matrix(1:2,2,1), heights=c(4,2))

> plot(survfit(Surv(p3.upp$t.rfs, p3.upp$e.rfs) ~ 1),

+ xlab = "Time (days)", ylim = c(.4,1))

0 1000 2000 3000 4000

0.
4

0.
6

0.
8

1.
0

Time (days)

10

> drop <- is.na(p3.upp$t.rfs)

> Xy <- getCOXresiduals(e3.upp[,!drop], p3.upp$t.rfs[!drop],

+ p3.upp$e.rfs[!drop])

> results2 <- safe(Xy$X.star, Xy$y.star, C.mat,

+ print.it = FALSE)

> safe.toptable(results2, number = 10, description = FALSE)

GenesetID Size Statistic P.value Adj.p.value

1 KEGG:00130 9 157764 0.006 0.3720

2 KEGG:00051 55 747486 0.009 0.3720

3 KEGG:05323 144 1961496 0.010 0.3720

4 KEGG:00030 37 517414 0.010 0.3720

5 KEGG:04670 196 2472444 0.012 0.3720

6 KEGG:05219 79 1035732 0.012 0.3720

7 KEGG:04722 229 2792980 0.014 0.3720

8 KEGG:04660 197 2527900 0.017 0.3720

9 KEGG:04666 154 1958389 0.018 0.3720

10 KEGG:04620 152 1950920 0.019 0.3720

6.7 New method for covariate adjustment

Finally, another important extension of the SAFE method allows for resampling-based path-
way analysis to be applied to experimental designs with important covariate information
(noted here as an n × p matrix). In principle, defining local statistics in the presence of
covariates that can be applied to every array feature is straightforward. However, we still
need to handle correlation structures across genes, for which permutation is attractive. The
proper handling of covariates is a challenge in the permutation setting, however, as stan-
dard permutation forces the investigator to permute the covariates relative to either X or
y, but is inappropriate if a covariate is correlated with both X and y. Several permutation
approaches in the presence of covariates are described in Good (2000) for linear regression,
but are not computationally efficient for high-dimensional datasets. Rather, we propose
computing the residuals Xz and yz from general or generalized linear regression models for
the n×p covariate matrix Z. Then, the score statistic defined in Zhou et al. (under review)
can be used as the local statistic in resampling-based tests, or in the analytical approxima-
tions using a penalty for the loss of degrees of freedom from adjusting for Z. The following
code illustrates how this approach can be applied to the Grade 3 subset of the breast cancer
dataset to test for the association of pathways to estrogen receptor status after adjusting
for p53 mutations.

> table(ER = p3.upp$er, p53 = p3.upp$p53)

p53

ER 0 1

0 8 13

1 15 18

> Xy <- getXYresiduals(e3.upp, p3.upp$er, Z.mat = p3.upp$p53)

> results2 <- safe(Xy$X.star, Xy$y.star, C.mat,

+ print.it = FALSE)

> safe.toptable(results2, number = 10, description = FALSE)

11

GenesetID Size Statistic P.value Adj.p.value

1 KEGG:00650 43 605075 0.002 0.2280

2 KEGG:00290 16 250992 0.002 0.2280

3 KEGG:04110 233 3052692 0.006 0.4560

4 KEGG:05130 104 1400459 0.010 0.5700

5 KEGG:00640 51 697897 0.016 0.6344

6 KEGG:04115 122 1523076 0.030 0.6344

7 KEGG:04114 189 2322457 0.031 0.6344

8 KEGG:03030 49 709800 0.033 0.6344

9 KEGG:00620 57 753342 0.035 0.6344

10 KEGG:03430 32 452452 0.041 0.6344

7 Alternative global statistics

By default, safe conducts two-sided tests, taking the absolute value of local statistics, be-
fore ranking the feature-by-feature results. In this way, one can identify categories showing
either (a) consistent up-regulation, (b) down-regulation, or (c) bi-directional differential
expression. An optional argument in safe allows users to specify one-sided tests of differ-
ential expression: args.global = list(one.sided = TRUE) to consider only features in
the positive direction to be significant.

In the above SAFE analyses, a functional category was compared to its complementary
set of array features with a Wilcoxon rank sum statistic. The merits of using rank-based
statistics for functional analysis are discussed in more detail in Barry et al. (2005). However,
the SAFE framework naturally extends to other statistics used in gene category analyses.
This allows for one to apply test statistics used in other pathway-analysis software in a way
that accounts for gene-gene correlation (see Barry et al., 2008).

7.1 Average difference

Instead of testing the median difference in feature-by-feature association with the Wilcoxon
rank sum, a natural analog would be to test the mean difference, as done in T-profiler
(Boorsma et al., 2005), under an assumption of gene-independence. In safe, this can be
tested more properly under gene-dependence using the argument: global = "AveDiff", as
follows:

> results2 <- safe(e3.upp, p3.upp$p53, C.mat,

+ global = "AveDiff", print.it = FALSE)

> cor(results@global.pval, results2@global.pval, method = "spearman")

[1] 0.9661672

As shown above, highly concordant results are seen overall between these two choices of
global statistics, but the latter will be more sensitive to heavily-tailed empirical distributions
of local statistics. This can occur with outliers and highly influential expression estimates
that are common in most commercial platforms, despite global transformations (e.g., log2)
to minimize heteroscedasticity among features.

12

7.2 Gene-list methods

One popular approach to examining categories is through “gene-list enrichment” methods,
that were developed as post hoc means of inference after the array-features with significant
differential expression had been identified. These methods use global statistics that only
consider the dichotomous outcomes of feature-by-feature hypothesis tests (i.e., r probesets
on an Affymetrix platform are differentially expressed, m − r are not), and typically use
Fisher’s Exact test or Pearson’s test for a difference in proportions. Again, p-values are
extremely anti-conservative under the false assumption of gene independence, which can lead
to spurious results. For this reason, we have extended safe to this class of global statistics
such that valid p-values can be obtained. In using the gene-list type global statistics, one
must specify either the list length, as in the example below, or a (one- or two-sided) cut-off
value:

> set.seed(12345)

> results2 <- safe(e3.upp, p3.upp$p53, C.mat, global = "Fisher",

+ args.global = list(one.sided=F, genelist.length = 200),

+ print.it = FALSE)

> safe.toptable(results2, number = 10, description = FALSE)

GenesetID Size Statistic P.value Adj.p.value

1 KEGG:00260 44 3 0.002 0.3311

2 KEGG:00072 10 1 0.004 0.3311

3 KEGG:04972 162 6 0.005 0.3311

4 KEGG:00750 7 1 0.006 0.3311

5 KEGG:04970 137 5 0.008 0.3311

6 KEGG:03040 195 6 0.012 0.3311

7 KEGG:04110 233 7 0.014 0.3311

8 KEGG:00270 46 2 0.016 0.3311

9 KEGG:00900 20 1 0.017 0.3311

10 KEGG:04540 180 5 0.018 0.3311

The following calculation demonstrates the biased p-value one gets from a naive appli-
cation of Fisher’s Exact test to KEGG:04972.

> 1-phyper(6-1, 164, 22215-164, 200)

[1] 0.0037577

Similarly, the Pearson test for difference in proportions (which is equivalent to a Chi-
squared test) can be specified by the argument global = "Pearson", and instead of con-
ditioning on the number of rejected feature-level hypotheses, as in Fisher Exact tests, one
specifies the cutoff for the gene-list. This is done in the same manners as shown above,
where a one-sided or two-sided threshold value for local statistics is declared by the argu-
ment args.global = list(one.sided = FALSE, genelist.cutoff = 2.0).

7.3 Kolmogorov-Smirnov-type tests of enrichment

Lastly, we note that the popular approach to pathway-analysis, Gene Set Enrichment Anal-
ysis (GSEA), rightly accounts for gene-gene correlation through permutation-testing (see

13

Barry et al., 2008, for discussion). Rather than using a global statistic for comparing cen-
tral tendencies between a category and its complement, Subramanian (2005) proposed a
Kolmorgorov-Smirnov statistic used traditionally as a non-parametric test for more general
differences in distributions.

In safe, this statistic can be used with the argument global = "Kolmogorov", although
we note that this will be more computationally intensive than the above options, since it
cannot rely solely on scalar and matrix operators for calculation. For this reason, it is not
applied in this vignette and may not be feasible for general use, other than for simulation
studies to compare against output from GSEA and other softwares.

8 Adjusting for multiple comparisons in SAFE

As in standard feature-by-feature analyses, it is necessary to account for multiple com-
parisons when considering a set of categories. By default, safe accounts for multiple
comparisons by reporting the Benjamini-Hochberg (1995) estimate of the false discovery
rate (FDR), error = "FDR.BH", with every nominal p-value. safe also includes options
for Bonferroni correction, error = "FWER.Bonf" or Holm’s step-down procedure, error =

"FWER.Holm", for the family-wise error rate (FWER).
Since SAFE is a resampling-based test, permutation-based error rate methods have been

incorporated into safe which will control the correlation between tests of categories with
overlapping or non-overlapping but co-regulated genes. This includes Yekutieli-Benjamini
(1999) estimates of the FDR, error = "FDR.YB", and the Westfall-Young (1989) method,
error = "FWER.WY", for controlling the FWER. Although we feel these two permutation-
based procedures for controlling error are superior (by empirically accounting for correlation
among tests), they are more computationally and memory intensive, requiring all permuted
global statistics be stored from resampling. For this reason, we have not included them in
the vignette, and the traditional Benjamini-Hochberg (1995) estimate is selected by default.

9 Bootstrap-based tests in SAFE

In Barry et al. (2008), a bootstrap-based version of SAFE was proposed and shown to
generally be more powerful while controlling Type I error. Two basic methods of hypothesis
testing defined by Efron (1982) are available: 1) The argument method = "bootstrap" or
method = "bootstrap.t" will invoke pivot tests to look for the exclusion of a null value
from Gaussian confidence intervals computed from the resampled mean and variance of the
global statistic; 2) alternatively, method = "bootstrap.q" will invoke tests based on the
exclusion of a null value from the alpha-quantile interval of the resampled global statistic.

The following example is an anecdotal illustration of increased power from bootstrap-
resampling; a more definitive demonstration using simulation appears in Barry et al. (2008).

> set.seed(12345)

> results2 <- safe(e3.upp, p3.upp$er, C.mat2,

+ method = "bootstrap.q", print.it = FALSE)

> results3 <- safe(e3.upp, p3.upp$er, C.mat2,

+ method = "bootstrap.t", print.it = FALSE)

> round(cbind(Perm = results1@global.pval,

+ Boot.q = results2@global.pval,

+ Boot.t = results3@global.pval),4)

14

Perm Boot.q Boot.t

Genes21 0.003 0.005 4e-04

Genes16 0.007 0.010 8e-04

Based on the requirements for bootstrap-based hypothesis testing (see Barry et al.,
2008), they can only be performed using 1) Wilcoxon rank sum, 2) average difference, or 3)
Pearson difference in proportions (the pre-defined global statistics).

P-values for local statistics are calculated under bootstrap resampling, using exclusion
of 0 from quantile intervals with args.local = list(boot.test = "q"), and Gaussian
intervals with args.local = list(boot.test = "t"). A null value of 0 must relate to no
differential expression in the supplied local statistics.

By default, the data are resampled B = 1000 times when performing permutation or
quantile bootstrap tests. However, with minimum empirical p-values of 1

B , this may not be
sufficient when testing hundreds or thousands of categories, and ≥ 10-fold more resamples
could be needed if there are several hundred categories being investigated. The Gaussian
bootstrap-based test has the advantage that empirical p-values are not bounded by the
total number of resamples taken, such that small p-values can be obtained without intensive
computational effort.

Moreover, because permutation-resampling is intensive in computation time and mem-
ory requirements, we have recently developed accurate analytic approximations to permu-
tations of score statistics that have good performance for even relatively small sample sizes
(Zhou et al., under review). This approach preserves the essence of controlling Type I error
by permutation pathway analysis, but with greatly reduced computation, and is more accu-
rate than competing moment-based approaches in common use. The method has improved
properties, in terms of mean square error, over the common use of random sampling to select
permutations. These algorithms have been written into a new R package, safeExpress,
which can be called internally by safe using the argument method = express, so that the
output is provided as a SAFE object. The safeExpress package is available by request to
any of the vignette coauthors.

10 Parallel processing

The default method in safe calculates p-values empirically by resampling. While standard
R conducts each operation sequentially, under parallel processing multiple computational
tasks are executed simultaneously on separate computer processing cores. A new feature in
safe allows users to take advantage of the multiple computing cores commonly available on
servers and PCs to get substantial improvements in computing time by conducting boot-
strap or permutation resampling in parallel. Similar improvements are seen with numerical
approximations in method = "express" by testing individual categories in parallel.

10.1 Implementation

When executing safe with any available method (permutation, bootstrapping, or“express”),
with error = "none", "FWER.Bonf", or "FDR.BH", users can specify the optional param-
eter parallel = TRUE to leverage parallel processing. Within safe, the foreach package
is implemented for parallel execution of the requested method for the primary analysis.
The foreach package provides a “frontend” for any available parallel “backend” initialized
prior to calling the safe function. The foreach package is compatible with a variety of

15

Sequential Parallel Rel- Sequential Parallel Rel-
n m C Permutation Permutation ative Bootstrap Bootstrap ative

S S S 81.5 21.0 3.9 17.8 5.5 3.2
S L S 265.8 59.9 4.4 44.0 15.2 2.9
L S S 319.5 79.1 4.0 62.9 16.8 3.7
S S L 330.0 75.7 4.4 68.3 17.1 4.0
L S L 418.4 126.0 3.3 127.2 26.5 4.8
S L L 581.4 149.7 3.9 125.7 33.1 3.8
L L S 1380.2 343.9 4.0 246.5 65.7 3.8
L L L 1476.6 368.3 4.0 246.3 74.1 3.3

Table 1: Average run time (seconds) over 10 executions. “Relative” columns give sequential
execution time divided by parallel execution time. “S”and“L” indicate small or large testing
scenario parameters.

backends supporting %dopar% functionality, and has been tested successfully with doMC,

doMPI, doParallel, and doSNOW. An example invocation is given below, but users should
consult the documentation of these packages for more information on how to initialize a
parallel backend prior to invoking safe with parallel = TRUE. Upon execution, if no such
backend is available, the analysis will proceed in sequence, so conditional coding is not re-
quired, ensuring code portability. When running in parallel, safe uses the doRNG package
to allow users to set seeds for random number generation, enabling reproducible analyses.

> #Initialize parallel backend

> library(doParallel)

> registerDoParallel(cores=4)

> set.seed(12345)

> results <- safe(e3.upp, p3.upp$p53, platform = "hgu133a.db",

+ annotate = "KEGG", print.it = FALSE, parallel=TRUE)

10.2 Comparison of methods

To demonstrate the efficiency gains possible under parallel processing, a comparison study
was conducted using the Miller et al. (2005) data to compare performance in a variety of
scenarios. To illustrate the breadth of conditions under which SAFE may be implemented,
“large” and “small” numbers of samples, probesets, and categories were combined, forming
eight different scenarios for testing. The large sample size uses all of the phenotype data
(251 samples), while the small sample size is limited to only those samples indicated as
Grade 3 (54 samples). The large probeset scenarios use all probesets from the complete
Affymetrix hgu133a array (44928 probesets), while the small scenarios drop the Affymetrix
control probesets and truncate the data to one probeset per gene (12702 probesets). Finally,
the large and small sets of categories are constructed using the Gene Ontology pathways
(12140 or 13873 categories) or the Protein Families database (2061 or 2764 categories),
respectively, depending on the number of probesets being used.

Sequential and parallel analyses using the permutation method used the default setting
of 1000 permutations, and bootstrapping methods used the default of 200 bootstrap re-
samplings. The analyses for each testing scenario was repeated 10 times, and the resulting
average processing times are summarized in table 1. Table 1 was generated using 4 parallel

16

processing cores on a 64-bit Debian server with two dual-core AMD Opteron processors
(four cores total) with 16GB of RAM, running R version 2.15.2. As expected, parallel exe-
cutions of the permutation method were 4-4.5 times faster than sequential executions, and
parallel executions of the bootstrapping method were 3-5 times faster.

● ●

●

●

●

●

●

Number of cores

R
el

at
iv

e
im

pr
ov

em
en

t

● ●

●

●

●

●

●

0
1

2
3

4
5

6

Sequential 1 2 3 4 5 6

●

●

S−S−S scenario
L−L−L scenario

Because computational overhead is minimal outside of the resampling loop, executions
times increase linearly with the number of resamplings but decrease linearly with the number
of cores. The analyses for the permutation method for two testing scenarios were repeated
10 times each using an increasing number of parallel processing cores on a 64-bit Debian
server with a six-core Intel i7-3960X Extreme processor with 48GB of RAM, running R

version 2.15.2. The resulting processing times, relative to the sequential execution time,
are summarized in the figure above. The S-S-S and L-L-L scenarios correspond to those
described for table 1. As the number of samples, probesets, or categories in the data is
increased, so is the computational burden of the resampling loop relative to that outside the
loop. Thus parallel processing shows more substantial improvement relative to sequential
processing for larger data sets.

11 Visualizing pathway-level association in SAFE

11.1 SAFE-plots

Ever since permutation testing for pathway-analysis was used in Virtaneva et al. (2001),
we have advocated that the cumulative distribution function (CDF) of the category be used
to visualize the relative magnitude and direction of differential expression of array features
annotated to the category. By default, the function safeplot will create a figure for the
most significant pathway, as shown in section 4. SAFE-plots of other categories can be
generated with the argument cat.name.

> safeplot(results, cat.name = "KEGG:03030", gene.names = genes)

17

P
O

LD
4

P
O

LA
1

R
F

C
1

R
F

C
1

R
F

C
2

P
R

IM
2

P
O

LD
2

M
C

M
2

R
PA

1
R

N
A

S
E

H
2B

R
PA

2
M

C
M

4
P

R
IM

2
P

O
LE

2
R

N
A

S
E

H
1

P
O

LD
1

P
C

N
A

R
N

A
S

E
H

2A
M

C
M

5
P

O
LA

2
M

C
M

5
F

E
N

1
LI

G
1

R
N

A
S

E
H

1
R

F
C

5
R

F
C

3
R

F
C

4
M

C
M

6
M

C
M

4
P

R
IM

2

Local statistics (on ranked scale)

5000 10000 15000 20000

0
0.

25
0.

5
0.

75
1

KEGG:03030
p = 0.01
DNA replication

SAFE-plots show the empirical CDF for the local statistics from a given category (solid
line), on the rank scale by default, or on an unranked scale with argument rank = FALSE.
A significant category will have more extreme associations to the response of interest than
its complement, resulting in either a right-ward, left-ward, or bidirectional shift in the CDF
away from the overall CDF (dashed line, which is uniform on the ranked scale). The shaded
regions of the plot correspond to the features that pass a nominal level of significance
(empirical p-values ≤ 0.05 by default). The features in the category are shown as tick
marks along the top of the graph, and depending on the category size, either all features
in the category are labeled, or only the most extreme ones that will fit in the negative and
positive areas of the plot.

This SAFE-plot shows that the features of KEGG pathway 03030 demonstrate consistent
overexpression in p53+ samples versus p53−, including PRIM2, MCM*, and RFC* genes
reaching a nominal level of significance individually. In contrast, KEGG:00072 (above)
does not show a consistent pattern of differential expression, with only a single strongly
significant gene, ACT2, likely driving the association to p53 status.

11.2 Directed acyclic graphs of gene categories

Finally, Gene Ontology is a unique, structured vocabulary where genes are annotated from
broad to narrow levels of classification in a directed acyclic graph (DAG). As such, many
categories are highly related in their gene membership, and visualizing results across the
ontology can be useful in ascertaining the relationship among multiply-significant categories.
The following function interacts with the GOstats and Rgraphviz packages in order to
overlay SAFE results onto the DAG structure in a color-metric manner. By default, nodes
with unadjusted p-values less than 0.001 are drawn in blue; less than 0.01 are drawn in
green; and less than 0.1 are drawn in red. User-defined cutoffs for the three colors can be
specified using the argument color.cutoffs.

> safedag(results2, filter = 1)

18

GO:0000776GO:0000779

GO:0000796GO:0005697

GO:0005859

GO:0005871GO:0016460

GO:0016602

GO:0031094

GO:0031095

GO:0044304

GO:0045298

GO:0060076

GO:0070937GO:0000775

GO:0000793

GO:0005667

GO:0005875GO:0016459

GO:0030529

GO:0031090 GO:0033267GO:0043231 GO:0043232

GO:0043234

GO:0044424

GO:0044427GO:0044428 GO:0044430

GO:0044444

GO:0044449

GO:0045202

CC

GO:0005622

GO:0005634 GO:0005694

GO:0005737

GO:0005856

GO:0015629 GO:0015630

GO:0016020

GO:0030424

GO:0032991

GO:0043227 GO:0043228GO:0043229

GO:0043292

GO:0044422

GO:0044446

GO:0044451

GO:0044463

GO:0044464

GO:0005623

GO:0005654

GO:0042995

GO:0043005GO:0043226

GO:0031981

GO:0070013

GO:0043233

GO:0031974

And one can also zoom in on parts of the DAG by specifying a node to be the top of
the graph.

> safedag(results2, filter = 1, top = "GO:0044430")

GO:0005859

GO:0005871GO:0016460

GO:0045298 GO:0005875GO:0016459

GO:0044430

19

12 References

� Barry, W.T., Nobel, A.B. and Wright, F.A. (2005) ‘Significance analysis of functional
categories in gene expression studies: a structured permutation approach’, Bioinfor-
matics, 21(9), 1943–1949.

� Barry, W.T., Nobel, A.B. and Wright, F.A. (2008) ‘A Statistical Framework for Test-
ing Functional Categories in Microarray Data’, Annals of Applied Statistics, 2(1),
286–315.

� Benjamini Y., Hochberg Y. (1995) ‘Controlling the False Discovery Rate - a Practical
and Powerful Approach to Multiple Testing’, Journal of the Royal Statistical Society
Series B-Methodological, 57, 289–300.

� Boorsma, A., Foat, B.C., Vis, D. Klis, F., and Bussemaker, H.J. (2005) ‘T-profiler:
scoring the activity of predefined groups of genes using gene expression data’, Nucleic
Acids Res, 33, 592–595.

� Edgar R., Domrachev M., and Lash A.E (2002) ‘Gene Expression Omnibus: NCBI
gene expression and hybridization array data repository’, Nucleic Acids Res., 30(1),
207–210.

� Efron, B. (1982) The jackknife, the bootstrap, and other resampling plans, Philadel-
phia, PA: Society for Industrial and Applied Mathematics.

� Gatti, D.M., Barry, W.T., Nobel. A.B., Rusyn, I., and Wright, F.A., (2010) ‘Heading
Down the Wrong Pathway: on the Influence of Correlation within Gene Sets’, BMC
Genomics, 11, 574.

� Goeman, J.J., Oosting, J., Cleton-Jansen, A.M., Anninga, J.K. and van Houwelingen,
H.C. (2005) ‘Testing association of a pathway with survival using gene expression
data’, Bioinformatics, 21 (9), 1950–1957.

� Good, P.I. (2000) Permutation tests : a practical guide to resampling methods for
testing hypotheses, New York, NY: Springer.

� Miller, L.D., Smeds, J., George, J., Vega, V.B., Vergara, L., Ploner, A., Pawitan, Y.,
Hall, P., Klaar, S., Liu, E.T., and Bergh, J. (2005) ‘An expression signature for p53
status in human breast cancer predicts mutation status, transcriptional effects, and
patient survival’, Proc Natl Acad Sci U S A, 102(38), 13550–13555.

� Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette,
M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P.
(2005) ‘Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles’, Proc Natl Acad Sci U S A, 102(43), 15545–15550.

� Therneau, T.M., Grambsch, P.M., and Fleming, T.R. (1990) ‘Martingale-based resid-
uals for survival models’, Biometrika, 77(1), 147–160.

� Virtaneva, K.I., Wright, F.A., Tanner, S.M., Yuan, B., Lemon, W.J., Caligiuri, M.A.,
Bloomfield, C.D., de laChapelle, A. and Krahe, R. (2001) ‘Expression profiling reveals
fundamental biological differences in acute myeloid leukemia with isolated trisomy 8
and normal cytogenetics’, Proc Natl Acad Sci U S A, 98(3), 1124–1129.

20

� Westfall, P.H. and Young, S.S. (1989) ‘P-value adjustment for multiple tests in mul-
tivariate binomial models’, J Amer Statist Assoc, 84, 780–786.

� Yekutieli, D. and Benjamini, Y. (1999) ‘Resampling-based false discovery rate control-
ling multiple test procedures for correlated test statistics’, J Statist Plann Inference,
82, 171–196.

� Zhou, Y.H., Barry, W.T., and Wright, F.A. (2012) ‘Empirical Pathway Analysis,
without Permutation’, under review.
http://biostats.bepress.com/uncbiostat/art24

21

