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1 Introduction

This vignette describes how to use the package gpgraph in order to reverse engineer a transcriptional
regulatory network from a particular gene expression microarray data set of Escherichia coli (E.
coli). Concretely, the data corresponds to n =43 experiments of various mutants under oxygen
deprivation (Covert et al. 2004). The mutants were designed to monitor the response from E.
coli during an oxygen shift in order to target the a priori most relevant part of the transcriptional
netwok by using six strains with knockouts of the following key transcriptional regulators in the
oxygen response: AarcA, AappY, Afnr, AoxyR, AsoxS and the double knockout AarcAAfnr. To get
started, load the following packages:

library(Biobase)
library(annotate)
library(genefilter)
library(org.EcK12.eg.db)
library(graph)
library(qpgraph)
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Within the gpgraph package there is a data file called EcoliOxygen in which we will find the
following objects stored:

> data(EcoliOxygen)
> 1s(0)

[1] "filtered.regulon6.1" "gds680.eset"
[3] "subset.filtered.regulon6.1" "subset.gds680.eset"

where filtered.regulon6.1 contains a subset of the E. coli transcriptional network from Regu-
lonDB 6.1 (Gama-Castro et al., 2008) obtained through the filtering steps described in (Castelo
and Roveratol 2009) and gds680.eset is an ExpressionSet object with the n = 43 microarray
experiments of |(Covert et al.| (2004) described before. These experiments provide expression pro-
files for p = 4205 genes derived from the original data set downloaded from the Gene Expression
Omnibus (Barrett et al., [2007)) with accession GDS680 by applying the filtering steps described also
in (Castelo and Roveratol 2009)). You can see a summary of the data contained in this object by
simply typing its name on the R-shell:



> gds680.eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 4205 features, 43 samples
element names: exprs

protocolData: none

phenoData
rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
varLabels: Strain GrowthProtocol GenotypeVariation Description
varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
pubMedIds: 15129285

Annotation: org.EcK12.eg.db

where the usual probeset identifiers in the featureNames slot have been already replaced by the
corresponding Entrez IDs according to the filtering steps taken in (Castelo and Roverato, 2009)).

2 Preprocessing steps

In order to keep time and space requirements of the calculations at a manageable level for a
vignette, we will use a subset of these data. Concretely, we will consider first those genes forming
part in RegulonDB of the regulatory modules of the five knocked-out transcription factors and
select the 100 genes with largest variability measured by the interquartile range (IQR). In the
gpgraph package the filtered RegulonDB data is stored in the form of a data frame where each
row corresponds to a transcriptional regulatory relationship, the first two columns contain Blattner
IDs of the transcription factor (TF) and target (TG) genes, respectively, and the following two
correspond to the same genes but specified by Entrez IDs. The fifth column contains the direction
of the regulation according to RegulonDB and this is how the first rows look like:

> head(filtered.regulon6.1)

B1ID_TF B1ID_TG EgID_TF EgID_TG Direction

1 Db0464 b0463 945516 945112 -
2 b0464  b0462 945516 945108 -
5 b2213 b4187 946710 948710 +
6 b2213 b2068 946710 947371 +
7 b2213 b2212 946710 946708 +-
8 b4l116  b4117 948627 948638 +

We select the rows of filtered.regulon6.1 that correspond to the subnetwork of the 5 knocked-
out TFs as follows. First, obtain the Entrez IDs of these genes from their symbols:

> knockoutsyms <- c("arcA","appY", "oxyR", "soxS","fnr")

> rmap <- revmap (getAnnMap("SYMBOL", "org.EcK12.eg.db"))
> knockoutEgIDs <- unlist (mget (knockoutsyms, rmap))

> knockoutEgIDs



archA appY oxyR soxS fnr
"'948874" "948797" "948462" "948567" "945908"

Next, get all transcriptional regulatory relationships from these TFs and obtain the subset of non-
redundant genes involved in this subnetwork:

> mt <- match(filtered.regulon6.1[,"EgID_TF"], knockoutEgIDs)
> cat("These 5 TFs are involved in",sum(!is.na(mt)),"TF-TG interactions\n")

These 5 TFs are involved in 462 TF-TG interactions

> genes02net <- as.character(unique(as.vector(
+ as.matrix(filtered.regulon6.1[!is.na(mt),c("EgID_TF","EgID_TG")]))))
> cat("There are",length(genesO2net),"different genes in this subnetwork\n")

There are 378 different genes in this subnetwork
and, finally, select the 100 most variable genes by using the IQR:

> IQRs <- apply(exprs(gds680.eset[genes02net,]), 1, IQR)
> largestIQRgenesO2net <- names (sort (IQRs,decreasing=TRUE) [1:100])

Using these genes we create a new ExpressionSet object, which we shall call subset.gds680.eset
by subsetting directly from gds680.eset:

> dim(gds680.eset)

Features Samples
4205 43

> subset.gds680.eset <- gds680.eset[largestIQRgenes02net, ]
> dim(subset.gds680.eset)

Features Samples
100 43

> subset.gds680.eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 100 features, 43 samples
element names: exprs

protocolData: none

phenoData
rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
varLabels: Strain GrowthProtocol GenotypeVariation Description
varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
pubMedIds: 15129285

Annotation: org.EcK12.eg.db



In order to compare later our results against the transcriptional network from RegulonDB we will
extract the subnetwork that involves exclusively these selected 100 genes as follows. First extract
the corresponding rows:

> mtTF <- match(filtered.regulon6.1[,"EgID_TF"],largestI{Rgenes02net)

> mtTG <- match(filtered.regulon6.1[,"EgID_TG"],largestIQRgenes02net)

> cat(sprintf("The 100 genes are involved in J,d RegulonDB interactions\n",
+ sum(!is.na(mtTF) & !is.na(mtTG))))

The 100 genes are involved in 128 RegulonDB interactions
> subset.filtered.regulon6.1 <- filtered.regulon6.1[!is.na(mtTF) & !is.na(mtTG),]

Next, we need to build an incidence matrix of this subset of interactions, which we shall call
subset.filtered.regulon6.1.I, in order to ease posterior comparisons with reverse-engineered
networks and for this purpose we should first map the Entrez IDs to the indexed position they have
within the ExpressionSet object and then build the incidence matrix:

TFi <- match(subset.filtered.regulon6.1[,"EgID_TF"],

featureNames (subset.gds680.eset))
TGi <- match(subset.filtered.regulon6.1[,"EgID_TG"],

featureNames (subset.gds680.eset))
subset.filtered.regulon6.1 <- cbind(subset.filtered.regulon6.1,

idx_TF=TFi, idx_TG=TGi)
p <- dim(subset.gds680.eset) ["Features"]
subset.filtered.regulon6.1.I <- matrix(FALSE, nrow=p, ncol=p)
rownames (subset.filtered.regulon6.1.I) <- featureNames (subset.gds680.eset)
colnames (subset.filtered.regulon6.1.I) <- featureNames (subset.gds680.eset)
idxTFTG <- as.matrix(subset.filtered.regulon6.1[,c("idx_TF","idx_TG")])
subset.filtered.regulon6.1.I[idxTFTG] <-
subset.filtered.regulon6.1.I[cbind (idxTFTG[,2],idxTFTG[,1])] <- TRUE
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3 Reverse engineer a transcriptional regulatory network

We are set to reverse engineer a transcriptional regulatory network from the subset of the oxygen
deprivation microarray data formed by the selected 100 genes and we will use three methods: 1. the
estimation of Pearson correlation coefficients (PCCs); 2. the estimation of average non-rejection
rates (avgNRRs); and, as a baseline comparison, 3. the assignment of random correlations drawn
from a uniform distribution between -1 and +1 to every pair of genes. We can estimate PCCs for
all gene pairs with the function gqpPCC from the gqpgraph package as follows:

> pcc.estimates <- gpPCC(subset.gds680.eset)

which returns a list with two members, one called R with the PCCs and another called P with the
corresponding two-sided P-values for the null hypothesis of zero correlation. Let’s take a look to
the distribution of absolute PCCs between all possible TF-TG pairs in this subset of 100 genes:



largestIQRgenes02net_i <- match(largestIQRgenes02net,
featureNames (subset.gds680.eset))
largestIQRgenes02netTFs <- largestIQRgenesO2net[!is.na(
match (largestI{RgenesO2net,filtered.regulon6.1[, "EgID_TF"]))]

largestIQRgenes02netTFs_i <- match(largestIQRgenes02netTFs,

featureNames (subset.gds680.eset))
TFsbyTGs <- as.matrix(expand.grid(largestIQRgenes02netTFs_i,

setdiff (largestIQRgenesO2net_i,largestIQRgenes02netTFs_i)).
TFsbyTGs <- rbind(TFsbyTGs,t (combn(largestI(Rgenes02netTFs_i, 2)))
summary (abs (pcc.estimates$R[TFsbyTGs]))
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001023 0.3027000 0.5146000 0.5037000 0.7182000 0.9862000

Note that they are distributed almost uniformly at random throughout the entire range [0,1] while
if we look at the distribution of the PCC estimates for the entire RegulonDB data, i.e., for all
possible TF-TG pairs among the initial p = 4205 genes:

> regulonDBgenes <- as.character (unique(c(filtered.regulon6.1[, "EgID_TF"],

+ filtered.regulon6.1[, "EgID_TG"])))
> cat (sprintf ("The RegulonDB transcriptional network involves /d genes",
+ length (regulonDBgenes)))

The RegulonDB transcriptional network involves 1428 genes

pcc.allRegulonDB.estimates <- gpPCC(gds680.eset [regulonDBgenes,])
allTFs_i <- match(unique(filtered.regulon6.1[, "EgID_TF"]), regulonDBgenes)
allTFsbyTGs <- as.matrix(expand.grid(allTFs_i,

setdiff (1:length(regulonDBgenes), allTFs_i)))
allTFsbyTGs <- rbind(allTFsbyTGs,t(combn(allTFs_i, 2)))
summary (abs (pcc.allRegulonDB. estimates$R[all1TFsbyTGs]))
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000024 0.1038000 0.2204000 0.2555000 0.3739000 0.9862000

we see that, opposite to what happens in the subset of 100 genes, most of the absolute PCC
values for all (i.e., present and absent from RegulonDB) TF-TG pairs are small. The high level of
correlation among most of the 100 genes is probably due to the coordinated transcriptional program
to which all these genes belong to, since they form part of some of the key regulatory modules in the
response to oxygen deprivation. Recall that five TFs in these regulatory modules were knocked-out
in the assayed experimental conditions and we selected the most variable 100 genes. Concretely,
among the five TFs the following ones were finally included in these 100 most variable genes:

> mt <- match(knockoutEgIDs,largestIQRgenes02net)
> unlist (mget (largestIQRgenes02net [mt[!is.na(mt)]],org.EcK12.egSYMBOL))

948874 948797 948567 945908
"al"CA" "appY" IISOXSH llfnrll



If we look now to the distribution of absolute PCC values for only those TF-TG pairs that are
present in the subset of RegulonDB involved in the 100 genes:

> maskRegulonTFTG <- subset.filtered.regulon6.1.I & upper.tri(subset.filtered.regulon6.1.I)
> summary (abs(pcc.estimates$R [maskRegulonTFTG]))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001023 0.1561000 0.2896000 0.3304000 0.4574000 0.9862000

they show much lower values (50% < 0.3) and thus we can expect that a substantial number of
TF-TG pairs absent from RegulonDB but with strong PCC values will sneak in as false positives
in our assessment below of the estimation of PCCs as a reverse engineering method. If we look
at the distribution of the PCC values from the RegulonDB interactions separetely by each of the
regulatory modules within these 100 genes (i.e., by each of the TFs) we can see that fnris one of
the responsibles for having low PCCs in a large fraction of this subset of RegulonDB. We have used
the R code below to produce Figure 1 where this is shown.

par (mar=c(5,4,5,2))
pccsbyTF <- 1list()
for (TFi in subset.filtered.regulon6.1[,"idx_TF"])
pcecsbyTF[ [featureNames (subset.gds680.eset) [TFi]l] <-
abs(pcc.estimates$R[TFi, subset.filtered.regulon6.1.I[TFi,]])
bp <- boxplot(pccsbyTF,names=sprintf("}s",mget (names (pccsbyTF),org.EcK12.egSYMBOL)),
ylab="Pearson correlation coefficient (PCC)",
main=paste("Distribution of PCCs in each RegulonDB",
"regulatory module within the 100 genes data set", sep="\n"))
nint <- sprintf("(}d)",sapply(names (pccsbyTF), function(x)
sum(subset.filtered.regulon6.1.I[x,1)))
mtext (nint, at=seq(bp$n), line=+2, side=1)
mtext ("Transcription factor (# RegulonDB interactions)", side=1, line=+4)
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As observed by (Covert et al. (2004)) when fnr becomes active under anaerobic conditions its mRNA
level is significantly reduced and we hypothesize that this fact probably leads to weak correlations
of the expression level with its target genes.

Now we will show how can we use qp-graphs to tackle such a challenging situation. We should
start by estimating avgNRRs with the function qpAvgNrr() but before we do that, and for the
sake of reproducibility of the results of this vignette, we should take into account that because
the non-rejection rate is estimated by a random sampling procedure (see Castelo and Roverato),
2006)), its value may vary slightly from run to run and thus edges with very similar avgNRR values
may alternate their positions when ranking them and thus show up differently in different qp-
graphs obtained from different runs if, within the ranking, they lie at the boundary of the precision
threshold we may be using later. For this reason, and in order to let the reader reproduce exactly
the results contained in this vignette, we will specify a particular seed to the random number
generator as follows:

> set.seed(123)
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Figure 1: Distribution of Pearson correlation coefficients (PCCs) calculated from the |Covert et al.
(2004)) oxygen deprivation data between genes forming RegulonDB interactions. Distributed values
are shown separately by each regulatory module defined as a transcription factor (TF) and its set
of target genes.

Moreover, in this exercise, we are only interested in TF-TG relationships and thus we will speed-
up the calculations by restricting the formation of gene pairs with the parameters pairup.i and
pairup.j in the following way:

> avgnrr.estimates <- gpAvgNrr (subset.gds680.eset,
+ pairup.i=largestIRgenes02netTFs,
+ pairup.j=largestI{Rgenes02net, verbose=FALSE)

The function gqpAvgNrr () uses by default four equidistant g-values along the available range and
returns a matrix with the estimates for all gene pairs except when, as in this case, we restrict the
genes allowed to pair with each other. In order to assess the accuracy of the PCC and qp-graph
methods we will use the transcriptional regulatory relationships in the subset of RegulonDB that we
selected before and calculate precision-recall curves (Fawcett, 2006) using the gpPrecisionRecall
function from the gpgraph package.

We have to be careful with the fact that while we calculated avgNRRs only for TF-TG pairs,
the matrix pcc.estimates$R contains PCC values for all pairs of genes and thus in order to
obtain comparable precision-recall curves we will have to inform gqpPrecisionRecall of the pairs
that should be considered when giving it the matrix of PCC values. This is not necessary with
avgNRRs as the matrix has NA values on the cells corresponding to pairs where no calculation was
performed (on the pairs of non-transcription factor genes).

> pcc.prerec <- gpPrecisionRecall(abs(pcc.estimates$R), subset.filtered.regulon6.1.1I,
+ decreasing=TRUE, pairup.i=largestI(JRgenes02netTFs,



+ pairup. j=largestI(RgenesO2net,
+ recallSteps=c(seq(0,0.1,0.01),seq(0.2,1,0.1)))

Note also that, opposite to PCCs, in avgNRR estimates the value indicating the smallest strength
of the interaction is 1 instead of 0 and therefore we should set decreasing=FALSE:

> avgnrr.prerec <- gpPrecisionRecall(avgnrr.estimates, subset.filtered.regulon6.1.T,
+ decreasing=FALSE,
+ recallSteps=c(seq(0,0.1,0.01),seq(0.2,1,0.1)))

Finally, in order to have the assignment of random correlations as a baseline comparison we should
do the following:

> set.seed(123)
> rndcor <- gpUnifRndAssociation(100, featureNames (subset.gds680.eset))
> random.prerec <- gpPrecisionRecall(abs(rndcor), subset.filtered.regulon6.1.I,

+ decreasing=TRUE, pairup.i=largestI(JRgenes02netTFs,
+ pairup. j=largestI(JRgenes(02net,
+ recallSteps=c(seq(0,0.1,0.01),seq(0.2,1,0.1)))

where again we have specified a seed for the random number generator in order to enforce repro-
ducing the same random correlations each time we run this vignette.

A way to quantitatively compare these three precision-recall curves is to calculate the area under
these curves where the larger it is, the more accurate the method is:

f <- approxfun(pcc.prerec[,c("Recall", "Precision")])
area <- integrate(f,0,1)$value

f <- approxfun(avgnrr.prerec[,c("Recall", "Precision")])
area <- cbind(area, integrate(f,0,1)$value)

f <- approxfun(random.prerec[,c("Recall","Precision")])
area <- cbind(area, integrate(f,0,1)$value)

colnames (area) <- c("PCC", "avgNRR", "Random")

rownames (area) <- "AreaPrecisionRecall"

printCoefmat (area)
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PCC avgNRR Random
AreaPrecisionRecall 0.13747 0.26436 0.189

From these values we may conclude that, for these data (n =43 microarray experiments on p =
100 genes among which 7 are TFs, and with 128 transcriptional regulatory relationships from
RegulonDB for comparison), the random method outperforms the usage of PCCs but it performs
worse than the gp-graph method with avgNRRs which, therefore, constitutes the best solution
among these three approaches. While it may sound a bit counter-intuitive that the assignment of
a random correlation provides better results than using PCCs, the reason for this lies in the fact
that with these data we have 7 x 93 + (;) =672 possible TF-TG interactions out of which 128 from
RegulonDB form our gold-standard. This yields a bottomline precision of (128/672) x 100 ~ 19%
which is quickly attained by drawing random correlations. However, we saw before that absolute



PCCs of the RegulonDB interactions forming our gold-standard are most of them distributed under
0.5 and this yields, for this particular data set, a performance that is worse than random at regions
of high-precision. We may see this situation depicted in Figure 2 whose left panel has been produced
with the following R code:

> par (mai=c(.5,.5,1,.5) ,mar=c(5,4,7,2)+0.1)

> plot(avgnrr.prerec[,c(1,2)], type="b", 1lty=1, pch=19, cex=0.65, lwd=4, col="red",
+ x1im=c(0,0.1), ylim=c(0,1), axes=FALSE,

+ xlab="Recall (J; RegulonDB interactions)", ylab="Precision (7)")

> axis(1, at=seq(0,1,0.01), labels=seq(0,100,1))

> axis(2, at=seq(0,1,0.10), labels=seq(0,100,10))

> axis(3, at=avgnrr.prerec[,"Recall],

+ labels=round(avgnrr.prerec[, "Recall"]*dim(subset.filtered.regulon6.1) [1],

+ digits=0))

> title(main="Precision-recall comparison", line=+5)

> lines(pcc.prerec[,c(1,2)], type="b", 1lty=1, pch=22, cex=0.65, lwd=4, col="blue")
> lines(random.prerec[,c(1,2)], type="1", 1lty=2, lwd=4, col="black")

> mtext("Recall (# RegulonDB interactions)", 3, line=+3)

> legend(0.06, 1.0, c("qp-graph","PCC","Random"), col=c("red","blue","black"),

+ 1ty=c(1,1,2), pch=c(19,22,-1), 1lwd=3, bg="white",pt.cex=0.85)

> par(mai=c(.5,.5,1,.5),mar=c(5,4,7,2)+0.1)

> plot(avgnrr.prerec[,c(1,2)], type="b", 1lty=1, pch=19, cex=0.65, lwd=4, col="red",
+ x1im=c(0,1), ylim=c(0,1), axes=FALSE,

+ xlab="Recall (J; RegulonDB interactions)", ylab="Precision (7)")

> axis(1, at=seq(0,1,0.10), labels=seq(0,100,10))

> axis(2, at=seq(0,1,0.10), labels=seq(0,100,10))

> axis(3, at=avgnrr.prerec[,"Recall'],

+ labels=round(avgnrr.prerec[, "Recall"]*dim(subset.filtered.regulon6.1)[1],

+ digits=0))

> title(main="Precision-recall comparison", line=+5)

> lines(pcc.prerec[,c(1,2)], type="b", lty=1, pch=22, cex=0.65, lwd=4, col="blue")
> lines(random.prerec[,c(1,2)], type="1", 1lty=2, lwd=4, col="black")

> mtext ("Recall (# RegulonDB interactions)", 3, line=+3)

> legend (0.6, 1.0, c("qp-graph","PCC","Random"), col=c("red","blue","black"),

+ 1ty=c(1,1,2), pch=c(19,22,-1), 1lwd=3, bg="white",pt.cex=0.85)

The final step in this analysis is to get a transcriptional regulatory network from a qp-graph
using avgNNRs and, if possible, obtain estimates of partial correlation coefficients (PAC) for the
interactions. A gp-graph can be obtained by thresholding on the avgNRRs using the function
gpGraph. When, as in our case now, we have a gold-standard network like RegulonDB, a sensible
strategy to decide on a particular threshold is to derive it from a nominal precision level with respect
to the gold-standard network. We can do this with the function gpPRscoreThreshold which reads
the output of gpPrecisionRecall and takes a desired precision or recall level. We will use it with
a nominal precision level of 50%:

> thr <- gpPRscoreThreshold(avgnrr.prerec, level=0.5, recall.level=FALSE, max.score=0)
> thr
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Figure 2: Comparison of precision-recall curves for various reverse-engineering methods with panel

(a) showing a high-precision recall region of [0,0.1] and panel(b) showing the entire recall range.
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In order to manipulate the final reverse engineered transcriptional regulatory network from this
50%-precision qp-graph we will obtain a graphNEL object through the qpGraph() function:

> g <- gpGraph(avgnrr.estimates, threshold=thr, return.type="graphNEL")
> 8

A graphNEL graph with undirected edges
Number of Nodes = 100
Number of Edges = 20

We are going to estimate now the corresponding PACs for the interactions. First, we should see if
this is at all possible by calculating the size of the largest clique in this undirected graph with the
gpCliqueNumber function from the qpgraph package:

> gpCliqueNumber (g, verbose=FALSE)

(1] 2

The maximum clique size (aka clique number) is smaller than the number of observations in the
data (n=43) and therefore we can go on with the PAC estimation (see |Lauritzen) (1996} for further

details on this):

> pac.estimates <- qpPAC(subset.gds680.eset, g, verbose=FALSE)

10



Before making a graphical representation of the transcriptional regulatory network we have in g
we would like to make a text-based summary of the interactions, more amenable for an occasional
automatic processing of them outside R, including their presence or absence of RegulonDB and
corresponding avgNRRs, PACs and PCCs. We start by building a matrix of the directed edges,

> edL <- edges(g) [names(edges(g)) [unlist (lapply(edges(g),length)) > 0]]
> edM <- matrix(unlist (sapply(names (edL),

+ function(x) t(cbind(x,edL[[x]])),USE.NAMES=FALSE)),

+ ncol=2, byrow=TRUE)

and continue by gathering all the necessary information on these edges,

> edSymbols <- cbind(unlist(mget(edM[,1], org.EcK12.egSYMBOL)),

+ unlist (mget (edM[,2], org.EcK12.egSYMBOL)))

> idxTF <- match(edM[,1], featureNames (subset.gds680.eset))

> idxTG <- match(edM[,2], featureNames (subset.gds680.eset))

> nrrs <- avgnrr.estimates[cbind(idxTF, idxTG)]

> pacs.rho <- pac.estimates$R[cbind (idxTF, idxTG)]

> pacs.pva <- pac.estimates$P[cbind(idxTF, idxTG)]

> pccs.rho <- pcc.estimates$R[cbind (idxTF, idxTG)]

> pccs.pva <- pcc.estimates$P[cbind (idxTF, idxTG)]

> idxRegDB <- apply(edM,1,function(x) {

+ regdbmask <-

+ apply(

+ cbind (match(subset.filtered.regulon6.1[,"EgID_TF"],x[1]),
+ match(subset.filtered.regulon6.1[,"EgID_TG"],x[2])),
+ 1, function(y) sum(!is.na(y))) == 2 ;

+ if (sum(regdbmask) > 0)

+ (1:dim(subset.filtered.regulon6.1) [1]) [regdbmask]
+ else

+ NA

+ »

> isinRegDB <- matrix(c("present", "absent"),

+ nrow=2, ncol=length(idxRegDB)) [t (cbind(!is.na(idxRegDB),
+ is.na(idxRegDB)))]

to end up creating a data frame that includes all the information,

> txregnet <- data.frame(RegulonDB=isinRegDB,

+ RegDBdir=subset.filtered.regulon6.1[idxRegDB, "Direction"],
+ AvgNRR=round (nrrs,digits=2),

+ PCC.rho=round(pccs.rho,digits=2),

+ PCC.pva=format (pccs.pva,scientific=TRUE,digits=3),

+ PAC.rho=round(pacs.rho,digits=2),

+ PAC.pva=format (pacs.pva,scientific=TRUE,digits=3))

> rownames (txregnet) <- paste(edSymbols[,1],edSymbols[,2],sep=" -> ")
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and which allows us to display the transcriptional regulatory network as a list of edges ordering
them, for instance, by the avgNRR from the stronger (0.0) to the weaker (1.0) support for the
presence of that interaction in the network:

> txregnet[sort (txregnet[["AvgNRR"]],index.return=TRUE)$ix, ]

RegulonDB RegDBdir AvgNRR PCC.rho PCC.pva PAC.rho PAC.pva

betB -> betl absent <NA> 0.09 0.99 0.00e+00 0.87 4.13e-06
betIl -> betB  present - 0.09 0.99 0.00e+00 0.87 4.13e-06
yfiD -> fnr absent <NA> 0.11 0.66 1.39e-06 0.61 2.98e-04
fnr -> yfiD present +- 0.11 0.66 1.39e-06 0.61 2.98e-04
appC —-> appY absent <NA> 0.12 0.84 1.21e-12 0.50 2.35e-05
appY -> appC present + 0.12 0.84 1.21e-12 0.50 2.35e-05
arcA -> fadB present -  0.15 -0.90 5.23e-16 -0.74 1.22e-05
fadB -> archA absent <NA> 0.15 -0.90 5.23e-16 -0.74 1.22e-05
for -> flu absent <NA> 0.19 0.32 3.90e-02 0.18 4.82e-02
flu -> fnr absent <NA> 0.19 0.32 3.90e-02 0.18 4.82e-02
flu -> appY absent <NA> 0.24 0.66 1.48e-06 0.27 3.04e-04
appY -> flu absent <NA> 0.24 0.66 1.48e-06 0.27 3.04e-04
appB -> appY absent <NA> 0.32 0.81 2.98e-11 0.45 3.45e-05
appY —> appB present + 0.32 0.81 2.98e-11 0.45 3.45e-05
arcA -> 1lpd present - 0.36 -0.64 4.58e-06 -0.17 4.33e-04
caiF -> narG absent <NA> 0.36 0.81 6.56e-11 0.57 3.84e-05
narG -> caiF absent <NA> 0.36 0.81 6.56e-11 0.57 3.84e-05
lpd -> arcA absent <NA> 0.36 -0.64 4.58e-06 -0.17 4.33e-04
caiF -> dmsC absent <NA> 0.42 0.86 1.63e-13 0.70 1.92e-05
dmsC -> caiF absent <NA> 0.42 0.86 1.63e-13 0.70 1.92e-05
hyaF -> appY absent <NA> 0.44 0.75 6.18e-09 0.36 8.12e-05
appY —> hyaF  present + 0.44 0.75 6.18e-09 0.36 8.12e-05
hyaD -> appY absent <NA> 0.47 0.71 1.00e-07 0.32 1.48e-04
sucC -> betl absent <NA> 0.47 0.92 0.00e+00 0.35 8.62e-06
appY -> hyaD present + 0.47 0.71 1.00e-07 0.32 1.48e-04
betl -> sucC absent <NA> 0.47 0.92 0.00e+00 0.35 8.62e-06
arcA -> glcB  present - 0.48 -0.78 4.83e-10 -0.38 5.18e-05
11dR -> glcB absent <NA> 0.48 0.75 8.14e-09 0.57 8.57e-05
lpd —-> betlI absent <NA> 0.48 0.89 3.11e-15 0.26 1.38e-05
betI -> 1lpd absent <NA> 0.48 0.89 3.11e-15 0.26 1.38e-05
glcB —> archA absent <NA> 0.48 -0.78 4.83e-10 -0.38 5.18e-05
glcB -> 11dR absent <NA> 0.48 0.75 8.14e-09 0.57 8.57e-05
gadA —> appY absent <NA> 0.50 0.43 4.47e-03 0.15 1.03e-02
fnr -> sufC absent <NA> 0.50 -0.43 4.45e-03 -0.32 1.03e-02
sufC -> fnr absent <NA> 0.50 -0.43 4.45e-03 -0.32 1.03e-02
appY -> gadA absent <NA> 0.50 0.43 4.47e-03 0.15 1.03e-02
fdhF -> betl absent <NA> 0.51 -0.73 2.57e-08 -0.16 1.09e-04
hyaE -> appY absent <NA> 0.51 0.71 8.68e-08 0.32 1.43e-04
appY -> hyaE present + 0.51 0.71 8.68e-08 0.32 1.43e-04



(hyaF) <apRY appB

\é\@

Figure 3: Reverse-engineered transcriptional network using a gp-graph at a nominal 50% precision.

betI -> fdhF absent <NA> 0.51 -0.73 2.57e-08 -0.16 1.09e-04

We can plot the network with the function qpPlotNetwork as follows and obtain the result shown
in Figure 3.

> gpPlotNetwork(g, pairup.i=largestIQRgenes02netTFs, pairup.j=largestIQRgenes02net,
+ annotation="org.EcK12.eg.db")

4 Session Information
> toLatex(sessionInfo())

e R version 3.0.1 (2013-05-16), x86_64-unknown-linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

o Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, utils

e Other packages: AnnotationDbi 1.22.6, Biobase 2.20.1, BiocGenerics 0.6.0, DBI 0.2-7,
RSQLite 0.11.4, Rgraphviz 2.4.1, annotate 1.38.0, genefilter 1.42.0, graph 1.38.3,
org.EcK12.eg.db 2.9.0, qpgraph 1.16.3
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e Loaded via a namespace (and not attached): GGBase 3.22.0, IRanges 1.18.2, Matrix 1.0-12,
XML 3.98-1.1, lattice 0.20-15, mvtnorm 0.9-9995, qtl 1.27-10, snpStats 1.10.0, splines 3.0.1,
stats4 3.0.1, survival 2.37-4, tools 3.0.1, xtable 1.7-1
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