prebs User Guide

Karolis Uziela, Antti Honkela

May 23, 2013

1 Abstract

The prebs package aims at making RNA-sequencing (RNA-seq) data more com-
parable to microarray data. The comparability is achieved by summarizing
sequencing-based expressions of probe regions using a modified version of RMA
algorithm (Irizarry et al., |2003)). The pipeline takes mapped reads in BAM
format as an input and produces either gene expressions or original microarray
probe set expressions as an output. A more detailed algorithm description can
be found in (Uziela and Honkelal, 2013)).

2 Installation

prebs can be installed from the the bioconductor using biocLite function. This
ensures that all of the package dependencies are met.

> source("http://www.bioconductor.org/biocLite.R")
> biocLite("prebs")

prebsdata package that is needed to run the examples in this vignette is also
available from the bioconductor.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("prebsdata")

3 Examples

Here we will cover a few simple examples of running prebs in two modes: Custom
CDF and manufacturer’s CDF. The major difference between these two modes
is that Custom CDF gives expression values for genes while manufacturer’s CDF
gives the expression values for the probe sets.

3.1 Loading package and data

To load the package start R and run

> library(prebs)

The data for our examples is contained in prebsdata package. The data package
contains two sample BAM files, 3 Custom CDF probe sequence mapping files
and 3 manufacturer’s CDF probe sequence mapping files. We will use only 2
Custom CDF and 1 manufacturer’s CDF probe sequence mapping file in our
examples.

The full paths to data files in the prebsdata package can be retrieved using
system.file function.

bam_filel <- system.file(file.path("sample_bam_files", "inputl.bam"),
package="prebsdata")
bam_file2 <- system.file(file.path("sample_bam_files", "input2.bam"),
package="prebsdata")
bam_files <- c(bam_filel, bam_file2)
custom_cdf_mappingl <- system.file(file.path("custom-cdf",
"HGU133Plus2_Hs_ENSG_mapping.txt"), package="prebsdata")
custom_cdf_mapping2 <- system.file(file.path("custom-cdf",
"HGU133A2_Hs_ENSG_mapping.txt"), package="prebsdata')
manufacturer_cdf_mapping <- system.file(file.path("manufacturer-cdf",
"HGU133Plus2_mapping.txt"), package="prebsdata")

+ V+ VvV +VV+ YV +YV

3.2 Running calc_prebs using Custom CDF

The prebs package contains only one public function—calc_prebs. The most
basic usage of calc_prebs is running it in Custom CDF mode without paral-
lelization.

> prebs_values <- calc_prebs(bam_files, custom_cdf_mappingl)

Normalizing
Calculating Expression

> head (prebs_values)

inputl.bam input2.bam ID
1 4.480645 4.035863 ENSGO0000000003
2 -13.313919 -13.313919 ENSG00000000005
3 4.224720 4.224720 ENSG00000000419
4 2.611877 4.196825 ENSG00000000457
5 2.111514 2.300766 ENSG00000000460
6 2.325804 5.073020 ENSGO0000000938

Above we can see the expressions of the first few genes with Ensembl gene
identifiers. In this example, the expression level of at least one of the genes is
negligible (the expression values are in logs scale). In fact, most of the other
genes that are not shown here also have a negligible expression level, because

we designed our sample BAM files so that they contain only mapped reads from
the region of the first few genes. Of course, for a real world analysis mapped
reads from all of the genes are needed. However, real world BAM files take a
lot of disk space, so it was not possible to include them in the sample data set.

Since in this case we did not provide explicit CDF package name, the name was

inferred from the probe sequence mapping filename ("custom-cdf/HGU133P1lus2_Hs_ENSG_mapping.txt”
-> hgul33plus2hsensgcdf). Both probe sequence mapping file and custom CDF

package can be downloaded from Custom CDF website:
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/
genomic_curated_CDF.asp

In particular, this example uses Ensembl custom CDF package for and HGU133P1us2
platform (version 16.0.0) that can be dowloaded here: http://brainarray.
mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/
hgul33plus2hsensgcdf_16.0.0.tar.gz

And the corresponding description archive containing probe sequence mapping
file can be downloaded here:
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
16.0.0/ensg.download/HGU133P1lus2_Hs_ENSG_16.0.0.zip

3.3 Setting calc_prebs output format to an ExpressionSet

By default calc_prebs outputs a data frame with PREBS values. If you prefer
to have ExpressionSet object as an output (defined in affy package), you can set
output_eset option to TRUE. In that case, expression values can be accessed
using exprs function from affy package.

> prebs_values <- calc_prebs(bam_files, custom_cdf_mappingl, output_eset=TRUE)

Normalizing
Calculating Expression

> head(exprs(prebs_values))

inputl.bam input2.bam
ENSGO0000000003 4.480645 4.035863
ENSGO0000000005 -13.313919 -13.313919
ENSGO0000000419 4.224720 4.224720

ENSG0O0000000457 2.611877 4.196825
ENSG0O0000000460 2.111514 2.300766
ENSGO0000000938 2.325804 5.073020

3.4 Running calc_prebs with parallelization

Now let’s run the same task with a simple parallelization. The results will be
identical to the ones above.

http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133plus2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133plus2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133plus2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/HGU133Plus2_Hs_ENSG_16.0.0.zip
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/HGU133Plus2_Hs_ENSG_16.0.0.zip

library("parallel")

N_CORES = 2

CLUSTER <- makeCluster (N_CORES)

prebs_values <- calc_prebs(bam_files, custom_cdf_mappingl, cluster=CLUSTER)
stopCluster (CLUSTER)

vV VvV Vv VvV

3.5 Running calc_prebs for another microarray platform

If we want to run calc_prebs with a different microarray platform, we just have
to provide another probe sequence mapping file.

> prebs_values <- calc_prebs(bam_files, custom_cdf_mapping2)

The corresponding Custom CDF package hgul33a2hsensgcdf has to be down-
loaded and installed prior to running this command. It can be found here:
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
16.0.0/ensg.download/hgul33a2hsensgcdf_16.0.0.tar.gz

3.6 Running calc_prebs using manufacturer’s CDF

Running calc_prebs with manufacturer’s CDF is not so much different either.
All we have to do is to provide a suitably formatted probe sequence mapping
file.

> prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping)

Normalizing
Calculating Expression

> head(prebs_values)

inputl.bam input2.bam ID
-11.847501 -11.847501 1007_s
-1.045445 -1.613237 1053
-6.623513 -7.359333 117
-11.847501 -11.847501 121
-11.847501 -11.847501 1255_g
-1.457918 -2.871164 1294

DO WN -

As mentioned before, manufacturer’s CDF mode gives probe set expressions as
an output. In the above example, you can see the the expression values for the
first few probe sets of our example data set.

One problem with running calc_prebs using manufacturer’s CDF is that Affymetrix
does not provide probe sequence mappings for most of the microarray platforms.
Therefore, probe sequence mapping files have to be created manually, as it will

be discussed in Section [

http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133a2hsensgcdf_16.0.0.tar.gz
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.download/hgu133a2hsensgcdf_16.0.0.tar.gz

As in Custom CDF case, the CDF package name is inferred from probe sequence
mapping file ("custom-cdf/HGU133Plus2_mapping.txt”-> hgul33plus2edf). If
we are not sure if the mapping file is named correctly, it is better to provide
CDF package filename explicitly.

> prebs_values <- calc_prebs(bam_files, manufacturer_cdf_mapping,
+ cdf_name="hgu133plus2cdf")

Now we have presented pretty much all important ways of running calc_prebs
function. From this point, you can proceed with downstream analysis of calc_prebs
results. However, so far we have left out some important details about input
requirements of calc_prebs function that will be discussed in the next section.

4 Detailed input specification

The main function of the package calc_prebs has the following input argu-
ments:

1. Mapped reads in BAM format.

2. Probe sequence mappings in a genome ("*cdfname*_mapping.txt” file)
and the name of CDF package (optional). If the name of CDF package
is not given, it is inferred from the filename containing probe sequence
mappings.

3. Cluster object for parallelization (optional)

In this section we will discuss all the input requirements in more detail.

4.1 BAM files

For using calc_prebs function you will need to have mapped reads in BAM
format. For read mapping we recommend using TopHat software (Trapnell
et al., [2009). We suggest to align the reads only to the known transcriptome.
You can do this by using --transcriptome-only option and supplying your
own transcriptome annotation file via —-GTF option. Transcriptome annotation
files can be downloaded from Ensembl |[F'TP server. Finally, we require that reads
are mapped to no more than 1 location in the genome. This can be achieved by
using option --max-multihits 1. So for human genome, sample TopHat run
could look like this:

tophat --transcriptome-only --max-multihits 1 \

—--GTF ./Human_transcriptome/Homo_sapiens.GRCh37.65.gtf \
--transcriptome-index=./Human_transcriptome/known \
--output-dir ./tophat-out hgl9 inputl.fastq input2.fastq

http://www.ensembl.org/info/data/ftp/index.html

4.2 Probe sequence mappings and CDF packages

calc_prebs function can be used in two modes: Custom CDF (Dai et al.,|2005)
and manufacturer’s CDF. Custom CDF mode produces gene expressions while
manufacturer’s CDF mode produces original probe set expressions. Now we will
discuss the input requirements for the two modes in more detail.

4.2.1 Custom CDF

As we have already mentioned calc_prebs function requires a probe sequence
mapping file and CDF package name as its arguments. For Custom CDF mode,
both the mapping file and the package can be downloaded from the Custom
CDF website:
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/
genomic_curated_CDF.asp

The Custom CDF supports many types of gene identifiers, but in our examples
we are using Custom CDF files with Ensembl gene identifiers (version 16.0.0).
In the Custom CDF download page| for each microarray platform you can find
both the the Custom CDF package file (denoted by ”C”) and the Custom CDF
description archive (denoted by ”0”) containing the probe sequence mapping
file.

The Custom CDF package can be installed like a regular R package (using R
CMD INSTALL command). For example, to install hgul33plus2hsensgedf in
Unix-like systems type R CMD INSTALL hgul33plus2hsensgcdf_16.0.0.tar.gz.

The probe sequence mapping file is named as "*cdfname*_mapping.txt”. Since
CDF package name can be inferred from probe sequence mapping filename,
explicitly providing CDF package name to calc_prebs function is optional.
For example, if you are using "HGU133P1lus2_Hs_ENSG_mapping.txt” probe se-
quence mapping file do not provide CDF package name, it is assumed that
hgul33plus2hsensgcdf package is used.

4.2.2 Manufacturer’s CDF

The manufacturer’s CDF packages can be downloaded and installed from the
bioconductor. For example, to install CDF package for HGU133P1us2 platform,

type:

> source("http://www.bioconductor.org/biocLite.R")
> biocLite("hgul33plus2cdf")

Unfortunately, probe sequence mapping files are not provided for most of the
microarray platforms. For some microarray platoforms, such as HuEx10stv2,
the probe sequence mappings are available from the |Affymetrix| website (HuEx-
1_0-st-v2 Probe Sequences, tabular format). However, they are mapped to an
old version of genome assembly (hgl6), so we do not recommend using them.

In our data package prebsdata, we provide probe sequence mapping files for
three microarray platforms: HGU133Plus2, HGU133A2 and HGFocus. We have

http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/brainarray/Database/CustomCDF/genomic_curated_CDF.asp
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/16.0.0/ensg.asp
http://www.affymetrix.com/
http://www.affymetrix.com/Auth/analysis/downloads/na25/wtexon/HuEx-1_0-st-v2.probe.tab.zip
http://www.affymetrix.com/Auth/analysis/downloads/na25/wtexon/HuEx-1_0-st-v2.probe.tab.zip

created these files by mapping probe sequences to human genome using Bowtie
software |[Langmead et al.| (2009)). If you want to use another microarray plat-
form, you will have to map probe sequences yourself. A detailed procedure of
creating probe sequence mapping files using Bowtie is outlined below.

For most of the microarray platforms, the probe sequences can be retrieved
from the platform’s probe package. The probe package name is the same as
CDF package name, except that it ends with "probe” instead of "cdf’. For
example, to install probe package for "hgul33plus2” platform, type:

> source("http://www.bioconductor.org/biocLite.R")
> biocLite("hgul33plus2probe")

Once you load the hgul33plus2probe package, you can find the information about
the probe sequences stored in hgul33plus2probe object which can be converted
to a data frame.

> library("hgul33plus2probe")
probes <- as.data.frame (hgul33plus2probe)
> head(probes)

v

sequence x y Probe.Set.Name

1 CACCCAGCTGGTCCTGTGGATGGGA 718 317 1007_s_at
2 GCCCCACTGGACAACACTGATTCCT 1105 483 1007_s_at
3 TGGACCCCACTGGCTGAGAATCTGG 584 901 1007_s_at
4 AAATGTTTCCTTGTGCCTGCTCCTG 192 205 1007_s_at
5 TCCTTGTGCCTGCTCCTGTACTTGT 844 979 1007_s_at
6 TGCCTGCTCCTGTACTTGTCCTCAG 537 971 1007_s_at
Probe.Interrogation.Position Target.Strandedness

1 3330 Antisense
2 3443 Antisense
3 3512 Antisense
4 3563 Antisense
5 3570 Antisense
6 3576 Antisense

Next, we should remove rows that have probe set identifiers that start if ’AFFX”,
because these do not target genes and are not relevant to us. Also, we use
xy2indices function from affy package to convert probe X and Y coordinates
to probe IDs and add a new column to the data frame. We will save the resulting
data frame to a file "probes.txt”.

> library("affy")

> probes <- probes[substr(probes$Probe.Set.Name,1,4) != "AFFX",]

> probes$Probe.ID <- xy2indices(probes$x, probes$y, cdf="hgul33plus2cdf")

> write.table(probes, file="probes.txt", quote=FALSE, row.names=FALSE, col.names=TRUE)

The first column in a file "probes.txt” contains probe sequence and the seventh
column contains probe ID. To format an input for Bowtie, we need to extract
these two columns and format a fasta file:

tail -n +2 "probes.txt" | awk '{print ">" $7 "\n" $1 }' > probe_sequences.fa

Now we are ready to map the probe sequences to the genome. We suggest using
Bowtie options —a -v 0 to report all perfect match hits. A sample Bowtie run
could look like this:

bowtie -a -v 0 hgl9 -f probe_sequences.fa output_probe_mappings.map

After we map probe sequences to the genome, we must convert Bowtie output to
the format identical to Custom CDF probe sequence mapping files. The default
format of Bowtie output is documented in |Bowtie homepage. The first column
contains "Read ID” which in our case is "Probe.ID”. We have to read Bowtie
output file "output_probe_mappings.map”, and probe sequence information file
"probes.txt” and merge the two data frames based on "Probe.ID” column.
Then, we have to extract the necessary information from the resulting merged
table and save it into ”_mapping.txt” file. Note that we also have to shift Bowtie
mapping positions by 1, because it uses a different offset than ”_mapping.txt”
files.

Briefly, here are the commands we have to run:

probe_mappings <- read.table("output_probe_mappings.map")
colnames (probe_mappings) <- c("Probe.ID", "strand",
"chr", "start", "seq", "match", "multiple")

bowtie reports O-offset, but _mapping.txt files are 1-offset
probe_mappings$start <- probe_mappings$start + 1
probes <- read.table("probes.txt", head=TRUE)
probes <- merge(probes, probe_mappings)
output_table <- data.frame(Probe.Set.Name=probes$Probe.Set.Name,

Chr=probes$chr, Chr.Strand=probes$strand, Chr.From=probes$start,

Probe.X=probes$x, Probe.Y=probes$y, Affy.Probe.Set.Name=probes$Probe.Set.Name)
write.table(output_table, file="HGU133Plus2_mapping.txt",

quote=FALSE, sep="\t", row.names=FALSE)

+ VvV+ 4+ VVVVYV+ VYV

The resulting ”_mapping.txt” file can be used as an input for calc_prebs. If
some of the probe sequences were mapped to multiple locations, calc_prebs
function will handle them by summing up the read overlaps from all of these
locations. If some probe sequences could not be mapped, calc_prebs will assign
minimal expression values to these probes. If you are using a manually created
”_mapping.txt” file, calc_prebs will show notifications about the missing probe
sequences (that were not mapped) and probe sequences that have duplicates
(that were mapped to multiple locations).

4.3 Cluster object for parallel computation

If you have many input BAM files, processing them can be a computationally
expensive task. Therefore, prebs provides a possibility to parallelize BAM file
processing using parallel package. In order to parallelize the work, you must
use makeCluster function to create a cluster object and pass it to calc_prebs

http://bowtie-bio.sourceforge.net/manual.shtml#default-bowtie-output

function. The function makeCluster has several parameters that support differ-
ent types of clusters. For a detailed explanation of makeCluster, please, refer
to parallel package manual. One simple example of using makeCluster was
already covered in Section

5 Session Info
> sessionInfo()

R version 3.0.1 (2013-05-16)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
[6] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] hgul33plus2probe_2.12.0 hgul33plus2cdf_2.12.0 AnnotationDbi_1.22.5

[4] prebs_1.0.2 affy_1.38.1 Biobase_2.20.0
[7] Rsamtools_1.12.3 Biostrings_2.28.0 GenomicRanges_1.12.4
[10] IRanges_1.18.1 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] BiocInstaller_1.10.1 DBI_0.2-7 RSQLite_0.11.3

[4] affyio_1.28.0 bitops_1.0-5 preprocessCore_1.22.0
[7] stats4_3.0.1 tools_3.0.1 zlibbioc_1.6.0
References

Manhong Dai, Pinglang Wang, Andrew D Boyd, Georgi Kostov, Brian Athey,
Edward G Jones, William E Bunney, Richard M Myers, Terry P Speed, Huda
Akil, Stanley J Watson, and Fan Meng. Evolving gene/transcript definitions
significantly alter the interpretation of GeneChip data. Nucleic Acids Res, 33
(20):e175, 2005. doi: 10.1093/nar/gnil79.

Rafael A Irizarry, Bridget Hobbs, Francois Collin, Yasmin D Beazer-Barclay,
Kristen J Antonellis, Uwe Scherf, and Terence P Speed. Exploration, normal-
ization, and summaries of high density oligonucleotide array probe level data.
Biostatistics, 4(2):249-264, Apr 2003. doi: 10.1093/biostatistics/4.2.249.

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol, 10(3):R25, 2009. doi: 10.1186/gb-2009-10-3-r25.

Cole Trapnell, Lior Pachter, and Steven L Salzberg. TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics, 25(9):1105-1111, May 2009. doi:
10.1093 /bioinformatics/btp120.

Karolis Uziela and Antti Honkela. Probe region expression estimation for rna-
seq data for improved microarray comparability. April 2013. arXiv:1304.1698
[g-bio.GN].

10

	Abstract
	Installation
	Examples
	Loading package and data
	Running calc_prebs using Custom CDF
	Setting calc_prebs output format to an ExpressionSet
	Running calc_prebs with parallelization
	Running calc_prebs for another microarray platform
	Running calc_prebs using manufacturer's CDF

	Detailed input specification
	BAM files
	Probe sequence mappings and CDF packages
	Custom CDF
	Manufacturer's CDF

	Cluster object for parallel computation

	Session Info

