
Basic storage, access, and manipulation of phylogenetic sequencing
data with phyloseq

Paul J. McMurdie∗ and Susan Holmes
Statistics Department, Stanford University,

Stanford, CA 94305, USA
∗E-mail: mcmurdie@stanford.edu

https://github.com/joey711/phyloseq

January 8, 2013

Contents
1 Introduction 3

2 About this vignette 3

3 Load phyloseq and import data 4
3.1 Load phyloseq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Import data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Import from biom-format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Import from QIIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.4.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.5 Import from mothur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.6 Import from PyroTagger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.6.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.7 Import from RDP pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7.3 Expected Naming Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.8 Example Data (included) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.9 phyloseq Object Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.10 Convert raw data to phyloseq components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.11 phyloseq() function: building complex phyloseq objects . . . . . . . . . . . . . . . . . . . . . . 10
3.12 Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Accessor functions 12

1



5 Trimming, subsetting, filtering phyloseq data 13
5.1 Trimming: prune taxa() and prune samples() . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 Simple filtering example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Arbitrarily complex abundance filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.3.1 genefilter sample: Filter by Within-Sample Criteria . . . . . . . . . . . . . . . . . . . 13
5.3.2 filter taxa: Filter by Across-Sample Criteria . . . . . . . . . . . . . . . . . . . . . . . 14

5.4 subset samples: Subset by Sample Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 subset taxa(): subset by taxonomic categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 random subsample abundance data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Transform abundance data 17

7 Phylogenetic smoothing 18
7.1 tax glom() Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 tip glom() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A phyloseq classes 19

B Installation 20
B.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B.2 Installing Parallel Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C Bibliography 20

2



1 Introduction
The analysis of microbiological communities brings many challenges: the integration of many different types of
data with methods from ecology, genetics, phylogenetics, network analysis, visualization and testing. The data itself
may originate from widely different sources, such as the microbiomes of humans, soils, surface and ocean waters,
wastewater treatment plants, industrial facilities, and so on; and as a result, these varied sample types may have
very different forms and scales of related data that is extremely dependent upon the experiment and its question(s).
The phyloseq package is a tool to import, store, analyze, and graphically display complex phylogenetic sequencing
data that has already been clustered into Operational Taxonomic Units (OTUs), especially when there is associated
sample data, phylogenetic tree, and/or taxonomic assignment of the OTUs. This package leverages many of the tools
available in R for ecology and phylogenetic analysis (vegan, ade4, ape, picante), while also using advanced/flexible
graphic systems (ggplot2) to easily produce publication-quality graphics of complex phylogenetic data. phyloseq uses
a specialized system of S4 classes to store all related phylogenetic sequencing data as single experiment-level object,
making it easier to share data and reproduce analyses. In general, phyloseq seeks to facilitate the use of R for efficient
interactive and reproducible analysis of OTU-clustered high-throughput phylogenetic sequencing data.

2 About this vignette
The most updated examples are posted in our online tutorials and wiki available from the phyloseq home page:

http://joey711.github.com/phyloseq
A separate vignette describes analysis tools included in phyloseq along with various examples using included

example data. A quick way to load it is:

vignette("phyloseq_analysis")

By contrast, this vignette is intended to provide functional examples of the basic data import and manipulation
infrastructure included in phyloseq. This includes example code for importing OTU-clustered data from different
clustering pipelines, as well as performing clear and reproducible filtering tasks that can be altered later and checked
for robustness. The motivation for including tools like this in phyloseq is to save time, and also to build-in a structure
that requires consistency across related data tables from the same experiment. This not only reduces code repetition,
but also decreases the likelihood of mistakes during data filtering and analysis. For example, it is intentionally difficult
in phyloseq to create an experiment-level object 1 in which a component tree and OTU table have different OTU names.
The import functions, trimming tools, as well as the main tool for creating an experiment-level object, phyloseq,
all automatically trim the OTUs and samples indices to their intersection, such that these component data types are
exactly coherent.

Let’s get started by loading phyloseq, and describing some methods for importing data.

1“phyloseq-class”, required for many analysis tools
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3 Load phyloseq and import data

3.1 Load phyloseq
To use phyloseq in a new R session, it will have to be loaded. This can be done in your package manager, or at the
command line using the library() command:

library("phyloseq")

3.2 Import data
An important feature of phyloseq are methods for importing phylogenetic sequencing data from common taxonomic
clustering pipelines. These methods take file pathnames as input, read and parse those files, and return a single object
that contains all of the data.

Some additional background details are provided below. The best reproducible examples on importing data with
phyloseq can be found on the official data import tutorial page:

http://joey711.github.com/phyloseq/import-data

3.3 Import from biom-format
New versions of QIIME (see below) produce a more-comprehensive and formally-defined JSON file format, called
biom file format:

“The biom file format (canonically pronounced ‘biome’) is designed to be a general-use format for representing
counts of observations in one or more biological samples. BIOM is a recognized standard for the Earth Microbiome
Project and is a Genomics Standards Consortium candidate project.”

http://biom-format.org/

3.4 Import from QIIME
QIIME is a free, open-source OTU clustering and analysis pipeline written for Unix (mostly Linux) [1]. It is distributed
in a number of different forms (including a pre-installed virtual machine), and relevant links for obtaining and using
QIIME should be found at:

http://qiime.org/

3.4.1 Input

One QIIME input file (sample map), and two QIIME output files (“otu table.txt”, “.tre”) are recognized by
the import qiime() function. Only one of the three input files is required to run, although an “otu table.txt”
file is required if import qiime() is to return a complete experiment object.

In practice, you will have to find the relevant QIIME files among a number of other files created by the QIIME
pipeline. A screenshot of the directory structure created during a typical QIIME run is shown in Figure 1.

3.4.2 Output

The class of the object returned by import qiime() depends upon which filenames are provided. The most com-
prehensive class is chosen automatically, based on the input files listed as arguments. At least one argument needs to
be provided.
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Figure 1: A typical QIIME output directory. The two output files suitable for import by phyloseq are highlighted. A
third file describing the samples, their barcodes and covariates, is created by the user and required as input to QIIME.
It is a good idea to import this file, as it can be converted directly to a sample data object and can be extremely
useful for certain analyses.
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3.5 Import from mothur
The open-source, platform-independent, locally-installed software package, “mothur”, can also process barcoded am-
plicon sequences and perform OTU-clustering [2]. It is extensively documented on a wiki at the following URL:

http://www.mothur.org/wiki/

3.5.1 Input

Currently, there are three different files produced by the mothur package (Ver 1.22.0) that can be imported by phyloseq.
At minimum, a user must supply a “.list” file, and at least one of the following two files: “.groups” or “.tree”

The group file is produced by mothur’s make.group() function. Details on its use can be found at:
http://www.mothur.org/wiki/Make.group
The tree file is a phylogenetic tree calculated by mothur.

3.5.2 Output

The output from import mothur() depends on which file types are provided. If all three file types are provided, an
instance of the phyloseq-class is returned that contains both an OTU abundance table and its associated phylogenetic
tree.
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3.6 Import from PyroTagger
PyroTagger is an OTU-clustering pipeline for barcoded 16S rRNA amplicon sequences, served and maintained by the
Department of Energy’s (DOE’s) Joint Genome Institute (JGI). It can be used through a straightforward web interface
at:

http://pyrotagger.jgi-psf.org/
PyroTagger takes as input the untrimmed sequence (.fasta) and sequence-quality (.qual) files, as well as

a sample mapping file that contains the bar code sequence for each sample and its name. It uses a 97% identity
threshold for defining OTU clusters (approximately species-level of taxonomic distinction), and provides no options
for specifying otherwise. It does allow users to modify the threshold setting for low-quality bases.

3.6.1 Input

PyroTagger returns a single excel spreadsheet file (.xls) containing both abundance and taxonomy data, as well
as some associated confidence information related to each taxonomic assignment. This spreadsheet also reports on
potential chimeric sequences.

This single output file is sufficient for import RDP tab(), provided the file has been converted to a tab-
delimited plain-text format. Any spreadsheet application should suffice. No other changes should be made to the
.xls file.

3.6.2 Output

import RDP tab() returns an instance of the phyloseq-class that contains the OTU abundance table and taxonomy
table. To my knowledge, PyroTagger does not calculate a tree of the representative sequences from each OTU cluster,
nor a distance object, so analyses like tip glom() and UniFrac are not applicable.
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3.7 Import from RDP pipeline
The Ribosomal Database Project (RDP [3]; http://rdp.cme.msu.edu/) provides a web-based barcoded 16S
rRNA amplicon sequence processing pipeline called the “RDP Pyrosequencing Pipeline” (http://pyro.cme.
msu.edu/). A user must run all three of the “Data Processing” steps sequentially through the web interface in order
to acquire the output from Complete Linkage Clustering, the approach to OTU clustering used by the RDP Pipeline.
Note that this import function assumes that the sequence names in the resulting cluster file follow a particular naming
convention with underscore delimiter. (See Section 3.7.3, below.)

3.7.1 Input

The output from the Complete Linkage Clustering, “.clust”, is the only input to the RDP pipeline importer:

myOTU1 <- import_RDP_cluster("path/to/my/filename.clust")

3.7.2 Output

This importer returns an otu table object.

3.7.3 Expected Naming Convention

The RDP cluster pipeline (specifically, the output of the complete linkage clustering step) has no formal documentation
for the “.clust” file structure or its apparent sequence naming convention.

The cluster file itself contains the names of all sequences contained in the input alignment. If the upstream barcode
and aligment processing steps are also done with the RDP pipeline, then the sequence names follow a predictable
naming convention wherein each sequence is named by its sample and sequence ID, separated by a “ ” as delimiter:

“sampleName sequenceIDnumber”
This import function assumes that the sequence names in the cluster file follow this convention, and that the sample

name does not contain any “ ”. It is unlikely to work if this is not the case. It is likely to work if you used the upstream
steps in the RDP pipeline to process your raw (barcoded, untrimmed) fasta/fastq data.

8

http://rdp.cme.msu.edu/
http://pyro.cme.msu.edu/
http://pyro.cme.msu.edu/


3.8 Example Data (included)
There are multiple example data sets included in phyloseq. Many are from published investigations and include
documentation with a summary and references, as well as some example code representing some aspect of analysis
available in phyloseq. In the package index, go to the names beginning with “data-” to see the documentation of
currently available example datasets.

To load example data into the working environment, use the data() command:

data(GlobalPatterns)
data(esophagus)
data(enterotype)
data(soilrep)

Similarly, entering ?enterotype will reveal the documentation for the so-called “enterotype” dataset.
See the Example Data page on the phyloseq GitHub wiki at:
https://github.com/joey711/phyloseq/wiki/Example-Data

3.9 phyloseq Object Summaries
In small font, the following is the summary of the GlobalPatterns dataset that prints to the terminal. These sum-
maries are consistent among all phyloseq-class objects. Although the components of GlobalPatterns have
many thousands of elements, the command-line returns only a short summary of each component. This encourages
you to check that an object is still what you expect, without needing to let thousands of elements scroll across the
terminal. In the cases in which you do want to see more of a particular component, use an accessor function (see
Table 2, Section 4).

data(GlobalPatterns)
GlobalPatterns

## phyloseq-class experiment-level object
## OTU Table: [19216 taxa and 26 samples]
## taxa are rows
## Sample Data: [26 samples by 7 sample variables]:
## Taxonomy Table: [19216 taxa by 7 taxonomic ranks]:
## Phylogenetic Tree: [19216 tips and 19215 internal nodes]
## rooted
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3.10 Convert raw data to phyloseq components
Suppose you have already imported raw data from an experiment into R, and their indices are labeled correctly. How
do you get phyloseq to recognize these tables as the appropriate class of data? And further combine them together?
Table 1 lists key functions for converting these core data formats into specific component data objects recognized by
phyloseq. These will also

Functions for building component data objects
Function Input Class Output Description
otu table numeric matrix otu table object storing OTU abundance
otu table data.frame otu table object storing OTU abundance
sample data data.frame sample data object storing sample variables
tax table character matrix taxonomyTable object storing taxonomic identities
tax table data.frame taxonomyTable object storing taxonomic identities
read tree file path char phylo-class tree, read from file
read.table table file path A matrix or data.frame (Std R core function)

Functions for building complex data objects
Function Input Class Output Description
phyloseq 2 or more component objects phyloseq-class, “experiment-level” object
merge phyloseq 2 or more component or phyloseq-class objects Combined instance of phyloseq-class

Table 1: Constructors: functions for building phyloseq objects.

The following example illustrates using the constructor methods for component data tables.

otu1 <- otu_table(raw_abundance_matrix, taxa_are_rows = FALSE)
sam1 <- sample_data(raw_sample_data.frame)
tax1 <- tax_table(raw_taxonomy_matrix)
tre1 <- read.nexus(my_nexus_file)

3.11 phyloseq() function: building complex phyloseq objects
Once you’ve converted the data tables to their appropriate class, combining them into one object requires only one
additional function call, phyloseq():

ex1b <- phyloseq(my_otu_table, my_sample_data, my_taxonomyTable, my_tree)

You do not need to have all four data types in the example above in order to combine them into one validity-
checked experiment-level phyloseq-class object. The phyloseq()method will detect which component data classes
are present, and build accordingly. Downstream analysis methods will access the required components using emph-
phyloseq’s accessors, and throw an error if something is missing. For most downstream methods you will only need
to supply the combined, phyloseq-class object (the output of phyloseq() ), usually as the first argument.

ex1c <- phyloseq(my_otu_table, my_sample_data)

Whenever an instance of the phyloseq-class is created by phyloseq — for example, when we use the import qiime()
function to import data, or combine manually imported tables using phyloseq() — the row and column indices
representing taxa or samples are internally checked/trimmed for compatibility, such that all component data describe
exactly (and only) the same OTUs and samples.
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3.12 Merge
The phyloseq project includes support for two complete different categories of merging.

• Merging the OTUs or samples in a phyloseq object, based upon a taxonomic or sample variable:

merge samples() merge taxa()

• Merging two or more data objects that come from the same experiment, so that their data becomes part of the
same phyloseq object:

merge phyloseq()

For further details, see the reproducible online tutorial at:
http://joey711.github.com/phyloseq/merge

11

http://joey711.github.com/phyloseq/merge


4 Accessor functions
Once you have a phyloseq object available, many accessor functions are available to query aspects of the data set. The
function name and its purpose are summarized in Table 2.

Function Returns
[ Standard extraction operator. works on otu table, sample data, and taxonomyTable
access General slot accessor function for phyloseq-package
get taxa Abundance values of all taxa in sample ‘i’
get sample Abundance values of taxa ‘i’ for all samples
get taxa unique A unique vector of the observed taxa at a particular taxonomic rank
get variable An individual sample variable vector/factor
nsamples Get the number of samples described by an object
ntaxa Get the number of OTUs (taxa) described by an object
otu table Build or access otu table objects
rank names Get the names of the available taxonomic ranks
sample data Build or access sample data objects
sample names The names of all samples
taxa names The names of all taxa
sample sums The sum of the abundance values of each sample
sample variables The names of sample variables
taxa sums The sum of the abundance values of each taxa
taxa are rows TRUE if taxa are row indices in otu table
tax table A taxonomy table
tre Access the tree contained in a phyloseq object

Table 2: Accessor functions for phyloseq objects.
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5 Trimming, subsetting, filtering phyloseq data

5.1 Trimming: prune taxa() and prune samples()

Trimming high-throughput phylogenetic sequencing data can be useful, or even necessary, for certain types of analyses.
However, it is important that the original data always be available for reference and reproducibility; and that the
methods used for trimming be transparent to others, so they can perform the same trimming or filtering steps on the
same or related data.

To facilitate this, phyloseq contains many ways to trim/filter the data from a phylogenetic sequencing project. Be-
cause matching indices for taxa and samples is strictly enforced, subsetting one of the data components automatically
subsets the corresponding indices from the others. Variables holding trimmed versions of your original data can be
declared, and further trimmed, without losing track of the original data.

In general, most trimming should be accomplished using the S4 methods prune taxa() or prune samples().

5.2 Simple filtering example
For example, lets make a new object that only holds the most abundant 20 taxa in the experiment. To accomplish this,
we will use the prune taxa() function.

data(GlobalPatterns)
most_abundant_taxa <- sort(taxa_sums(GlobalPatterns), TRUE)[1:topN]
ex2 <- prune_taxa(names(most_abundant_taxa), GlobalPatterns)

Now we can ask the question, “what taxonomic Family are these OTUs?” (Subsetting still returns a taxonomyTable
object, which is summarized. We will need to convert to a vector)

topFamilies <- tax_table(ex2)[, "Family"]
as(topFamilies, "vector")

## [1] NA "Bacteroidaceae" "Nostocaceae"
## [4] "Neisseriaceae" NA "Pasteurellaceae"
## [7] "Bacteroidaceae" "ACK-M1" "Enterobacteriaceae"
## [10] "Ruminococcaceae" "Bifidobacteriaceae" "ACK-M1"
## [13] "Bacteroidaceae" "Ruminococcaceae" NA
## [16] "Streptococcaceae" NA "Neisseriaceae"
## [19] "Ruminococcaceae" "Clostridiaceae"

5.3 Arbitrarily complex abundance filtering
The previous example was a relatively simple filtering in which we kept only the most abundant 20 in the whole
experiment. But what if we wanted to keep the most abundant 20 taxa of each sample? And of those, keep only the
taxa that are also found in at least one-third of our samples? What if we wanted to keep only those taxa that met some
across-sample criteria?

5.3.1 genefilter sample: Filter by Within-Sample Criteria

For this more complicated filtering phyloseq contains a function, genefilter sample, that takes as an argument a
phyloseq object, as well as a list of one or more filtering functions that will be applied to each sample in the abundance
matrix (otu table), as well as an integer argument, A, that specifies for how many samples the filtering function
must return TRUE for a particular taxa to avoid removal from the object. A supporting function filterfun sample
is also included in phyloseq to facilitate creating a properly formatted function (enclosure) if more than one function
is going to be applied simultaneously. genefilter sample returns a logical vector suitable for sending directly
to prune taxa() for the actual trimming.

Here is an example on a completely fabricated otu table called testOTU.
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testOTU <- otu_table(matrix(sample(1:50, 25, replace = TRUE), 5, 5), taxa_are_rows = FALSE)
f1 <- filterfun_sample(topk(2))
wh1 <- genefilter_sample(testOTU, f1, A = 2)
wh2 <- c(T, T, T, F, F)
prune_taxa(wh1, testOTU)
prune_taxa(wh2, testOTU)

Here is a second example using the included dataset, GlobalPatterns. The most abundant taxa are kept only
if they are in the most abundant 10% of taxa in at least half of the samples in dataset GlobalPatterns. Note that it
is not necessary to subset GlobalPatterns in order to do this filtering. The S4 method prune taxa() subsets
each of the relavent component objects, and returns the complex object back.

data(GlobalPatterns)
f1 <- filterfun_sample(topp(0.1))
wh1 <- genefilter_sample(GlobalPatterns, f1, A = (1/2 * nsamples(GlobalPatterns)))
sum(wh1)

## [1] 795

ex2 <- prune_taxa(wh1, GlobalPatterns)

print(ex2)

## phyloseq-class experiment-level object
## OTU Table: [795 taxa and 26 samples]
## taxa are rows
## Sample Data: [26 samples by 7 sample variables]:
## Taxonomy Table: [795 taxa by 7 taxonomic ranks]:
## Phylogenetic Tree: [795 tips and 794 internal nodes]
## rooted

If instead of the most abundant fraction of taxa, you are interested in the most abundant fraction of individuals (aka
sequences, observations), then the topf function is appropriate. For steep rank-abundance curves, topf will seem to
be much more conservative (trim more taxa) because it is based on the cumulative sum of relative abundance. It does
not guarantee that a certain number or fraction of total taxa (richness) will be retained.

data(GlobalPatterns)
f1 <- filterfun_sample(topf(0.9))
wh1 <- genefilter_sample(GlobalPatterns, f1, A = (1/3 * nsamples(GlobalPatterns)))
sum(wh1)
prune_taxa(wh1, GlobalPatterns)

5.3.2 filter taxa: Filter by Across-Sample Criteria

The filter taxa function is directly analogous to the genefilter function for microarray filtering, but is used
for filtering OTUs from phyloseq objects. It applies an arbitrary set of functions — as a function list, for instance,
created by genefilter::filterfun — as across-sample criteria, one OTU at a time. It can be thought of as
an extension of the genefilter-package (from the Bioconductor repository) for phyloseq objects. It takes as input a
phyloseq object, and returns a logical vector indicating whether or not each OTU passed the criteria. Alternatively, if
the “prune” option is set to FALSE, it returns the already-trimmed version of the phyloseq object.

Inspect the following example. Note that the functions genefilter and kOverA are from the genefilter pack-
age.
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data("enterotype")
library("genefilter")

## Warning: A specification for S3 class "AsIs" in package ’IRanges’ seems equivalent
to one from package ’RJSONIO’ and is not turning on duplicate class definitions
for this class

flist <- filterfun(kOverA(5, 2e-05))
ent.logi <- filter_taxa(enterotype, flist)
ent.trim <- filter_taxa(enterotype, flist, TRUE)
identical(ent.trim, prune_taxa(ent.logi, enterotype))

## [1] TRUE

identical(sum(ent.logi), ntaxa(ent.trim))

## [1] TRUE

filter_taxa(enterotype, flist, TRUE)

## phyloseq-class experiment-level object
## OTU Table: [416 taxa and 280 samples]
## taxa are rows
## Sample Data: [280 samples by 9 sample variables]:
## Taxonomy Table: [416 taxa by 1 taxonomic ranks]:

5.4 subset samples: Subset by Sample Variables
It is possible to subset the samples in a phyloseq object based on the sample variables using the subset samples()
function. For example to subset GlobalPatterns such that only Gender A is present, the following line is needed
(the related tables are subsetted automatically as well):

ex3 <- subset_samples(GlobalPatterns, SampleType %in% c("Freshwater", "Ocean",
"Freshwater (creek)"))

ex3

## phyloseq-class experiment-level object
## OTU Table: [19216 taxa and 8 samples]
## taxa are rows
## Sample Data: [8 samples by 7 sample variables]:
## Taxonomy Table: [19216 taxa by 7 taxonomic ranks]:
## Phylogenetic Tree: [19216 tips and 19215 internal nodes]
## rooted

For this example only a categorical variable is shown, but in principle a continuous variable could be specified and
a logical expression provided just as for the subset function. In fact, because sample data component objects
are an extension of the data.frame class, they can also be subsetted with the subset function:

subset(sample_data(GlobalPatterns), SampleType %in% c("Freshwater", "Ocean",
"Freshwater (creek)"))

## Sample Data: [8 samples by 7 sample variables]:
## X.SampleID Primer Final_Barcode Barcode_truncated_plus_T
## LMEpi24M LMEpi24M ILBC_13 ACACTG CAGTGT
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## SLEpi20M SLEpi20M ILBC_15 ACAGAG CTCTGT
## AQC1cm AQC1cm ILBC_16 ACAGCA TGCTGT
## AQC4cm AQC4cm ILBC_17 ACAGCT AGCTGT
## AQC7cm AQC7cm ILBC_18 ACAGTG CACTGT
## NP2 NP2 ILBC_19 ACAGTT AACTGT
## NP3 NP3 ILBC_20 ACATCA TGATGT
## NP5 NP5 ILBC_21 ACATGA TCATGT
## Barcode_full_length SampleType
## LMEpi24M CATGAACAGTG Freshwater
## SLEpi20M AGCCGACTCTG Freshwater
## AQC1cm GACCACTGCTG Freshwater (creek)
## AQC4cm CAAGCTAGCTG Freshwater (creek)
## AQC7cm ATGAAGCACTG Freshwater (creek)
## NP2 TCGCGCAACTG Ocean
## NP3 GCTAAGTGATG Ocean
## NP5 GAACGATCATG Ocean
## Description
## LMEpi24M Lake Mendota Minnesota, 24 meter epilimnion
## SLEpi20M Sparkling Lake Wisconsin, 20 meter eplimnion
## AQC1cm Allequash Creek, 0-1cm depth
## AQC4cm Allequash Creek, 3-4 cm depth
## AQC7cm Allequash Creek, 6-7 cm depth
## NP2 Newport Pier, CA surface water, Time 1
## NP3 Newport Pier, CA surface water, Time 2
## NP5 Newport Pier, CA surface water, Time 3

5.5 subset taxa(): subset by taxonomic categories
It is possible to subset by specific taxonomic category using the subset taxa() function. For example, if we
wanted to subset GlobalPatterns so that it only contains data regarding the phylum Firmicutes:

ex4 <- subset_taxa(GlobalPatterns, Phylum == "Firmicutes")

ex4

## phyloseq-class experiment-level object
## OTU Table: [4356 taxa and 26 samples]
## taxa are rows
## Sample Data: [26 samples by 7 sample variables]:
## Taxonomy Table: [4356 taxa by 7 taxonomic ranks]:
## Phylogenetic Tree: [4356 tips and 4355 internal nodes]
## rooted

5.6 random subsample abundance data
Can also randomly subset, for example a random subset of 100 taxa from the full dataset.

randomSpecies100 <- sample(taxa_names(GlobalPatterns), 100, replace = FALSE)
ex5 <- prune_taxa(randomSpecies100, GlobalPatterns)
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6 Transform abundance data
Sample-wise transformation can be achieved with the transform sample counts() function. It requires two
arguments, (1) the phyloseq object that you want to transform, and the function that you want to use to perform the
transformation. Any arbitrary function can be provided as the second argument, as long as it returns a numeric vector
with the same length as its input. In the following trivial example, we create a second object, ex2, that has been
“transformed” by the identity function such that it is actually identical to GlobalPatterns.

data(GlobalPatterns)
ex2 <- transform_sample_counts(GlobalPatterns, I)

For certain kinds of analyis we may want to transform the abundance data. For example, for RDA we want to
transform abundance counts to within-sample ranks, and to further include a threshold beyond which all taxa receive
the same rank value. The ranking for each sample is performed independently, so that the rank of a particular taxa
within a particular sample is not influenced by that sample’s total quantity of sequencing relative to the other samples
in the project.

The following example shows how to perform such a thresholded-rank transformation of the abundance table in
the complex phyloseq object GlobalPatterns with an arbitrary threshold of 500.

ex4 <- transform_sample_counts(GlobalPatterns, threshrankfun(500))
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7 Phylogenetic smoothing

7.1 tax glom() Method
Suppose we are skeptical about the importance of OTU-level distinctions in our dataset. For this scenario, phyloseq
includes a taxonomic-agglommeration method, tax glom(), which merges taxa of the same taxonomic category
for a user-specified taxonomic level. In the following code, we merge all taxa of the same Genus, and store that new
object as ex6.

ex6 <- tax_glom(GlobalPatterns, taxlevel = "Genus")

7.2 tip glom() method
Similarly, our original example object (GlobalPatterns) also contains a phlyogenetic tree corresponding to each
OTU, which we could also use as a means to merge taxa in our dataset that are closely related. In this case, we specify
a threshold patristic distance. Taxa more closely related than this threshold are merged. This is especially useful
when a dataset has many taxa that lack a taxonomic assignment at the level you want to investigate, a problem when
using tax glom(). Note that for datasets with a large number of taxa, tax glom will be noticeably faster than
tip glom. Also, keep in mind that tip glom requires that its first argument be an object that contains a tree, while
tax glom instead requires a taxonomyTable (See Appendix A).

ex7 <- tip_glom(GlobalPatterns, speciationMinLength = 0.05)

Command output not provided here to save time during compilation of the vignette. The user is encouraged to try
this out on your dataset, or even this example, if interested. It may take a while to run on the full, untrimmed data.
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Figure 2: Classes and inheritance in the phyloseq package. The class name and its slots are shown with red- or blue-
shaded text, respectively. Coercibility is indicated graphically by arrows with the coercion function shown. Lines
without arrows indicate that the more complex class (“phyloseq”) contains a slot with the associated data class as its
components.

A phyloseq classes
The class structure in the phyloseq package follows the inheritance diagram shown in Fig. 2. The phyloseq pack-
age contains multiple inherited classes with incremental complexity so that methods can be extended to handle ex-
actly the data types that are present in a particular object. Currently, phyloseq uses 4 core data classes. They are
the OTU abundance table (otu table), a table of sample data (sample data), a table of taxonomic descriptors
(taxonomyTable), and a phylogenetic tree (phylo4, phylobase package). The otu table class can be con-
sidered the central data type, as it directly represents the number and type of sequences observed in each sample.
otu table extends the numeric matrix class in the R base, and has a few additonal feature slots. The most important
of these feature slots is the taxa are rows slot, which holds a single logical that indicates whether the table is
oriented with taxa as rows (as in the genefilter package in Bioconductor [4]) or with taxa as columns (as in vegan and
picante packages). In phyloseq methods, as well as its extensions of methods in other packages, the taxa are rows
value is checked to ensure proper orientation of the otu table. A phyloseq user is only required to specify the
otu table orientation during initialization, following which all handling is internal.

The sample data class directly inherits R’s data.frame class, and thus effectively stores both categorical
and numerical data about each sample. The orientation of a data.frame in this context requires that samples/trials
are rows, and variables are columns (consistent with vegan and other packages). The taxonomyTable class directly
inherits the matrix class, and is oriented such that rows are taxa/OTUs and columns are taxonomic levels (e.g.
Phylum).

The phyloseq-class can be considered an “experiment-level class” and should contain two or more of the previously-
described core data classes. We assume that phyloseq users will be interested in analyses that utilize their abundance
counts derived from the phylogenetic sequencing data, and so the phyloseq() constructor will stop with an er-
ror if the arguments do not include an otu table. There are a number of common methods that require either an
otu table and sample data combination, or an otu table and phylogenetic tree combination. These methods
can operate on instances of the phyloseq-class, and will stop with an error if the required component data is missing.
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B Installation

B.1 Installation
Please check the “Installation” tutorial:

http://joey711.github.com/phyloseq/install
for help with installation. This is likely to be the first place news and updated information about installation will

be posted, as well. Also check out the rest of the phyloseq homepage on GitHub
(http://joey711.github.com/phyloseq)
as this is the best place to post issues, bug reports, feature requests, contribute code, etc.

B.2 Installing Parallel Backend
For running parallel implementation of functions/methods in phyloseq (e.g. UniFrac(GlobalPatterns, parallel=TRUE)),
you will need also to install a function for registering a parallel “backend”. Only one working parallel backend is
needed, but there are several options, and the best one will depend on the details of your particular system. The
“doParallel” package is a good place to start. Any one of the following lines from an R session will install a backend
package.

install.packages("doParallel")
install.packages("doMC")
install.packages("doSNOW")
install.packages("doMPI")
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