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Abstract

In this vignette, we demonstrate the pathview package as a tool set for pathway based data integration and
visualization. It maps and renders user data on relevant pathway graphs. All users need is to supply their gene
or compound data and specify the target pathway. Pathview automatically downloads the pathway graph
data, parses the data file, maps user data to the pathway, and renders pathway graph with the mapped data.
Although built as a stand-alone program, pathview may seamlessly integrate with pathway (and functional)
analysis tools for a large-scale and fully automated analysis pipeline. In this vignette, we introduce common
and advanced uses of pathview . We also cover package installation, data preparation, other useful features
and common application errors.

1 Overview

Pathview (Luo and Brouwer, 2013) is a stand-alone software package for pathway based data integration and
visualization. This package can be divided into four functional modules: the Downloader, Parser, Mapper and
Viewer. Mostly importantly, pathview maps and renders user data on relevant pathway graphs.

Pathview generates both native KEGG view (like Figure 1 in PNG format) and Graphviz view (like Figure
2 in PDF format) for pathways (Section 4). KEGG view keeps all the meta-data on pathways, spacial and
temporal information, tissue/cell types, inputs, outputs and connections. This is important for human reading
and interpretation of pathway biology. Graphviz view provides better control of node and edge attributes,
better view of pathway topology, better understanding of the pathway analysis statistics. Currently only KEGG
pathways are implemented. Hopefully, pathways from Reactome, NCI and other databases will be supported
in the future. Notice that KEGG requires subscription for FTP access since May 2011. However, Pathview
downloads individual pathway graphs and data files through html access, which is freely available (for academic
and non-commerical uses). Pathview uses KEGGgraph (Zhang and Wiemann, 2009) when parsing KEGG xml
data files.

Pathview provides strong support for data integration (Section 5). It works with: 1) essentially all types of
biological data mappable to pathways, 2) over 10 types of gene or protein IDs, and 20 types of compound or
metabolite IDs, 3) pathways for over 2000 species as well as KEGG orthology, 4) varoius data attributes and
formats, i.e. continuous/discrete data, matrices/vectors, single/multiple samples etc.

Pathview is open source, fully automated and error-resistant. Therefore, it seamlessly integrates with
pathway or gene set analysis tools. In Section 6, we will show an integrated analysis using pathview with anothr
the Bioconductor gage package (Luo et al., 2009), available from the Bioconductor website.

The vignette is written by assuming the user has minimal R/Bioconductor knowledge. Some descriptions
and code chunks cover very basic usage of R. The more experienced users may simply omit these parts.

2 Installation

Assume R and Bioconductor have been correctly installed and accessible under current directory. Otherwise,
please contact your system admin or follow the instructions on R website and Bioconductor website. Here I
would strongly recommend users to install or upgrade to the latest verison of R (3.0)/Bioconductor (2.12) for
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simpler installation and better use of Pathview . You may need to update your biocLite too if you upgrade
R/Biocondutor under Windows.

Start R: from Linux/Unix command line, type R (Enter); for Mac or Windows GUI, double click the R
application icon to enter R console.

End R: type in q() when you are finished with the analysis using R, but not now.
Two options:
Simple way: install with Bioconductor installation script biocLite directly (this included all dependencies

automatically too):

> source("http://bioconductor.org/biocLite.R")

> biocLite("pathview")

Or a bit more complexer: install through R-forge or manually, but require dependence packages to be
installed using Bioconductor first:

> source("http://bioconductor.org/biocLite.R")

> biocLite(c("Rgraphviz", "png", "KEGGgraph", "org.Hs.eg.db"))

Then install pathview through R-forge.

> install.packages("pathview",repos="http://R-Forge.R-project.org")

Or install manually: download pathview package (from R-forge or Bioconductor, make sure with proper
version number and zip format) and save to /your/local/directory/.

> install.packages("/your/local/directory/pathview_1.0.0.tar.gz",

+ repos = NULL, type = "source")

Note that there might be problems when installing Rgraphviz or XML (KEGGgraph dependency) package
with outdated R/Biocondutor. Rgraphviz installation is a bit complicate with R 2.5 (Biocondutor 2.10) or
earlier versions. Please check this Readme file on Rgraphviz . On Windows systems,XML frequently needs to be
installed manually. Its windows binary can be downloaded from CRAN and then:

> install.packages("/your/local/directory/XML_3.95-0.2.zip", repos = NULL)

3 Get Started

Under R, first we load the pathview package:

> library(pathview)

To see a brief overview of the package:

> library(help=pathview)

To get help on any function (say the main function, pathview), use the help command in either one of the
following two forms:

> help(pathview)

> ?pathview
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4 Common uses for data visualization

Pathview is primarily used for visualizing data on pathway graphs. pathview generates both native KEGG
view (like Figure 1) and Graphviz view (like Figure 2). The former render user data on native KEGG pathway
graphs, hence is natural and more readable for human. The latter layouts pathway graph using Graphviz engine,
hence provides better control of node or edge attributes and pathway topology.

We load and look at the demo microarray data first. This is a breast cancer dataset. Here we would like to
view the pair-wise gene expression changes between DCIS (disease) and HN (control) samples. Note that the
microarray data are log2 transformed. Hence expression changes are log2 ratios.

> data(gse16873.d)

We also load the demo pathway related data.

> data(demo.paths)

First, we view the exprssion changes of a single sample (pair) on a typical signaling pathway, ”Cell Cycle”,
by specifying the gene.data and pathway.id (Figure 1a). The microarray was done on human tissue, hence
species = "hsa". Note that such native KEGG view was outupt as a raster image in a PNG file in your
working directory.

> i <- 1

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873", kegg.native = T)

[1] "Downloading xml files for hsa04110, 1/1 pathways.."

[1] "Downloading png files for hsa04110, 1/1 pathways.."

> list.files(pattern="hsa04110", full.names=T)

[1] "./hsa04110.gse16873.png" "./hsa04110.png"

[3] "./hsa04110.xml"

> str(pv.out)

List of 2

$ plot.data.gene:'data.frame': 92 obs. of 9 variables:

..$ kegg.names: chr [1:92] "1029" "51343" "4171" "4998" ...

..$ labels : chr [1:92] "CDKN2A" "FZR1" "MCM2" "ORC1" ...

..$ type : chr [1:92] "gene" "gene" "gene" "gene" ...

..$ x : num [1:92] 532 919 553 494 919 919 188 432 123 77 ...

..$ y : num [1:92] 124 536 556 556 297 519 519 191 704 687 ...

..$ width : num [1:92] 46 46 46 46 46 46 46 46 46 46 ...

..$ height : num [1:92] 17 17 17 17 17 17 17 17 17 17 ...

..$ mol.data : num [1:92] 0.129 -0.404 -0.42 0.986 1.181 ...

..$ mol.col : Factor w/ 10 levels "#00FF00","#30EF30",..: 5 3 3 9 9 9 9 9 5 6 ...

$ plot.data.cpd : NULL

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

1 1029 CDKN2A gene 532 124 46 17 0.1291987 #BEBEBE

2 51343 FZR1 gene 919 536 46 17 -0.4043256 #5FDF5F
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(a)

(b)

Figure 1: Example native KEGG view on gene data with the (a) default settings; or (b) same.layer=F.
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Figure 2: Example Graphviz view on gene data with default settings. Note that legend is put on the same page
as main graph.

3 4171 MCM2 gene 553 556 46 17 -0.4202181 #5FDF5F

4 4998 ORC1 gene 494 556 46 17 0.9864873 #FF0000

5 996 CDC27 gene 919 297 46 17 1.1811525 #FF0000

6 996 CDC27 gene 919 519 46 17 1.1811525 #FF0000

Graph from the first example above has a single layer. Node colors were modified on the original graph
layer, and original KEGG node labels (node names) were kept intact. This way the output file size is as small
as the original KEGG PNG file, but the computing time is relative long. If we want a fast view and do not
mind doubling the output file size, we may do a two-layer graph with same.layer = F (Figure 1b). This way
node colors and labels are added on an extra layer above the original KEGG graph.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.2layer", kegg.native = T,

+ same.layer = F)

In the above two examples, we view the data on native KEGG pathway graph. This view we get all notes
and meta-data on the KEGG graphs, hence the data is more readable and interpretable. However, the output
graph is a raster image in PNG format. We may also view the data with a de novo pathway graph layout using
Graphviz engine (Figure 2). The graph has the same set of nodes and edges, but with a different layout. We
get more controls over the nodes and edge attributes and look. Importantly, the graph is a vector image in
PDF format in your working directory.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873", kegg.native = F,
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+ sign.pos = demo.paths$spos[i])

> #pv.out remains the same

> dim(pv.out$plot.data.gene)

[1] 92 9

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

1 1029 CDKN2A gene 532 124 46 17 0.1291987 #BEBEBE

2 51343 FZR1 gene 919 536 46 17 -0.4043256 #5FDF5F

3 4171 MCM2 gene 553 556 46 17 -0.4202181 #5FDF5F

4 4998 ORC1 gene 494 556 46 17 0.9864873 #FF0000

5 996 CDC27 gene 919 297 46 17 1.1811525 #FF0000

6 996 CDC27 gene 919 519 46 17 1.1811525 #FF0000

In the example above, both main graph and legend were put in one layer (or page). We just list KEGG edge
types and ignore node types in legend as to save space. If we want the complete legend, we can do a Graphviz
view with two layers (Figure 3): page 1 is the main graph, page 2 is the legend. Note that for Graphviz view
(PDF file), the concept of “layer” is slightly different from native KEGG view (PNG file). In both cases, we set
argument same.layer=F for two-layer graph.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.2layer", kegg.native = F,

+ sign.pos = demo.paths$spos[i], same.layer = F)

In Graphviz view, we have more control over the graph layout. We may split the node groups into individual
detached nodes (Figure 4a). We may even expand the multiple-gene nodes into individual genes (Figure 4b).
The split nodes or expanded genes may inherit the edges from the unsplit group or unexpanded nodes. This
way we tend to get a gene/protein-gene/protein interaction network. And we may better view the network
characteristics (modularity etc) and gene-wise (instead of node-wise) data. Note in native KEGG view, a gene
node may represent multiple genes/proteins with similar or redundant functional role. The number of member
genes range from 1 up to several tens. They are intentionally put together as a single node on pathway graphs
for better clarity and readability. Therefore, we do not split node and mark each member genes separately
by default. But rather we visualize the node-wise data by summarize gene-wise data, users may specify the
summarization method using node.sum arguement.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.split", kegg.native = F,

+ sign.pos = demo.paths$spos[i], split.group = T)

> dim(pv.out$plot.data.gene)

[1] 92 9

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

1 1029 CDKN2A gene 532 124 46 17 0.1291987 #BEBEBE

2 51343 FZR1 gene 919 536 46 17 -0.4043256 #5FDF5F

3 4171 MCM2 gene 553 556 46 17 -0.4202181 #5FDF5F

4 4998 ORC1 gene 494 556 46 17 0.9864873 #FF0000

5 996 CDC27 gene 919 297 46 17 1.1811525 #FF0000

6 996 CDC27 gene 919 519 46 17 1.1811525 #FF0000
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Figure 3: Example Graphviz view on gene data with same.layer=F. Note that legend is put on a different page
than main graph.
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Figure 4: Example Graphviz view on gene data with (a) split.group = T; or (b) expand.node = T.
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> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+ species = "hsa", out.suffix = "gse16873.split.expanded", kegg.native = F,

+ sign.pos = demo.paths$spos[i], split.group = T, expand.node = T)

> dim(pv.out$plot.data.gene)

[1] 124 9

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height mol.data mol.col

hsa:1029 1029 CDKN2A gene 532 124 46 17 0.12919874 #BEBEBE

hsa:51343 51343 FZR1 gene 919 536 46 17 -0.40432563 #5FDF5F

hsa:4171 4171 MCM2 gene 553 556 46 17 0.17968149 #BEBEBE

hsa:4172 4172 MCM3 gene 553 556 46 17 0.33149955 #CE8F8F

hsa:4173 4173 MCM4 gene 553 556 46 17 0.06996779 #BEBEBE

hsa:4174 4174 MCM5 gene 553 556 46 17 -0.42874682 #5FDF5F

5 Data integration

Pathview provides strong support for data Integration. It can be used to integrate, analyze and visualize a wide
variety of biological data: gene expression, protein expression, genetic association, metabolite, genomic data,
literature, and other data types mappable to pathways. Notebaly, it can be directly used for metagenomic data
when the data are mapped to KEGG ortholog pathways. The integrated Mapper module maps a variety of
gene/protein IDs and compound/metabolite IDs to standard KEGG gene or compound IDs. User data named
with any of these different ID types get accurately mapped to target KEGG pathways. Currently, pathview
covers KEGG pathways for over 2000 species, and species can be specified either as KEGG code, scientific name
or comon name. In addition, pathview works with different data attributes and formats, both continuous and
discrete data, either in matrix or vector format, with single or multiple samples/experiments etc.

In examples above, we viewed gene data with canonical signaling pathways. We frequently want to look
at metabolic pathways too. Besides gene nodes, these pathways also have compound nodes. Therefore, we
may integrate or visualize both gene data and compound data with metabolic pathways. Here gene data
is a broad concept including genes, transcripts, protein , enzymes and their expression, modifications and
any measurable attributes. Same is compound data, including metabolites, drugs, their measurements and
attributes. Here we still use the breast cancer microarray dataset as gene data. We then generate simulated
compound or metabolomic data, and load proper compound ID types (with sufficient number of unique entries)
for demonstration.

> sim.cpd.data=sim.mol.data(mol.type="cpd", nmol=3000)

> data(cpd.simtypes)

We generate a native KEGG view graph with both gene data and compound data (Figure 5a). Such
metabolic pathway graphs generated by pathview is the same as the original KEGG graphs, except that the
compound nodes are magnified for better view of the colors.

> i <- 3

> print(demo.paths$sel.paths[i])

[1] "00640"

> pv.out <- pathview(gene.data = gse16873.d[, 1], cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.cpd",

+ keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i])
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[1] "Downloading xml files for hsa00640, 1/1 pathways.."

[1] "Downloading png files for hsa00640, 1/1 pathways.."

> str(pv.out)

List of 2

$ plot.data.gene:'data.frame': 22 obs. of 9 variables:

..$ kegg.names: chr [1:22] "4329" "4329" "84693" "5095" ...

..$ labels : chr [1:22] "ALDH6A1" "ALDH6A1" "MCEE" "PCCA" ...

..$ type : chr [1:22] "gene" "gene" "gene" "gene" ...

..$ x : num [1:22] 936 890 773 852 796 796 746 746 713 599 ...

..$ y : num [1:22] 430 609 525 430 309 223 309 223 556 566 ...

..$ width : num [1:22] 46 46 46 46 46 46 46 46 46 46 ...

..$ height : num [1:22] 17 17 17 17 17 17 17 17 17 17 ...

..$ mol.data : num [1:22] 0.7469 0.7469 NA 1.1903 0.0733 ...

..$ mol.col : Factor w/ 8 levels "#30EF30","#5FDF5F",..: 6 6 8 7 4 4 8 8 5 7 ...

$ plot.data.cpd :'data.frame': 36 obs. of 9 variables:

..$ kegg.names: chr [1:36] "C04225" "C02614" "C00109" "C02876" ...

..$ labels : chr [1:36] "C04225" "C02614" "C00109" "C02876" ...

..$ type : chr [1:36] "compound" "compound" "compound" "compound" ...

..$ x : num [1:36] 646 551 646 771 771 551 545 545 545 771 ...

..$ y : num [1:36] 495 143 118 115 184 90 184 255 354 351 ...

..$ width : num [1:36] 8 8 8 8 8 8 8 8 8 8 ...

..$ height : num [1:36] 8 8 8 8 8 8 8 8 8 8 ...

..$ mol.data : num [1:36] NA 0.000376 0.825575 -0.35501 -1.551161 ...

..$ mol.col : Factor w/ 8 levels "#0000FF","#3030EF",..: 8 5 7 4 1 8 8 8 8 7 ...

> head(pv.out$plot.data.cpd)

kegg.names labels type x y width height mol.data mol.col

52 C04225 C04225 compound 646 495 8 8 NA #FFFFFF

110 C02614 C02614 compound 551 143 8 8 0.0003758095 #BEBEBE

111 C00109 C00109 compound 646 118 8 8 0.8255746672 #FFFF00

112 C02876 C02876 compound 771 115 8 8 -0.3550097157 #8F8FCE

113 C00163 C00163 compound 771 184 8 8 -1.5511608864 #0000FF

114 C01234 C01234 compound 551 90 8 8 NA #FFFFFF

We also generate Graphviz view of the same pathway and data (Figure 5b). Graphviz view better shows
the hierarchical structure. For metabolic pathways, we need to parse the reaction entries from xml files and
convert it to relationships between gene and compound nodes. We use ellipses for compound nodes. The labels
are standard compound names, which are retrieved from CHEMBL database. KEGG does not provide it in
the pathway database files. Chemical names are long strings, we need to do word wrap to fit them to specified
width on the graph.

> pv.out <- pathview(gene.data = gse16873.d[, 1], cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gse16873.cpd",

+ keys.align = "y", kegg.native = F, key.pos = demo.paths$kpos2[i],

+ sign.pos = demo.paths$spos[i], cpd.lab.offset = demo.paths$offs[i])

In all previous examples, we looked at single sample data, which are either vector or single-column matrix.
Pathview also handles multiple sample data, generates graph for each sample. It automatically match samples
by recycling over the smaller sample size when sample sizes are different for gene and compound data. In the
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Figure 5: Example (a) KEGG view or (b) Graphviz view on both gene data and compound data simultaneously.
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following example (Figure not shown), gene.data has two samples while cpd.data has one. Hence cpd.data is
recycled to match the second gene.data sample in the second graph. To prevent such data matching/recycling,
you need to set argument match.data=F, which is passed to secondary function keggview.native or keg-

gview.graph by pathview.

> head(gse16873.d[, 1:2])

DCIS_1 DCIS_2

10000 -0.30764480 -0.14722769

10001 0.41586805 -0.33477259

10002 0.19854925 0.03789588

10003 -0.23155297 -0.09659311

100048912 -0.04490724 -0.05203146

10004 -0.08756237 -0.05027725

> pv.out <- pathview(gene.data = gse16873.d[, 1:2], cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa",

+ out.suffix = "gse16873.cpd", keys.align = "y", kegg.native = T,

+ key.pos = demo.paths$kpos1[i])

> head(pv.out$plot.data.gene)

kegg.names labels type x y width height DCIS_1 DCIS_2

54 4329 ALDH6A1 gene 936 430 46 17 0.74686683 0.05287812

55 4329 ALDH6A1 gene 890 609 46 17 0.74686683 0.05287812

57 84693 MCEE gene 773 525 46 17 NA NA

58 5095 PCCA gene 852 430 46 17 1.19029289 -0.30087442

62 79611 ACSS3 gene 796 309 46 17 0.07325135 -0.21532204

63 79611 ACSS3 gene 796 223 46 17 0.07325135 -0.21532204

DCIS_1.col DCIS_2.col

54 #EF3030 #BEBEBE

55 #EF3030 #BEBEBE

57 #FFFFFF #FFFFFF

58 #FF0000 #8FCE8F

62 #BEBEBE #8FCE8F

63 #BEBEBE #8FCE8F

So far, we have been dealing with continuous data. But we often work with discrete data too. For instance,
we select list of signficant genes or compound based on some statistics (p-value, fold change etc). The input
data can be named vector of two levels, either 1 or 0 (signficant or not), or it can be a shorter list of signficant
gene/compound names. In the next two examples, we made both gene.data and cpd.data or gene.data only
(Figure 6) discrete.

> require(org.Hs.eg.db)

> gse16873.t <- apply(gse16873.d, 1, function(x) t.test(x,

+ alternative = "two.sided")$p.value)

> sel.genes <- names(gse16873.t)[gse16873.t < 0.1]

> sel.cpds <- names(sim.cpd.data)[abs(sim.cpd.data) > 0.5]

> pv.out <- pathview(gene.data = sel.genes, cpd.data = sel.cpds,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.sel.cpd",

+ keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i],

+ limit = list(gene = 5, cpd = 2), bins = list(gene = 5, cpd = 2),
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Figure 6: Example native KEGG view on discrete gene data and continuous compound data simultaneously.

+ na.col = "gray", discrete = list(gene = T, cpd = T))

> pv.out <- pathview(gene.data = sel.genes, cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "sel.genes.cpd",

+ keys.align = "y", kegg.native = T, key.pos = demo.paths$kpos1[i],

+ limit = list(gene = 5, cpd = 1), bins = list(gene = 5, cpd = 10),

+ na.col = "gray", discrete = list(gene = T, cpd = F))

A distinguished feature of pathview is its strong ID mapping capability. The integrated Mapper module
maps over 10 types of gene or protein IDs, and 20 types of compound or metabolite IDs to standard KEGG
gene or compound IDs, and also maps between these external IDs. In other words, user data named with any
of these different ID types get accurately mapped to target KEGG pathways. Pathview applies to pathways
for over 2000 species, and species can be specified in multiple formats: KEGG code, scientific name or comon
name.

The following example makes use of the integrated mapper to map external ID types to standard KEGG IDs
automatically (Figure 7). We only need to specify the external ID types using gene.idtype and cpd.idtype

arguments. Note that automatic mapping is limited to certain ID types. For details check: gene.idtype.list
and data(rn.list); names(rn.list).

> cpd.cas <- sim.mol.data(mol.type = "cpd", id.type = cpd.simtypes[2],

+ nmol = 10000)

> gene.ensprot <- sim.mol.data(mol.type = "gene", id.type = gene.idtype.list[4],

+ nmol = 50000)

> pv.out <- pathview(gene.data = gene.ensprot, cpd.data = cpd.cas,

+ gene.idtype = gene.idtype.list[4], cpd.idtype = cpd.simtypes[2],

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T,

+ out.suffix = "gene.ensprot.cpd.cas", keys.align = "y", kegg.native = T,

+ key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i],

+ limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))
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Figure 7: Example native KEGG view on gene data and compound data with other ID types.

For external IDs not in the auto-mapping lists, we may make use of the mol.sum function (also part of the
Mapper module) to do the ID and data mapping explicitly. Here we need to provide id.map, the mapping matrix
between external ID and KEGG standard ID. We use ID mapping functions including id2eg and cpdidmap

etc to get id.map matrix. Note that these ID mapping functions can be used independent of pathview main
function. The following example use this route with the simulated gene.ensprot and cpd.kc data above, and
we get the same results (Figure not shown).

> id.map.cas <- cpdidmap(in.ids = names(cpd.cas), in.type = cpd.simtypes[2],

+ out.type = "KEGG COMPOUND accession")

> cpd.kc <- mol.sum(mol.data = cpd.cas, id.map = id.map.cas)

> id.map.ensprot <- id2eg(ids = names(gene.ensprot),

+ category = gene.idtype.list[4], org = "Hs")

> gene.entrez <- mol.sum(mol.data = gene.ensprot, id.map = id.map.ensprot)

> pv.out <- pathview(gene.data = gene.entrez, cpd.data = cpd.kc,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T,

+ out.suffix = "gene.entrez.cpd.kc", keys.align = "y", kegg.native = T,

+ key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i],

+ limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))

Importantly, pathview can be directly used for metagenomic or microbiome data when the data are mapped
to KEGG ortholog pathways. In the next example, we simulate the mapped KEGG ortholog gene data first.
Then the data is input as gene.data with species="ko". Check pathview function for details.

> ko.data=sim.mol.data(mol.type="gene.ko", nmol=5000)

> pv.out <- pathview(gene.data = ko.data, pathway.id = "04112",

+ species = "ko", out.suffix = "ko.data", kegg.native = T)

[1] "Downloading xml files for ko04112, 1/1 pathways.."

[1] "Downloading png files for ko04112, 1/1 pathways.."

14



6 Integrated workflow with pathway analysis

Although built as a stand alone program, Pathview may seamlessly integrate with pathway and functional
analysis tools for large-scale and fully automated analysis pipeline. The next example shows how to connect
common pathway analysis to results rendering with pathview . The pathway analysis was done using another
Bioconductor package gage (Luo et al., 2009), and the selected signficant pathways plus the expression data
were then piped to pathview for auomated results visualization (Figure not shown).

> library(gage)

> data(gse16873)

> cn <- colnames(gse16873)

> hn <- grep('HN',cn, ignore.case =TRUE)

> dcis <- grep('DCIS',cn, ignore.case =TRUE)

> kgs.file <- system.file("extdata", "kegg.sigmet.rda", package = "pathview")

> load(kgs.file)

> gse16873.kegg.p <- gage(gse16873, gsets = kegg.sigmet,

+ ref = hn, samp = dcis)

> gse16873.d <- gagePrep(gse16873, ref = hn, samp = dcis)

> sel <- gse16873.kegg.p$greater[, "q.val"] < 0.1 & !is.na(gse16873.kegg.p$greater[,

+ "q.val"])

> path.ids <- rownames(gse16873.kegg.p$greater)[sel]

> path.ids2 <- substr(path.ids[c(1, 2, 7)], 1, 8)

> pv.out.list <- sapply(path.ids2, function(pid) pathview(gene.data = gse16873.d[,

+ 1:2], pathway.id = pid, species = "hsa"))

7 Common Errors

• mismatch between the IDs for gene.data (or cpd.data) and gene.idtype (or cpd.idtype). For example,
gene.data or cpd.data uses some extern ID types, while gene.idtype = "entrez" and cpd.idtype =

"kegg" (default).

• mismatch between gene.data (or cpd.data) and species. For example, gene.data come from ”mouse”,
while species="hsa".

• pathway.id wrong or wrong format, right format should be a five digit number, like 04110, 00620 etc.

• any of limit, bins, both.dir, trans.fun, discrete, low, mid, high arguments is specified as a
vector of length 1 or 2, instead of a list of 2 elements. Correct format should be like limit = list(gene

= 1, cpd = 1).

• key.pos or sign.pos not good, hence the color key or signature overlaps with pathway main graph.

• Special Note: some KEGG xml data files are incomplete, inconsistent with corresponding png image or
inaccurate/incorrect on some parts. These issues may cause inaccuracy, incosistency, or error messages
although pathview tries the best to accommodate them. For instance, we may see inconistence between
KEGG view and Graphviz view. As in the latter case, the pathway layout is generated based on data
from xml file.
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