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1 Overview

This vignette provides an introduction to the analysis of ChIP-seq data with the ‘mosaics’ package.
R package mosaics implements MOSAiCS, a statistical framework for the analysis of ChIP-seq
data, proposed in [1]. MOSAiCS stands for “MOdel-based one and two Sample Analysis and
Inference for ChIP-Seq Data”. It implements a flexible parametric mixture modeling approach
for detecting peaks, i.e., enriched regions, in one-sample (ChIP sample) or two-sample (ChIP and
control samples) ChIP-seq data. It can account for mappability and GC content biases that arise
in ChIP-seq data.

The package can be loaded with the command:

R> library("mosaics")

2 Getting started

‘mosaics’ package provides flexible framework for the ChIP-seq analysis.
If you have the data for matched control sample, two-sample analysis is recommended. If the

ChIP-seq data is deeply sequenced, the two-sample analysis without mappability and GC content
(Section 4) is usually appropriate. For the ChIP-seq data with low sequencing depth, the two-
sample analysis with mappability and GC content (Section 5) can be useful. When control sample
is not available, ‘mosaics’ package accommodates one-sample analysis of ChIP-seq data. In this
case, you should have files for mappability and GC content, in addition to the files for ChIP and
matched control samples.

We recommend users start from Section 3 and it discusses the most convenient way to do the
two-sample analysis (without using mappability and GC content). Section 4 discusses each step
of the two-sample workflow in detail and provides command lines for each step. Sections 5 and 6
briefly explain the workflow and command lines for the two-sample analysis and the one-sample
analysis with mappability and GC content, respectively.

We encourage questions or requests regarding ‘mosaics’ package to be posted on our Google
group http://groups.google.com/group/mosaics_user_group.

3 Two-Sample Analysis using ’mosaicsRunAll’

Two-sample analysis without mappability and GC content can be done in a more convenient way,
with the command:

R> mosaicsRunAll(

+ chipFile="/scratch/eland/STAT1_ChIP_eland_results.txt",

+ chipFileFormat="eland_result",
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+ controlFile="/scratch/eland/STAT1_control_eland_results.txt",

+ controlFileFormat="eland_result",

+ binfileDir="/scratch/bin/",

+ peakFile=c("/scratch/peak/STAT1_peak_list.bed",

+ "/scratch/peak/STAT1_peak_list.gff"),

+ peakFileFormat=c("bed", "gff"),

+ reportSummary=TRUE,

+ summaryFile="/scratch/reports/mosaics_summary.txt",

+ reportExploratory=TRUE,

+ exploratoryFile="/scratch/reports/mosaics_exploratory.pdf",

+ reportGOF=TRUE,

+ gofFile="/scratch/reports/mosaics_GOF.pdf",

+ byChr=FALSE, useChrfile=FALSE, chrfile=NULL, excludeChr="chrM",

+ PET=FALSE, FDR=0.05, fragLen=200, binSize=fragLen, capping=0,

+ bgEst="automatic", signalModel="BIC", parallel=TRUE, nCore=8 )

‘mosaicsRunAll’ method imports aligned read files, converts them to bin-level files (generated
bin-level files will be saved in the directory specified in ‘binfileDir’ argument for future use),
fits the MOSAiCS model, identifies peaks, and exports the peak list. In addition, users can also
make ‘mosaicsRunAll’ method generate diverse analysis reports, such as summary report of pa-
rameters and analysis results, exploratory plots, and goodness of fit (GOF) plots. Arguments of
‘mosaicsRunAll’ method are summarized in Table 1. See Section 4.1 for details of the arguments
‘chipFileFormat’, ‘controlFileFormat’, ‘byChr’, ‘useChrfile’, ‘chrfile’, ‘excludeChr’, ‘PET’,
‘fragLen’, ‘binSize’, and ‘capping’. See Section 4.3’ for details of the argument ‘bgEst’. See Sec-
tion 4.4’ for details of the arguments ‘FDR’, ‘signalModel’, ‘peakFileFormat’, ‘maxgap’, ‘minsize’,
and ‘thres’.

4 Workflow: Two-Sample Analysis

4.1 Constructing Bin-Level Files from the Aligned Read File

R package ‘mosaics’ analyzes the data after converting aligned read files into bin-level files for
modeling and visualization purposes. These bin-level data can easily be generated from the aligned
read files with the command:

R> constructBins( infile="/scratch/eland/STAT1_eland_results.txt",

+ fileFormat="eland_result", outfileLoc="/scratch/eland/",

+ byChr=FALSE, useChrfile=FALSE, chrfile=NULL, excludeChr="chrM",

+ PET=FALSE, fragLen=200, binSize=200, capping=0 )

You can specify the name and file format of the aligned read file in ‘infile’ and ‘fileFormat’ ar-
guments, respectively. The ‘PET’ argument indicates whether the file is paired-end tag (‘PET=TRUE’)
or single-end tag (‘PET=FALSE’) ChIP-Seq data. Allowed aligned read file formats depend on the
‘PET’ argument. ‘constructBins’ method currently allows the following aligned read file formats
for SET ChIP-Seq data: Eland result (‘"eland result"’), Eland extended (‘"eland extended"’),
Eland export (‘"eland export"’), default Bowtie (‘"bowtie"’), SAM (‘"sam"’), BED (‘"bed"’),
and CSEM BED (‘"csem"’). For PET ChIP-Seq data, ‘constructBins’ method currently accepts
the Eland result (‘"eland result"’) and SAM (‘"sam"’) file formats. If input file format is neither
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Table 1: Summary of the arguments of ‘mosaicsRunAll’ method.

(a) Input and output files
Argument Explanation
chipFile Name of aligned read file of ChIP sample.
chipFileFormat File format of aligned read file of ChIP sample.
controlFile Name of aligned read file of matched control sample.
controlFileFormat File format of aligned read file of matched control sample.
binfileDir Directory that bin-level files are exported to.
peakFile Vector of file names of peak list.
peakFileFormat Vector of file formats of peak list.

(b) Reports
Argument Explanation
reportSummary * Generate analysis summary?
summaryFileName File name of analysis summary.
reportExploratory * Generate exploratory plots?
exploratoryFileName File name of exploratory plots.
reportGOF * Generate GOF plots?
gofFileName File name of GOF plots.
* Reports will be generated only when these arguments are TRUE. Default is FALSE.

(c) Tuning parameters
Argument Explanation
byChr Genome-wide analysis (FALSE) or chromosome-wise analysis (TRUE)?
useChrfile Use the file containing chromosome ID and chromosome size?
chrfile Name of the file containing chromosome ID and chromosome size.
excludeChr Vector of chromosomes to be excluded from the analysis.
fragLen Average fragment length.
binSize Bin size.
capping Cap read counts in aligned read files?
bgEst Background estimation approach.
signalModel Signal model.
PET Paired-end tag (TRUE) or single-end tag (FALSE) ChIP-Seq data?
FDR False discovery rate (FDR).
maxgap Distance between initial peaks for merging.
minsize Minimum width to be called as a peak.
thres Minimum ChIP tag counts to be called as a peak.
parallel Use parallel package for parallel computing?
nCore Number of CPUs used for parallel computing. **
** Relevant only when parallel=TRUE and parallel package is installed.
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BED nor CSEM BED, it retains only reads mapping uniquely to the reference genome (uni-reads).
See Appendices A and B for example lines of each aligned read file format.

Even though ‘constructBins’ retains only uni-reads for most aligned read file formats, reads
mapping to multiple locations on the reference genome (multi-reads) can be easily incorporated
into bin-level files by utilizing our multi-read allocator, CSEM (ChIP-Seq multi-read allocator using
Expectation-Maximization algorithm). Galaxy tool for CSEM is available in Galaxy Tool Shed
(http://toolshed.g2.bx.psu.edu/; “csem” under “Next Gen Mappers”). Stand-alone version of
CSEM is also available at http://www.stat.wisc.edu/~keles/Software/multi-reads/. CSEM
exports uni-reads and allocated multi-reads into standard BED file and the corresponding bin-level
files can be constructed by applying ‘constructBins’ method to this BED file with the argument
‘fileFormat="csem"’.

‘constructBins’ can generate a single bin-level file containing all chromosomes (for a genome-
wide analysis) or multiple bin-level files for each chromosome (for a chromosome-wise analy-
sis). If ‘byChr=FALSE’, bin-level data for all chromosomes are exported to one file named as
‘[infileName] fragL[fragLen] bin[binSize].txt’ (for SET data) or ‘[infileName] bin[binSize].txt’
(for PET data), where [infileName], [fragLen], and [binSize] are name of aligned read file,
average fragment length, and bin size, respectively. If ‘byChr=TRUE’, bin-level data for each chromo-
some is exported to a separate file named as ‘[infileName] fragL[fragLen] bin[binSize] [chrID].txt’
(for SET data) or ‘[infileName] bin[binSize] [chrID].txt’ (for PET data), where [chrID]
is chromosome ID that reads align to. These chromosome IDs ([chrID]) are extracted from
the aligned read file. The constructed bin-level files are exported to the directory specified in
‘outfileLoc’ argument.

The ‘useChrfile’ argument indicates whether to use the file containing chromosome ID and
chromosome size, which is specified in the ‘chrfile’ argument. See Appendix C for the example
lines of this chromosome information file. If you want to exclude some chromosomes in the processed
bin-level files, you can specify these chromosomes in ‘excludeChr’ argument. The ‘excludeChr’
argument will be ignored if ‘useChrfile=TRUE’.

You can specify average fragment length and bin size in ‘fragLen’ and ‘binSize’ arguments,
respectively, and these arguments control the resolution of bin-level ChIP-seq data. By default,
average fragment length is set to 200 bp, which is the common fragment length for Illumina se-
quences, and bin size equals to average fragment length. The ‘fragLen’ argument is ignored for
PET ChIP-seq data (‘PET = TRUE’). ‘capping’ argument indicates maximum number of reads al-
lowed to start at each nucleotide position. Using some small value for capping (e.g., ‘capping=3’)
will exclude extremely large read counts that might correspond to PCR amplification artifacts,
which is especially useful for the ChIP-seq data with low sequencing depth. Capping is not applied
(default) if ‘capping’ is set to some non-positive value, e.g., ‘capping=0’.

4.2 Reading Bin-Level Data into the R Environment

You now have bin-level ChIP data and matched control sample data from ’constructBins’. In this
vignette, we use chromosome 21 data from a ChIP-seq experiment of STAT1 binding in interferon-
γ-stimulated HeLa S3 cells [2]. ‘mosaicsExample’ package provides this example dataset.

R> library(mosaicsExample)

Bin-level data can be imported to the R environment with the command:

R> exampleBinData <- readBins( type=c("chip","input"),

+ fileName=c( system.file( file.path("extdata","chip_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","input_chr21.txt"), package="mosaicsExample") ) )
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For the ‘type’ argument, "chip" and "input" indicate bin-level ChIP data control sample data,
respectively. You need to specify the corresponding file names in ‘fileName’. ‘mosaics’ package
assumes that each file name in ‘fileName’ is provided in the same order as in ‘type’.

In mosaics package, you can do either genome-wide analysis or chromosome-wise analysis and
this analysis type will be determined automatically based on the contents of bin-level files imported
using ‘readBins’. If the bin-level files contain more than one chromosome (i.e., bin-level files are
obtained using ‘byChr=FALSE’ in ‘constructBins’), ‘mosaicsFit’ will analyze all the chromosomes
simultaneously (genome-wide analysis). Note that if these bin-level files contain different sets of
chromosomes, then ‘readBins’ method will utilize only the intersection of them. If bin-level files
are obtained using ‘byChr=FALSE’ in ‘constructBins’, each bin-level file contains data for only
one chromosome and each of these bin-level files need to be analyzed separately (chromosome-
wise analysis). The genome-wide analysis usually provide more stable model fitting and peak
identification results so it is recommended for most cases.

R package mosaics provides functions for generating simple summaries of the data. The fol-
lowing command prints out basic information about the bin-level data, such as number of bins
and total “effective tag counts”. “Total effective tag counts” is defined as the sum of the ChIP tag
counts of all bins. This value is usually larger than the sequencing depth since tags are counted
after extension to average fragment length and an extended fragment can contribute to multiple
bins.

R> exampleBinData

Summary: bin-level data (class: BinData)
----------------------------------------
- # of chromosomes in the data: 1
- total effective tag counts: 1637823
(sum of ChIP tag counts of all bins)

- control sample is incorporated
- mappability score is NOT incorporated
- GC content score is NOT incorporated
- uni-reads are assumed
----------------------------------------

‘print’ method returns the bin-level data in data frame format.

R> print(exampleBinData)[51680:51690,]

chrID coord tagCount input
51680 chr21 2583950 0 0
51681 chr21 2584000 0 0
51682 chr21 2584050 0 0
51683 chr21 2584100 0 0
51684 chr21 2584150 0 0
51685 chr21 2584200 0 0
51686 chr21 2584250 0 0
51687 chr21 2584300 0 0
51688 chr21 2584350 0 0
51689 chr21 2584400 0 0
51690 chr21 2584450 0 0
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Figure 1: Histograms of the count data from ChIP and control samples.

‘plot’ method provides exploratory plots for the ChIP data. Different type of plots can be
obtained by varying the ‘plotType’ argument. ‘plotType="input"’ generates a plot of mean ChIP
tag counts versus control tag counts. If ‘plotType’ is not specified, this method plots the histogram
of ChIP tag counts.

R> plot( exampleBinData )

R> plot( exampleBinData, plotType="input" )

Figures 1 and 2 display examples of different types of plots. The relationship between mean
ChIP tag counts and control tag counts seems to be linear, especially for small control tag counts
(Figure 2).

4.3 Fitting the MOSAiCS Model

We are now ready to fit a MOSAiCS model using the bin-level data above (exampleBinData) with
the command:

R> exampleFit <- mosaicsFit( exampleBinData, analysisType="IO", bgEst="automatic" )
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Figure 2: Mean ChIP tag count versus Control tag count.

‘analysisType="IO"’ indicates implementation of the two-sample analysis. ‘bgEst’ argument
determines background estimation approach. ‘bgEst="matchLow"’ estimates background distri-
bution using only bins with low tag counts and it is appropriate for the data with relatively
low sequencing depth. ‘bgEst="rMOM"’ estimates background distribution using robust method
of moment (MOM) and it is appropriate for the data with relatively high sequencing depth. If
‘bgEst="automatic"’ (default), ‘mosaicsFit’ tries its best guess for the background estimation
approach, based on the data provided. If the goodness of fit obtained using ‘bgEst="automatic"’
is not satisfactory, we recommend to try ‘bgEst="matchLow"’ and ‘bgEst="rMOM"’ and it might
improve the model fit.

‘mosaicsFit’ fits both one-signal-component and two-signal-component models. When iden-
tifying peaks, you can choose the number of signal components to be used for the final model.
The optimal choice of the number of signal components depends on the characteristics of data. In
order to support users in the choice of optimal signal model, mosaics package provides Bayesian
Information Criterion (BIC) values and Goodness of Fit (GOF) plots of these signal models.

The following command prints out BIC values of one-signal-component and two-signal-component
models, with additional information about the parameters used in fitting the background (non-
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enriched) distribution. A lower BIC value indicates a better model fit. For this dataset, we conclude
that the two-signal-component model has a lower BIC and hence it provides a better fit.

R> exampleFit

Summary: MOSAiCS model fitting (class: MosaicsFit)
--------------------------------------------------
analysis type: two-sample analysis (Input only)
parameters used: k = 3, d = 0.25
BIC of one-signal-component model = 1226948
BIC of two-signal-component model = 1221157
--------------------------------------------------

‘plot’ method provides the GOF plot. This plots allows visual comparisons of the fits of
the background, one-signal-component, and two-signal-component models with the actual data.
Figure 3 displays the GOF plot for our dataset and we conclude that the two-signal-component
model provides a better fit as is also supported by its lower BIC value compared to the one-signal
component model.

R> plot(exampleFit)

4.4 Identifying Peaks Based on the Fitted Model

Using BIC values and GOF plots in the previous section, we concluded that two-signal-component
model fits our data better. Next, we will identify peaks with the two-signal-component model at a
false discovery rate (FDR) of 0.05 using the command:

R> examplePeak <- mosaicsPeak( exampleFit, signalModel="2S", FDR=0.05,

+ maxgap=200, minsize=50, thres=10 )

‘signalModel="2S"’ indicates two-signal-component model. Similarly, one-signal-component
model can be specified by ‘signalModel="1S"’. FDR can be controlled at the desired level by
specifying ‘FDR’ argument. In addition to these two essential parameters, you can also control three
more parameters, ‘maxgap’, ‘minsize’, and ‘thres’. These parameters are for refining initial peaks
called using specified signal model and FDR. Initial nearby peaks are merged if the distance (in
bp) between them is less than ‘maxgap’. Some initial peaks are removed if their lengths are shorter
than ‘minsize’ or their ChIP tag counts are less than ‘thres’.

If you use a bin size shorter than the average fragment length in the experiment, we recommend
to set ‘maxgap’ to the average fragment length and ‘minsize’ to the bin size. This setting removes
peaks that are too narrow (e.g., singletons). If you set the bin size to the average fragment length
(or maybe bin size is larger than the average fragment length), we recommend setting ‘minsize’ to
a value smaller than the average fragment length while leaving ‘maxgap’ the same as the average
fragment length. This is to prevent filtering using ‘minsize’ because initial peaks would already
be at a reasonable width. ‘thres’ is employed to filter out initial peaks with very small ChIP tag
counts because such peaks might be false discoveries. Optimal choice of ‘thres’ depends on the
sequencing depth of the ChIP-seq data to be analyzed. If you don’t wish to filter out initial peaks
using ChIP tag counts, you can set ‘thres’ to an arbitrary negative value.

The following command prints out a summary of identified peaks including the number of peaks
identified, median peak width, and the empirical false discovery rate (FDR).
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Figure 3: Goodness of Fit (GOF) plot. Depicted are actual data for ChIP and control samples
with simulated data from the following fitted models: (Sim:N): Background model; (Sim:N+S1):
one-signal-component model; (Sim:N+S1+S2): two-signal-component model.

R> examplePeak

Summary: MOSAiCS peak calling (class: MosaicsPeak)
--------------------------------------------------
final model: two-sample analysis (input only) with two signal components
setting: FDR = 0.05, maxgap = 200, minsize = 50, thres = 10
# of peaks = 726
median peak width = 350
empirical FDR = 0.0508
--------------------------------------------------

‘print’ method returns the peak calling results in data frame format. This data frame can
be used as an input for downstream analysis such as motif finding. This output might have
different number of columns, depending on ‘analysisType’ of ‘mosaicsFit’. For example, if
‘analysisType="TS"’, columns are peak start position, peak end position, peak width, averaged
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posterior probability, minimum posterior probability, averaged ChIP tag count, maximum ChIP
tag count, averaged control tag count, averaged control tag count scaled by sequencing depth, av-
eraged log base 2 ratio of ChIP over input tag counts, averaged mappability score, and averaged
GC content score for each peak. Here, the posterior probability of a bin refers to the probability
that the bin is not a peak conditional on data. Hence, smaller posterior probabilities provide more
evidence that the bin is actually a peak.

R> print(examplePeak)[1:15,]

chrID peakStart peakStop peakSize aveP minP aveChipCount
1 chr21 9874250 9874449 200 0.206469241 7.619896e-02 25.75000
2 chr21 10191850 10192049 200 0.199182969 6.911445e-02 24.75000
3 chr21 14538150 14538499 350 0.004259010 2.726406e-07 34.85714
4 chr21 14677200 14677899 700 0.103764570 9.545638e-03 29.07143
5 chr21 14828050 14828349 300 0.030471394 1.912252e-03 25.66667
6 chr21 14901600 14901799 200 0.050239923 1.406300e-02 22.50000
7 chr21 15175300 15175399 100 0.279052908 2.790529e-01 19.00000
8 chr21 15177450 15177599 150 0.171173758 6.831582e-02 18.66667
9 chr21 15353150 15353549 400 0.001137400 7.910143e-22 81.37500
10 chr21 15358350 15358599 250 0.361641865 9.552980e-02 18.80000
11 chr21 15359300 15359399 100 0.180636803 1.710742e-01 23.50000
12 chr21 15359950 15360349 400 0.157492156 6.213478e-02 24.87500
13 chr21 15374700 15375349 650 0.004989049 5.415344e-36 93.92308
14 chr21 15378900 15379149 250 0.068953973 2.339854e-02 23.00000
15 chr21 15415800 15415999 200 0.070159735 3.788661e-02 25.75000

maxChipCount aveInputCount aveInputCountScaled aveLog2Ratio
1 29 24.000000 26.908521 -0.04412279
2 29 16.750000 18.779905 0.39916849
3 48 2.428571 2.722886 3.30280262
4 35 19.214286 21.542834 0.44274887
5 31 4.666667 5.232212 2.14088982
6 25 3.250000 3.643862 2.34102405
7 19 5.000000 5.605942 1.59816383
8 20 2.333333 2.616106 2.45618722
9 125 4.750000 5.325645 3.56002727
10 21 5.600000 6.278655 1.45554426
11 24 13.000000 14.575449 0.65695507
12 30 14.250000 15.976934 0.70848160
13 180 2.846154 3.191075 4.22095267
14 25 5.800000 6.502893 1.78233912
15 27 11.500000 12.893666 0.96473565

You can export peak calling results to text files in diverse file formats. Currently, ‘mosaics’ pack-
age supports TXT, BED, and GFF file formats. In the exported file, TXT file format (‘type="txt"’)
includes all the columns that ‘print’ method returns. ‘type="bed"’ and ‘type="gff"’ export peak
calling results in standard BED and GFF file formats, respectively, where score is the averaged
ChIP tag counts in each peak. Peak calling results can be exported in TXT, BED, and GFF file
formats, respectively, by the commands:
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R> export( examplePeak, type="txt", filename="TSpeakList.txt" )

R> export( examplePeak, type="bed", filename="TSpeakList.bed" )

R> export( examplePeak, type="gff", filename="TSpeakList.gff" )

‘fileLoc’ and ‘fileName’ indicate the directory and the name of the exported file.

5 Two-Sample Analysis with Mappability and GC Content

For the two-sample analysis with mappability and GC content and the one-sample analysis, you
also need bin-level mappability, GC content, and sequence ambiguity score files for the refer-
ence genome you are working with. If you are working with organisms such as human (HG18
and HG19), mouse (MM9), rat (RN4), and Arabidopsis (TAIR9), you can download their cor-
responding preprocessed mappability, GC content, and sequence ambiguity score files at http:
//www.stat.wisc.edu/~keles/Software/mosaics/. If your reference genome of interest is not
listed on our website, you can inquire about it at our Google group, http://groups.google.com/
group/mosaics_user_group, and we would be happy to add your genome of interest to the list.
The companion website also provides all the related scripts and easy-to-follow instructions to pre-
pare these files. Please check http://www.stat.wisc.edu/~keles/Software/mosaics/ for more
details.

You can import bin-level data and fit MOSAiCS model for the two-sample analysis using map-
pability and GC content with the commands:

R> exampleBinData <- readBins( type=c("chip","input","M","GC","N"),

+ fileName=c( system.file( file.path("extdata","chip_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","input_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","M_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","GC_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","N_chr21.txt"), package="mosaicsExample") ) )

------------------------------------------------------------
Info: preprocessing summary
------------------------------------------------------------
- percentage of bins with ambiguous sequences: 27%
(these bins will be excluded from the analysis)

- before preprocessing:
first coordinates = 0, last coordinates = 46944350

- after preprocessing:
first coordinates = 9719550, last coordinates = 46944250

------------------------------------------------------------

For the ‘type’ argument, "chip", "input", "M", "GC", and "N" indicate bin-level ChIP data,
control sample data, mappability score, GC content score, and sequence ambiguity score, respec-
tively.

When you have mappability and GC contents, ‘plot’ method provides additional plot types.
‘plotType="M"’ and ‘plotType="GC"’ generate plots of mean ChIP tag counts versus mappability
and GC content scores, respectively. Moreover, ‘plotType="M|input"’ and ‘plotType="GC|input"’
generate plots of mean ChIP tag counts versus mappability and GC content scores, respectively,
conditional on control tag counts.
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Figure 4: Mean ChIP tag count versus Mappability.

R> plot( exampleBinData, plotType="M" )

R> plot( exampleBinData, plotType="GC" )

R> plot( exampleBinData, plotType="M|input" )

R> plot( exampleBinData, plotType="GC|input" )

As discussed in [1], we observe that mean ChIP tag count increases as mappability score increases
(Figure 4). Mean ChIP tag count depends on GC score in a non-linear fashion (Figure 5). When
we condition on control tag counts (Figures 6 and 7), mean ChIP tag count versus mappability and
GC content relations exhibit similar patterns to that of marginal plots given in Figures 4 and 5.
MOSAiCS incorporates this observation by modeling ChIP tag counts from non-peak regions with
a small number of control tag counts as a function of mappability, GC content, and control tag
counts.

Application of MOSAiCS to multiple case studies of ChIP-seq data with low sequencing depth
showed that consideration of mappability and GC content in the model improves sensitivity and
specificity of peak identification even in the presence of a control sample [1]. mosaics pack-
age accommodates a two-sample analysis with mappability and GC content by specification of
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Figure 5: Mean ChIP tag count versus GC content.

‘analysisType="TS"’ when calling the ‘mosaicsFit’ method.

R> exampleFit <- mosaicsFit( exampleBinData, analysisType="TS", bgEst="automatic" )

Peak identification can be done exactly in the same way as in the case of the two-sample analysis
without mappability and GC content.

R> OneSamplePeak <- mosaicsPeak( OneSampleFit, signalModel="2S", FDR=0.05,

+ maxgap=200, minsize=50, thres=10 )

6 One-Sample Analysis

When control sample is not available, ‘mosaics’ package accommodates one-sample analysis of
ChIP-seq data. Implementation of the MOSAiCS one-sample model is very similar to that of
the two-sample analysis. Bin-level data for the one-sample analysis can be imported to the R
environment with the command:
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Mappability score vs. Mean ChIP tag count,
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Figure 6: Mean ChIP tag count versus Mappability, conditional on control tag counts.

R> exampleBinData <- readBins( type=c("chip","M","GC","N"),

+ fileName=c( system.file( file.path("extdata","chip_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","M_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","GC_chr21.txt"), package="mosaicsExample"),

+ system.file( file.path("extdata","N_chr21.txt"), package="mosaicsExample") ) )

In order to fit a MOSAiCS model for the one-sample analysis, you need to specify ‘analysisType="OS"’
when calling the ‘mosaicsFit’ method.

R> exampleFit <- mosaicsFit( exampleBinData, analysisType="OS", bgEst="automatic" )

Peak identification can be done exactly in the same way as in the case of the two-sample analysis.

R> exampleFit <- mosaicsPeak( exampleFit, signalModel="2S", FDR=0.05,

+ maxgap=200, minsize=50, thres=10 )
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GC content score vs. Mean ChIP tag count,
conditional on Control tag count
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Figure 7: Mean ChIP tag count versus GC content, conditional on control tag counts.

7 Generating Wiggle Files to View on Genome Browsers

R package ‘mosaics’ can generate wiggle files (http://genome.ucsc.edu/goldenPath/help/wiggle.
html) for visualization purposes. These wiggle files can be used as input for many genome browsers
such as the UCSC genome browser (http://genome.ucsc.edu/). These wiggle files can easily be
generated from the aligned read files with the command:

R> generateWig( infile="/scratch/eland/STAT1_eland_results.txt",

+ fileFormat="eland_result", outfileLoc="/scratch/eland/",

+ byChr=FALSE, useChrfile=FALSE, chrfile=NULL, excludeChr="chrM",

+ PET=FALSE, fragLen=200, span=200, capping=0, normConst=1 )

The ‘generateWig’ function has similar arguments as the ‘constructBins’ function, except that
it has ‘span’ and ‘normConst’ arguments instead of the ‘binSize’ argument of the ‘constructBins’
function. The ‘generateWig’ function supports the same set of aligned read file formats as in
the ‘constructBins’ function. The ‘span’ argument indicates span used in wiggle files. The
‘normConst’ argument means the normalizing constant to scale the values in wiggle files and it is
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especially useful when wiggle files for multiple related samples are generated and compared. In the
resulting wiggle files, values are scaled by the value specified in the ‘normConst’ argument.

‘generateWig’ can generate a single wiggle file containing all chromosomes or multiple wiggle
files for each chromosome. If ‘byChr=FALSE’, all chromosomes are exported to one file named as
‘[infileName] fragL[fragLen] span[span].wig’ (for SET data) or ‘[infileName] span[span].wig’
(for PET data), where [infileName], [fragLen], and [span] are name of aligned read file, average
fragment length, and span, respectively. If ‘byChr=TRUE’, each chromosome is exported to a sepa-
rate file named as ‘[infileName] fragL[fragLen] span[span] [chrID].wig’ (for SET data) or
‘[infileName] span[span] [chrID].wig’ (for PET data), where [chrID] is chromosome ID that
reads align to. The constructed wiggle files are exported to the directory specified in ‘outfileLoc’
argument.

8 Case Studies: Tuning Parameters to Improve the MOSAiCS Fit

Because the mosaics package is based on the statistical modeling approach, it is important to check
that we have nice model fits. Goodness of fit (GOF) plots generated from the ‘plot’ method are key
tools that users can utilize to check the MOSAiCS fit and improve it if necessary. In this section, we
will discuss several case studies based on real ChIP-Seq data, especially focusing on understanding
unsatisfactory MOSAiCS fits and suggesting strategies to improve it. The case studies illustrated
in this section are based on [3] and we provided deeper discussion and example analysis codes in
this book chapter.

8.1 Case 1

Figure 8a shows that the goodness of fit from the MOSAiCS fit of the two-sample analysis without
using mappability and GC content. The GOF plot indicates that ChIP tag counts generated
from the fitted model are higher than the actual ChIP-Seq data. Moreover, estimated background
dominates in the fitted model. In such cases (over-estimation of background), we have small number
of peak regions. This problem occurred essentially because ‘mosaicsFit’ guessed using bins with
low ChIP tag counts (‘bgEst="matchLow"’) as the optimal background estimation approach, from
its automatic selection (‘bgEst="automatic"’). Although automatic selection usually works well,
there are some cases that it does not result in optimal background estimation approach. In this
case, the MOSAiCS fit can be improved by explicitly specifying the background estimation approach
with the command:

R> exampleFit <- mosaicsFit( exampleBinData, analysisType="IO", bgEst="rMOM" )

Figure 8b shows that the MOSAiCS fit was significantly improved by explicitly using the robust
method of moment approach (‘bgEst="rMOM"’).

8.2 Case 2

Figure 9a shows that the goodness of fit from the MOSAiCS fit of the two-sample analysis without
using mappability and GC content. The GOF plot indicates that the MOSAiCS fit is unsatisfac-
tory for the bins with low ChIP tag counts. This problem occurred essentially because background
estimation was affected by some bins with high tag counts in the matched control data. In the
two-sample analysis without using mappability and GC content, the ‘truncProb’ argument indi-
cates proportion of bins that are not considered as outliers in the control data and it controls the
functional form used for the control data. Although our empirical studies indicates that default
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‘truncProb’ value usually works well, there are some cases that it does not result in optimal back-
ground estimation. In this case, the MOSAiCS fit can be improved by lowering the ‘truncProb’
value with the command:

R> exampleFit <- mosaicsFit( exampleBinData, analysisType="IO",

+ bgEst="automatic", truncProb=0.80 )

Figure 9b shows that the MOSAiCS fit was significantly improved by using ‘truncProb = 0.80’.

8.3 Case 3

Figure 10a displays the GOF plot for the two-sample analysis without utilizing mappability and
GC content. Neither the blue (two-signal component) nor the red (one-signal component) curve
provides good fit to the ChIP data. Therefore, we consider fitting a two-sample analysis with
mappability and GC content. Figure 10b displays the GOF plot for the two-sample analysis with
mappability and GC content in addition to Input and the goodness of fit improves significantly by
utilizing mappability and GC content.

8.4 Note on Parameter Tuning

Overall, unsatisfactory model fits can be improved via the tuning parameters in the ’mosaicsFit()’
function. Our empirical studies suggest that as the sequencing depths are getting larger, genomic
features mappability and GC content have less of an impact on the overall model fit. In particular,
we suggest tuning the the two-sample model without mappability and GC content in the cases of
unsatisfactory fits before switching to a fit with mappability and GC content. The following are
some general tuning suggestions: for the two-sample analysis without utilizing mappability and
GC content, lowering the value of the ‘truncProb’ parameter; for the two-sample analysis with
mappability and GC content, a larger ‘s’ parameter and a smaller ‘meanThres’ parameter; for the
one-sample analysis with mappability and GC content, varying the ‘meanThres’ parameter are the
general tuning guidelines. Although MOSAiCS has two additional tunable parameters, ‘k’ and ‘d’,
we have accumulated ample empirical evidence through analyzing many datasets that the default
values of ‘k = 3’ and ‘d = 0.25’ work well for these parameters [3]. If you encounter a fitting
problem you need help with, feel free to contact us at our Google group, http://groups.google.
com/group/mosaics_user_group.

9 Conclusion and Ongoing Work

R package mosaics provides effective tools to read and investigate ChIP-seq data, fit MOSAiCS
model, and identify peaks. We are continuously working on improving mosaics package further,
especially in supporting more diverse genomes, automating fitting procedures, developing more
friendly and easy-to-use user interface, and providing more effective data investigation tools. Please
post any questions or requests regarding ‘mosaics’ package at http://groups.google.com/group/
mosaics_user_group. Updates and changes of ‘mosaics’ package will be announced at our Google
group and the companion website (http://www.stat.wisc.edu/~keles/Software/mosaics/).
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Figure 8: Case #1. Goodness of fit when the background estimation approach was automatically
chosen by mosaics package (a) and explicitly specified as robust method of moment (b). The MO-
SAiCS fit was significantly improved by explicitly specifying the background estimation approach.
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Figure 9: Case #2. Goodness of fit when default ‘truncProb’ value (0.999) is used (a) and when
we specify ‘truncProb = 0.80’ (b). The MOSAiCS fit was significantly improved by explicitly
lowering the ‘truncProb’ value.
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Figure 10: Case #3. Goodness of fit for the two-sample analysis without utilizing mappability and
GC content (a). The MOSAiCS fit was improved when we use the two-sample analysis utilizing
mappability and GC content (b).
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A Appendix: Example Lines of Aligned Read Files for SET ChIP-
Seq Data

A.1 Eland Result File Format

>HWUSI-EAS787_0001:6:1:2020:1312#NTAGGC/1 TTGCGGGTTAACAAAAACGATGTAAACCATCG U0 1 0 0
U00096 3894480 F ..
>HWUSI-EAS787_0001:6:1:2960:1312#NTAGGC/1 TATTTTCCTGGTTCTGCTGCTGGTGAGCGGCG U0 1 0 0
U00096 4079496 R ..
>HWUSI-EAS787_0001:6:1:3045:1310#NTAGGC/1 AGCGTATCAAAACTGACAATTCATTCTATGAA U0 1 0 0
U00096 2087194 F ..
>HWUSI-EAS787_0001:6:1:3887:1310#NTAGGC/1 TCCGAGTTGTCGCAATGGGGGCAAGGTGTGAA U1 0 1 0
U00096 2405216 R .. 26C
>HWUSI-EAS787_0001:6:1:3993:1315#TTAGGC/1 AGACATAGTAAAACCGATACCGCACAGGATCC U0 1 0 0
U00096 18483 R ..
>HWUSI-EAS787_0001:6:1:4156:1312#NTAGGC/1 GCCGAACTGACAAATAAAATAGCCTGATAGGA U0 1 0 0
U00096 2687648 F ..
>HWUSI-EAS787_0001:6:1:4215:1310#NTAGGC/1 GGAATTTCACGAAAACAGAGCTAAAGCGCCGT U0 1 0 0
U00096 4569776 F ..
>HWUSI-EAS787_0001:6:1:4458:1311#NTAGGC/1 GTTCCTGGCAGGGATTCGGCGCACTCGCCCAC U0 1 0 0
U00096 3607517 F ..
>HWUSI-EAS787_0001:6:1:4841:1308#NTAGGC/1 GGCGTGTGCATCAGCAGAATTTTTCGGGCGGT U0 1 0 0
U00096 3715588 R ..
>HWUSI-EAS787_0001:6:1:5215:1316#TTAGGC/1 TGATATTCTCCGCAGCCAGACTTTTTCCGCCA U0 1 0 0
U00096 668432 R ..

A.2 Eland Extended File Format

>SOLEXA2_1110:7:1:1599:1010#0/1 NNTTTATTTCAACAGGATACTAATATCCTAGGCCCTTTTC 1:0:0 chr21.fa:26418321RCT38
>SOLEXA2_1110:7:1:2734:1009#0/1 NNCCCCTCCAATGACTATAGCAATGATCTTCATGGTAGAT 1:0:0 chr18.fa:37353206RTC38
>SOLEXA2_1110:7:1:3130:1007#0/1 NNTCTTATATTCTTACGAAGCATCAGTCTTAGCAGAAACT 1:0:0 chr4.fa:141242065RCC38
>SOLEXA2_1110:7:1:3709:1009#0/1 NNAAAAAATACAAAAATTAGGCTGTGCACGGTGGTGCAGG 0:1:0 chr18.fa:12860297FCA25G6CT2T1
>SOLEXA2_1110:7:1:4887:1009#0/1 NNTTATATAACAATTCAACAACTATTTCTTGAGCATCTAA 1:0:0 chr13.fa:60908544RAA38
>SOLEXA2_1110:7:1:6298:1011#0/1 NNAGACACACATTTGTTTTTTGTATTTTTCACATCTCTTT 1:0:0 chr11.fa:47506195FAA38
>SOLEXA2_1110:7:1:7798:1011#0/1 NNAGACACTGAGATTTTATGATACTGATTATTGTCGCATT 1:0:0 chr11.fa:25291690FAC38
>SOLEXA2_1110:7:1:7970:1007#0/1 NNGGCTCCTAAAAAGCATACTTTTTTTTTGTTTTCTGTAT 0:0:1 chr21.fa:19842628RGA27^T$11
>SOLEXA2_1110:7:1:8051:1007#0/1 NNTCACATTACCTTTACTAATCCTGAGAGAGCAGGAACTC 1:0:0 chr7.fa:47191653FCA38
>SOLEXA2_1110:7:1:8422:1011#0/1 NNGGGCTTTTGGGGATGATGGTGTCACCAGGTGGGGAATT 1:0:0 chr1.fa:59480447RAA38

A.3 Eland Export File Format

AMELIA 102 5 1 7564 6792 ...T.. 1 TCTCATTTTTTACGTTTTTCAGTGATTTCGTCATTTTTCAAGTCGTCAAG
ggggggggggggggggggggggeggggggggegggggeeggggggggggg 0:48:71 Y
AMELIA 102 5 1 7589 6796 ...A.. 1 TGTGCATTTCACATTTTTCACGTTTTTTAGTGATTTCGTCATTTTTCAAG
ggggggggggggggggggggggggggggfgeggggggggggggggggggg chr2.fa 98506985 R 50 40 Y
AMELIA 102 5 1 7721 6804 ...G.. 1 TATGAGACAGTGGATATGTTATGTAATATCTCCAAGTCAACTTCTTTTCA
cca`caabbceceeaca\ccbccZc[[_\^a_\cbdcdc_YWRPXa^BBB chrX.fa 18454546 F 50 190 Y
AMELIA 102 5 1 7516 6810 ...C.. 1 GGGACAGTTCTGCAGACTTGGGACTCCACTCTAGAGAGGAAGAAAGAGAG
RUQKUV[\]S_BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB chr1.fa 101923817 F 25A12A11 29
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N
AMELIA 102 5 1 7650 6808 ...C.. 1 AGAGGTGCCTGCACCTCCAGCCACCTGGGAGGCTGTGTCAGGAGGATCAC
dddddaeffegggggegggfegggggggggabcdegg^eged`bdb]_cb chr12.fa 80471182 F 50 203 Y
AMELIA 102 5 1 7703 6811 ...C.. 1 CTTTTAGATAACAATCCCATATTCAGGAAGTTTTATTCAATTCATTCAAG
gggfeggggffffgggggfgfgdgffgggfddfeddfff^gfgagggagg chr4.fa 17871000 F 50 203 Y
AMELIA 102 5 1 7524 6826 ...A.. 1 ACTTCGCCTTACTGTAAGTGTATCTCACGCATGCAGAGCTCAGCAGCGGT
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB NM N
AMELIA 102 5 1 7600 6825 ...T.. 1 GATATATAAATATTTATTATATGTAAAACACGTATTTTAAAGAACTTAAA
gggggfggfggfgffgfggfddeddgggdgfdaeeggaeeffdgegbgge chr15.fa 57197391 R 50 203 Y
AMELIA 102 5 1 7564 6837 ...A.. 1 TTCGGCTTGGCAGCAAGCGCCAACTACCCCCTAAGCCAGCTTTCGAGCCT
bbbbbbbbK^BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB chr1.fa 129403054 R 29A20 27 N
AMELIA 102 5 1 7620 6840 ...A.. 1 CTTGACGACTTGAAAAATGACGAATTCACTAAAATACGTGAAAAAAGAGA
fggffgfdggeeffdfdffdedfgggfeeebddddfdfebbdd_dgggge 0:4:13 Y

A.4 Default Bowtie File Format

HWI-EAS255_8232_FC30D82_6_1_11_1558 -chr7 82587091 ATCTTGTTTTATCTTGAAAAGCAGCTTCCTTAAAC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0
HWI-EAS255_8232_FC30D82_6_1_12_793 + chr4 33256683 GTTAATCGGGAAAAAAACCTTTTCCAGGAAAACAA
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0
HWI-EAS255_8232_FC30D82_6_1_17_606 -chr12 92751594 GCCTACATCCTCAGATTCATACATGTCACCATTTC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0
HWI-EAS255_8232_FC30D82_6_1_29_1543 + chr20 53004497 GTGACCTAGTTAAATACTGGCTCCACCTCTTGGAG
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0
HWI-EAS255_8232_FC30D82_6_1_22_327 + chr8 93861371 GAAATAGCAGGAGACAGGTACTTTATCTTGCTTTT
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0
HWI-EAS255_8232_FC30D82_6_1_10_1544 -chr4 121630802 TTCCCTAACATCTGTGTCAATTCTCTGTCAACTGC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0
HWI-EAS255_8232_FC30D82_6_1_108_1797 + chr8 131141865 GTTGAATGAAATGGATATGAAACAAAGCACTATAC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0
HWI-EAS255_8232_FC30D82_6_1_41_1581 -chr7 16554954 CTCTTGCTCTCTTCATTAGTTTAGTTTTCTTCTAC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0 22:G>T
HWI-EAS255_8232_FC30D82_6_1_12_787 -chr8 119427380 CCCTAGAGGAGCTCAAAACAACTGCACAACACAAC
IIIEIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0 23:T>C
HWI-EAS255_8232_FC30D82_6_1_6_1497 + chr1 233856805 GTTAAAGGCGTTTGGATATGATGCAATTCCAAATC
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 0

A.5 SAM File Format

SALLY:187:B02JLABXX:5:1101:1418:1923 65 U00096 1943409 30 51M * 0 0 GTTCGCGAATTAAAGTTTCACTGCTGGCGTCAGGGCGAGCGATTTTGCTCA
#1:DB??@F?DFFB@<E?CGCHIICHG<G?FH0B?76@FG=8?;;>DA@C>NM:i:1 MD:Z:0C50
SALLY:187:B02JLABXX:5:1101:1441:1969 65 U00096 3310343 30 51M * 0 0 GCGGACGCGCTTCACGCGGAACTTCAATGCCCTGACGCGCATATTCGTACA
#1=BDBDDHA?D?ECCGDE:7@BGCEI@CGGGICGHE6BABBBCDCC>A?@ NM:i:1 MD:Z:0T50
SALLY:187:B02JLABXX:5:1101:1685:1925 65 U00096 2164008 30 51M * 0 0 GGCACTTCCCTGAAATGCCGATCCACCTTTCGGTGCAGGCTAACGCCGTGA
#1=DFFFFHHHGHIIIIIIIEHGIIIIIIIIIIFCHIIIIIHIGGGHH@BH NM:i:1 MD:Z:0A50
SALLY:187:B02JLABXX:5:1101:1587:1933 65 U00096 2140205 30 51M * 0 0 GGCCAGGCTTCAATATCTCGGTCACACAGACGCATGGCATTTTCTCCTTTC
#1=DDFFFHHHHGIJIIJJJJHIGIJJJJJJIJJJJJHIJJJJJJJJJJJJ NM:i:1 MD:Z:0A50
SALLY:187:B02JLABXX:5:1101:1635:1986 81 U00096 1432777 30 51M * 0 0 AACGTGCTGCGGTTGGTTTGACTTTGATTGAGACGTTTTGGAATTTTTTTC
HEJJJJJJJJIJJGJJJJJIHJJJJJJIGJJIHJJJJJHHHHHDFFFD=1# NM:i:0 MD:Z:51
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SALLY:187:B02JLABXX:5:1101:1607:2000 65 U00096 932738 30 51M * 0 0 GGGCGTCATCAGTCCAGCGACGAATACATTGATTATTTTGCCGTTTCGCTA
#1=BDD?DFFFFFI<AE>GIFFBGFIIFGIBFIIFIEIIIFEF;ADFFAEI NM:i:1 MD:Z:0T50
SALLY:187:B02JLABXX:5:1101:1937:1904 81 U00096 4541497 30 51M * 0 0 AAACGTTGGTGTGCAGATCCTGGACAGAACGGGTGCTGCGCTGACGCTGGC
JJIJJJJJJJJJJJIJJJJJIHHIGIIJJJJJIGIJJJHHHHHFFFDD=4# NM:i:1 MD:Z:50A0
SALLY:187:B02JLABXX:5:1101:1881:1942 65 U00096 4003009 30 51M * 0 0 GGCTGCAGGAGCATGACAATCCGTTCACGCTCTATCCTTATGACACCAACT
#1:BDFA>FDHBHHIGHICFFGGHE3??FFEHGCCBFFC@FHIGFFFFIII NM:i:1 MD:Z:0T50
SALLY:187:B02JLABXX:5:1101:1919:1960 81 U00096 2237700 30 51M * 0 0 GCGTTCGGGCCAGACAGCCAGGCGTCCATCTTATCTTTCGCCTGAGCGGTC
###############B(;?BGGBFGBD??99?9CBAE@AFFDFD1D?=11# NM:i:1 MD:Z:50G0
SALLY:187:B02JLABXX:5:1101:1900:1973 65 U00096 442575 30 51M * 0 0 GCGGTGGAACTGTTTAACGGTTTCAACCAGCAGAGTGCTATCGCGAAAACA
#1=DBDFFHHGHHHIJJJJJGHIHJJHIII=FGAGBFGGIJJJJJEIJJGG NM:i:1 MD:Z:0A50

A.6 BED File Format

chrA 880 911 U 0 +
chrA 883 914 U 0 +
chrA 922 953 U 0 +
chrA 931 962 U 0 +
chrA 950 981 U 0 +
chrA 951 982 U 0 +
chrA 959 990 U 0 +
chrA 963 994 U 0 +
chrA 965 996 U 0 +
chrA 745 776 U 0 -

A.7 CSEM File Format

chr11 114728597 114728633 HWUSI-EAS610:1:1:0:647#0/1 1000.00 +
chr5 138784256 138784292 HWUSI-EAS610:1:1:0:498#0/1 1000.00 -
chr3 8516078 8516114 HWUSI-EAS610:1:1:0:631#0/1 1000.00 -
chr7 123370863 123370899 HWUSI-EAS610:1:1:0:508#0/1 1000.00 +
chr4 137837148 137837184 HWUSI-EAS610:1:1:0:1790#0/1 1000.00 -
chr11 84363281 84363317 HWUSI-EAS610:1:1:0:862#0/1 1000.00 -
chr7 66950830 66950866 HWUSI-EAS610:1:1:0:1675#0/1 371.61 -
chr7 66938672 66938708 HWUSI-EAS610:1:1:0:1675#0/1 628.39 -
chr15 57549345 57549381 HWUSI-EAS610:1:1:0:969#0/1 1000.00 -
chr9 3012912 3012948 HWUSI-EAS610:1:1:0:194#0/1 448.96 +
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B Appendix: Example Lines of Aligned Read Files for PET ChIP-
Seq Data

B.1 Eland Result File Format

>SALLY:194:B045RABXX:3:1101:1225:2090 GAGCAACGGCCCGAAGGGCGAGACGAAGTCGAGTCA U0 1 0 0
U00096 779900 R ..
>SALLY:194:B045RABXX:3:1101:1225:2090 GTTGCCACGGGATATCAAACAAACCGAAAGCAACGA U0 1 0 0
U00096 779735 F ..
>SALLY:194:B045RABXX:3:1101:1197:2174 GGTTGTCTTCCGGGTTGAGGCGCGGAATGTCGAACG U0 1 0
0 U00096 4080317 R ..
>SALLY:194:B045RABXX:3:1101:1197:2174 GTTTTCAGCTCAGCAACGCGCTCGCTCGCCAGCGTT U0 1 0
0 U00096 4080169 F ..
>SALLY:194:B045RABXX:3:1101:1448:2081 TGAAATTCATCATGGCTGATACTGGCTTTGGTAAAA U0 1 0
0 U00096 2474369 F ..
>SALLY:194:B045RABXX:3:1101:1448:2081 CCAATGGGTAAAATAGCGGGTAAAATATTTCTCACA U0 1 0
0 U00096 2474522 R ..
>SALLY:194:B045RABXX:3:1101:1460:2102 ACATGTTCTTATTCTTACCTCGTAATATTTAACGCT U0 1 0
0 U00096 2127671 R ..
>SALLY:194:B045RABXX:3:1101:1460:2102 TTTCCAGATACTCACGGGTGCCGTCGTTGGAACCGC U0 1 0
0 U00096 2127518 F ..
>SALLY:194:B045RABXX:3:1101:1319:2153 AATGAAATGCTGTTTTCATAAAAAATAAAATTGAAG U0 1 0
0 U00096 1785339 R ..
>SALLY:194:B045RABXX:3:1101:1319:2153 TTATCTTTGTATATTTAACCGGATGAAAAAAACGGT U1 0 1
0 U00096 1785190 F ..

B.2 SAM File Format

AMELIA:216:C0LAWACXX:4:1101:1138:2071 99 U00096.2 182616 255 65M = 182749 198 TTGCTGGTACTTTCACAGGGACGAGTCGTCGATATCGATGACGCGGTAGCACGTCATCTGCACGG
@@CFFFFDHFFFHBG@FAFEGGGGHHIIIBHIGCHHIHGIIIIIHIHHDDD@A>;?BDDDCCDDD XA:i:0 MD:Z:65 NM:i:0
AMELIA:216:C0LAWACXX:4:1101:1138:2071 147 U00096.2 182749 255 65M = 182616 -198 GTGAACCAGAGAATCTGCGTAAATATGGCGAACTGGTCTGCATGACGGCTGAAATGATGCTGGAA
HIIIGJIJJJIJIHGGGFGCIJGIIJJIHDIHGJJJJJIIJJIIHIFJIIJJHHHHHFDFFFC@C XA:i:0 MD:Z:65 NM:i:0
AMELIA:216:C0LAWACXX:4:1101:1425:2097 99 U00096.2 4381249 255 65M = 4381349 165 TGTTTACCTTTGGCGTAGAGCCAAATATTGGCAAAGAAAAACCGACCTTTGTGTACCACTTTCCA
CCBFFFFFHHHHHJJIJJJJJJJJJJJJJJJJJJJJJJJJIJIJJJJJJJIIIIJJGIHHHHGFF XA:i:0 MD:Z:65 NM:i:0
AMELIA:216:C0LAWACXX:4:1101:1425:2097 147 U00096.2 4381349 255 65M = 4381249 -165 AGATCATCGGGTCGCTGAACGCTTTGAGGTTTATTATAAAGGTATTGAGCTGGCGAATGGTTTCC
FFFFFFHHJJJJJIHIJJIJIJIEIJJJIJIJJJJJIJJJJJJJJJIIJJIJHHHHHFFFFFCCC XA:i:0 MD:Z:65 NM:i:0
AMELIA:216:C0LAWACXX:4:1101:1213:2207 163 U00096.2 3632282 255 65M = 3632429 212 CCATGTTGCAGGAAATAGATGATATGCAGGCCAAAATCGTTATCTATTTGCGAATCATTATCCAG
CCCFFFFFHHHHHJJJJJJJIIGJJJJIJJJJJGIJIGIGIJJJJJJJJJIJJJJJJJJIJGIJJ XA:i:0 MD:Z:65 NM:i:0
AMELIA:216:C0LAWACXX:4:1101:1213:2207 83 U00096.2 3632429 255 65M = 3632282 -212 TTATCTTGATGGCTTGAAGAGATGTTTCTAATCTGATTGTCAATTGCTTTCATAAATAACCTGTG
HJIGIJIJJIGEJIIIJJIJGJJIIIJJIJJJIIHIGJJJJJJJIIJIJJJIHHHHHEDFFFCCB XA:i:0 MD:Z:65 NM:i:0
AMELIA:216:C0LAWACXX:4:1101:1167:2244 163 U00096.2 4135404 255 65M = 4135541 202 CCAGTTTCTGCAAATCGACCTTCTGGCTGCGCAATGCGCGGATCACCACATCGGAACATACACCG
CCCFFFFFHHHHHJJJIJJJJJIJJJJJJJJJJJJIJJJJJJJHGHGFFFFFDDCDDDDDDDDDD XA:i:0 MD:Z:65 NM:i:0

26



C Appendix: Chromosome Information File

The first and second columns indicate chromosome ID and its size, respectively.

chr1 249250621
chr2 243199373
chr3 198022430
chr4 191154276
chr5 180915260
chr6 171115067
chr7 159138663
chr8 146364022
chr9 141213431
chr10 135534747
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