Joint Analysis of Multiple ChIP-seq Datasets with the 'jmosaics' Package

Xin Zeng¹ and Sündüz Keleş^{1,2} ¹Department of Statistics, University of Wisconsin Madison, WI ²Department of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI

April 4, 2013

Contents

1	Overview							
2 Workflow								
	2.1	readBins	1					
	2.2	readBinsMultiple	2					
	2.3	mosaicsFit	3					
	2.4	jmosaicsPattern	3					

1 Overview

This document provides an introduction to the joint analysis of multiple ChIP-seq datasets with the 'jmosaics' package. R package 'jmosaics' implements jMOSAiCS: Joint Analysis of Multiple ChIP-seq Datasets, proposed in [1]. It detects combinatorial enrichment patterns across multiple ChIP-seq datasets and is applicable with ChIP-seq data of both transcription factor binding and histone modifications. In this document, we use data from a ChIP- seq experiment of H3K27me3 and H3K4me1 in G1E cells [2] as described in our manuscript. For illustration purposes, we only utilize reads mapping to chromosome 10. The package can be loaded with the command:

R> library("jmosaics")

2 Workflow

'jmosaics' utilizes R package 'mosaics'[3] for part of model fitting. We therefore start with an overview of the relevant 'mosaics' functions for reading in data and model fitting.

2.1 readBins

This function from package 'mosaics' is used to read bin-level data into the R Environment. Binlevel data is easily obtained from the aligned read files by the constructBin function of the 'mosaics' package. constructBin supports multiple alignment formats from the Eland and Bowtie aligners. 'jmosaics' currently allows two-sample analysis with ChIP and control (input) data and also twosample analysis with mappability and GC features in addition to ChIP and input data. The following reads in ChIP and input bin-level data for a single experiment, this is a toy example to show how to read into bin files and create a bin list for the further analysis.

```
R> bin1_toy=readBins(type = c("chip", "input"),
+ fileName = c(system.file(file.path("extdata", "h3k27me3_chip_chr10.txt"),
+ package="jmosaics"),
+ system.file(file.path("extdata", "h3k27me3_input_chr10.txt"),
+ package="jmosaics")))
R> bin2_toy <- readBins(type = c("chip", "input"),</pre>
+ fileName = c(system.file(file.path("extdata", "h3k4me1_chip_chr10.txt"),
+ package="jmosaics"),
+ system.file(file.path("extdata", "h3k4me1_input_chr10.txt"),
+ package="jmosaics")))
R> origin_bin_toy=list(bin1_toy,bin2_toy)
R> bin1_toy <- readBins(type = c("chip", "input"),</pre>
      fileName = c("h3k27me3_chip_chr10.txt",
+
      "h3k27me3_input_chr10.txt"))
+
R> bin2_toy <- readBins(type = c("chip", "input"),</pre>
      fileName = c("h3k4me1_chip_chr10.txt",
+
      "h3k4me1_input_chr10.txt"))
+
R> origin_bin_toy <- list(bin1_toy,bin2)</pre>
```

2.2 readBinsMultiple

This function matches the bin coordinates of multiple ChIP-seq datasets. A list of bin-level data ('origin_bin' below) is used as input.

```
R> data("jmosaics_example_data")
```

```
R> bin<- readBinsMultiple(origin_bin)</pre>
R> str(bin)
List of 2
 $ :Formal class 'BinData' [package "mosaics"] with 7 slots
                 : chr [1:649776] "chr10" "chr10" "chr10" "chr10" ...
  .. ..@ chrID
  .. ..@ coord
                   : num [1:649776] 0 200 400 600 800 1000 1200 1400 1600 1800 ...
  ....@ tagCount : num [1:649776] 0 0 0 0 0 0 0 0 0 0 ...
  ....@ mappability: num(0)
  ....0 gcContent : num(0)
  .. ..@ input
                    : num [1:649776] 0 0 0 0 0 0 0 0 0 0 0 ...
 ....@ dataType : chr "unique"
 $ :Formal class 'BinData' [package "mosaics"] with 7 slots
  .. ..@ chrID
                   : chr [1:649776] "chr10" "chr10" "chr10" ...
  .. ..@ coord
                   : num [1:649776] 0 200 400 600 800 1000 1200 1400 1600 1800 ...
  .....@ tagCount : num [1:649776] 0 0 0 0 0 0 0 0 0 0 ...
  ....@ mappability: num(0)
  ....0 gcContent : num(0)
  .. ..@ input
                   : num [1:649776] 0 0 0 0 0 0 0 0 0 0 ...
  ....@ dataType : chr "unique"
```

The output ('bin') is a list of all the bin-level data with matching bin coordinates.

2.3 mosaicsFit

We are now ready to fit a MOSAiCS model using the mosaicsFit function from the 'mosaics' package. Each bin-level data in the list (e.g., bin[[1]]) is used as input. A MOSAiCS model is fitted with the command:

```
R> fit1 <- mosaicsFit(bin[[1]], analysisType = "IO", bgEst="automatic")
R> fit2 <- mosaicsFit(bin[[2]], analysisType = "IO", bgEst="automatic")</pre>
```

'analysisType="IO"' indicates implementation of the two-sample analysis. 'bgEst' argument determines background estimation approach. 'bgEst="matchLow"' estimates background distribution using only bins with low tag counts and 'bgEst="rMOM"' estimates background distribution using robust method of moment (MOM) can be tried if the goodness of fit obtained using 'bgEst="automatic"' is not satisfactory and it might improve the model fit.

After fitting each dataset separately, an R list should be generated as follows:

R> fit <- list(fit1, fit2)</pre>

This list of 'mosaics' object fits is the main input for detecting enrichment patterns with 'jmosaics'.

2.4 jmosaicsPattern

This is the main function for obtaining enriched regions and combinatorial enrichment patterns. It allows false discovery rate control through the 'FDR' parameter and filtering with respect to a minimum average ChIP tag count across the bins within a region through the 'thres' parameter for the *B*- and *E*-layer analyses. When *B* variable is 1, the region is enriched in at least one of the datasets. We first use the posterior probability of the region-specific *B* variables for false discovery rate control and then refine initial set of enriched regions by 'thres'. Initial regions which satisfy the minimum average ChIP tag count requirement as implied by 'thres' variable in at least one dataset are reported in the object 'B_peak'. *E*-layer analysis declares enrichment for each dataset separately based on posterior probabilities of the region- and dataset-specific *E* variables and the average ChIP tag counts. The combinatorial enrichment pattern is then assigned as the pattern with the maximum joint posterior probability of the *E* variables. For *D* datasets, we can observe up to 2^{D} enrichment patterns for a genomic region. For example, for D = 2, $\{(0,0), (0,1), (1,0), (1,1)\}$ denote the set of possible patterns: (0,0): not enriched in either of the samples; (1,0): enriched only in sample 2; (1,1): enriched in both samples.

```
R> result<-jmosaicsPattern(fit, region_length=1, FDR=0.05, thres=c(10,10),
+ type=c('B', 'E', 'Pattern'), patternInfo='FALSE')
```

For example, chr10: 5018000-5018600, which includes three enriched bins for both H3k4m1 and H3k27m3 datasets, can be accessed through element 'Pattern' of the jmosaics list for the result:

```
R> id=which(result$Pattern[,2]==5018000)
R> result$Pattern[id:(id+2),]
```

	chrID	RegionStart	RegionStop	Enrichment	Pattern	<pre>aveChipCount_E_1</pre>
25091	chr10	5018000	5018200		11	40
25092	chr10	5018200	5018400		11	45
25093	chr10	5018400	5018600		11	30
	aveIn	outCount_E_1	aveChipCou	nt_E_2 aveI	nputCount	:_E_2

25091	2	28	2
25092	1	35	1
25093	1	27	1

These three enriched bins are also listed in the object 'E_LAYER' for each dataset.

```
R> id=which(result$E_LAYER[[1]][,2]==5018000)
R> result$E_LAYER[[1]][id:(id+2),]
                                 Postprob ChipCount InputCount InputCountScaled
    chrID PeakStart PeakStop
            5018000
                     5018199 6.400494e-08
                                                  40
                                                              2
                                                                         4.601873
568 chr10
569 chr10
                     5018399 3.339717e-10
            5018200
                                                  45
                                                               1
                                                                         2.300936
570 chr10
            5018400 5018599 3.490976e-06
                                                  30
                                                                         2.300936
                                                               1
    Log2Ratio
568 2.871643
     3.800687
569
570 3.231321
R> id=which(result$E_LAYER[[2]][,2]==5018000)
R> result$E_LAYER[[2]][id:(id+2),]
   chrID PeakStart PeakStop
                              Postprob ChipCount InputCount InputCountScaled
93 chr10
           5018000 5018199 0.21114014
                                               28
                                                           2
                                                                      14.09392
94 chr10
           5018200 5018399 0.04257124
                                               35
                                                           1
                                                                       7.04696
95 chr10
           5018400 5018599 0.16302334
                                               27
                                                            1
                                                                       7.04696
  Log2Ratio
93 0.9420854
94 2.1614812
95 1.7989111
These bins are also reported in object 'B_LAYER'.
R> id=which(result$B_LAYER[,2]==5018000)
R> result$B_LAYER[id:(id+2),]
                                  Postprob ChipCount_E_1 InputCount_E_1
    chrID PeaksStart PeakStop
             5018000 5018199 2.504619e-08
960 chr10
                                                       40
                                                                        2
961 chr10
             5018200
                      5018399 7.023615e-11
                                                       45
                                                                        1
             5018400
                      5018599 1.283714e-06
                                                       30
                                                                        1
962 chr10
    ChipCount_E_2 InputCount_E_2
960
               28
                                2
961
               35
                                1
```

Plotting functionality for the 'jmosaics' package is supported by the 'dpeak' package. This package can be used to extract reads corresponding to specified regions ('dpeakRead' function) and generate coverage plots as in Figure 1.

1

962

27

h3k4me1

Figure 1: Raw data plot of region chr1: 5018000 - 5018600.

References

- X. Zeng, R. Sanalkumar, E. H. Bresnick, H. Li, Q. Chang, and S. Keleş. jMOSAiCS: Joint Analysis of Multiple ChIP-seq Datasets. Submitted, July 2012.
- [2] W. Wu, Y. Cheng, C. A. Keller, J. Ernst, S. A. Kumar, T. Mishra, C. Morrissey, C. M. Dorman, K-B. Chen, D. Drautz, B. Giardine, Y. Shibata, L. Song, M. Pimkin, G. E. Crawford, T. S. Furey, M. Kellis, W. Miller, J. Taylor, S. C. Schuster, Y. Zhang, F. Chiaromonte, G. A. Blobel, M. J. Weiss, and R. C. Hardison. Dynamics of the epigenetic landscape during erythroid differentiation after GATA1 restoration. *Genome Research*, 21(10):1659–1671, 2011.
- P. F. Kuan, D. Chung, G. Pan, J. Thomson, R. Stewart, and S. Keleş. A statistical framework for the analysis of ChIP-Seq data. *Journal of the American Statistical Association*, 106:891–903, 2011. Software available on Galaxy http://toolshed.g2.bx.psu.edu/ and also on Bioconductor http://bioconductor.org/packages/2.8/bioc/html/mosaics.html.

h3k4me1

Figure 2: Raw data plot of region chr1: 5018000 - 5018600.