
A new algorithm for hybrid clustering of gene

expression data with visualization and the bootstrap

Mark J. van der Laan and Katherine S. Pollard

Revised for Journal of Statistical Planning and Inference, 2003, 117, p. 275–303

Copy with figures

http://www.stat.berkeley.edu/~laan/Research/Research_subpages/Papers/hopach.pdf

Abstract

An important goal with large-scale gene expression studies is to find bio-

logically important subsets and clusters of genes. In this paper, we propose

a hybrid clustering method, Hierarchical Ordered Partitioning And Collapsing

Hybrid (HOPACH), which is a hierarchical tree of clusters. The methodology

combines the strengths of both partitioning (or divisive) and agglomerative clus-

tering methods. At each node, a cluster is split into two or more smaller clusters

with an enforced ordering of the clusters. Collapsing steps uniting the two closest

clusters into one cluster can be used to correct for errors made in the partitioning

steps. We implement an automated HOPACH which increases average silhouette

at each divisive and collapsing step until no more improvement is possible. We

0Mark J. van der Laan is Professor in Biostatistics and Statistics, University of California, Berkeley.

Katherine S. Pollard is a doctoral candidate in Biostatistics in the School of Public Health, Division

of Biostatistics, University of California, Berkeley. This research has been supported by a grant from

the Life Sciences Informatics Program with industrial partner biotech company Chiron Corporation.

Author for correspondence: Mark J. van der Laan, Div. of Biostatistics, Univ. of California, School

of Public Health, Earl Warren Hall #7360, Berkeley, CA 94720-7360

1

propose to visualize the clusters at any level of the tree by plotting the distance

matrix corresponding with an ordering of the clusters and an ordering of genes

within the clusters. An important benefit of a hierarchical tree is that one can

look at clusters at increasing levels of detail. A final ordered list of genes is ob-

tained by running down the tree completely, possibly intervening with collapsing

steps. The bootstrap can be used to establish the reproducibility of the clusters

and the overall variability of the followed procedure. The power of the method-

ology compared to current algorithms is illustrated with simulated and publicly

available cancer data sets.

Key words: Gene expression, bootstrap, cluster analysis, hierarchical tree.

Abbreviated title: HOPACH clustering of gene expression data

AMS classification: primary 62H30, secondary 62H10

1 Introduction

New technologies are allowing researchers to monitor the expression of thousands of

genes simultaneously. By comparing gene expression profiles across cells that are at

different stages in some process, in distinct pathological states, or under different ex-

perimental conditions, we gain insight into the roles and interactions of various genes.

For example, one can compare healthy cells to cancerous cells within subjects in order

to learn which genes tend to be over (or under) expressed in the diseased cells; regu-

lation of such differentially expressed genes could produce effective cancer treatment

or prophylaxis (DeRisi et al. (1996)). Groups of differentially expressed genes which

are significantly correlated with each other are particularly interesting, since such genes

might be part of the same causal mechanism. In addition to identifying interesting

clusters of genes, researchers often want to find subgroups of samples which share

a common gene expression profile. Ross et al., for example, use microarray data to

classify sixty human cancer cell lines.

A typical gene expression experiment results in an observed data matrix X whose

columns are n copies of a p-dimensional vector of gene expression measurements. Con-

2

sider, for example, a population of cancer patients from which we take a random sample

of n patients, each of whom contributes p gene expression measurements. For microar-

rays, each measurement is a ratio, calculated from the intensities of two flourescently

labeled mRNA samples (e.g.: tumor and healthy tissues) cohybridized to arrays spotted

with known cDNA sequences. Gene chips produce similar data, except each element is

a quantitative expression level rather than a ratio. The methods presented can be ap-

plied to both types of data, but we will focus on microarrays. Data preprossessing may

include background subtraction, combining data from replicated spots representing the

same cDNA sequence, normalization, log transformation, and truncation.

Data analysis methods appropriate for microarray data are presented and surveyed

by Claverie (1999), Tibshirani et al. (1999), Eisen et al. (1998), and Herwig et al. (1999).

Approaches to gene expression data analysis rely heavily on results from cluster anal-

ysis (e.g.: agglomerative hierarchical clustering, k-means, self-organizing maps). Most

standard clustering routines, including the methods proposed in this paper, fit in the

general statistical framework for gene clustering presented in van der Laan & Bryan

(2001). In this formal framework, the underlying target subset (with cluster labels)

is defined as a deterministic function S(µ, Σ) of the population mean and covariance

matrix (or any other smooth function of the true data generating distribution). The

bootstrap is used to estimate the distribution of the estimated target subset S(µn, Σn),

obtained by substituting the empirical mean and covariance. In particular, the au-

thors propose to run the bootstrap with fixed cluster centers and to report for each

gene the cluster-specific proportion of times it falls in that cluster. A corresponding

cluster probability plot allows one to inspect the cluster reproducibility visually and

numerically. The authors also prove consistency of the subset estimates and asymptotic

validity of the bootstrap under the assumption that the sample size converges faster

to infinity than the logarithm of the number of genes.

Hierarchical clustering of genes has been popularized by Eisen et al., who apply

an agglomerative hierarchical clustering algorithm to the empirical correlation matrix.

Kaufman & Rousseeuw describe other hierarchical clustering algorithms and implement

several of these in FORTRAN and Splus functions, which can be used to cluster gene

3

expression data. In addition to the resulting hierarchical tree, these routines all produce

a (non-unique) corresponding ordered list of the genes. Such a list, in which nearby

genes are supposed to be similarly expressed, is more helpful to the subject-matter

scientist than a collection of large, unordered groups of genes. Some drawbacks of

these methods are that the ordering of the genes has a random component and that

the hierarchical tree forces binary splits at each node, while there is no biological reason

for doing so. In addition, the variability and reproducibility of the clustering results

need to be addressed by the bootstrap. The bootstrap results could also be used to

obtain a sensible ordering of genes within clusters so that weakly clustered genes can

be filtered out.

In addition to illustrating how hierarchical clustering can be applied to gene ex-

pression data, Eisen et al. provide a visual plot of the ordered p by n data matrix X.

They apply their Cluster algorithm separately to both genes and samples to reorder

the rows and columns of the data matrix for the plot. Each log ratio is represented

by a spot on the red/green color scale. This plot allows one, to a certain extent, to

visually inspect the strength of clusters. We feel that the visualization of clusters is an

important contribution, but that plotting the data matrix might not show clustering

patterns with respect to distances such as absolute correlation. We propose that one

should, in particular, visualize the corresponding distance matrix.

In this paper, we aim to build on the strengths of these currently employed methods

and to address some of their drawbacks. In section 2, we describe our clustering method,

Hierarchical Ordered Partitioning and Collapsing Hybrid (HOPACH), which creates

a hierarchical tree of clusters with an enforced ordering of the clusters. Important

components of this method are 1) running down the tree to obtain an ordered list of

genes and plotting the corresponding ordered distance matrix to visually and judge

the clustering output, 2) identifying the main clusters using an automated HOPACH,

and 3) given a particular level of the tree, running the bootstrap to establish the

reproducibility of the clusters and to provide a corresponding ordering of genes within

the clusters with respect to the cluster-specific bootstrap probabilities. In section 3,

we apply the method to a simulated data set in order to illustrate its performance. In

4

section 4, we analyze a publicly available cancer data set consisting of a variety of cell

lines corresponding with different types of tumors.

2 Hierarchical Ordered Partitioning and Collapsing

Hybrid clustering and the bootstrap.

We present a new clustering method, Hierarchical Ordered Partitioning and Collaps-

ing Hybrid (HOPACH), which applies a partitioning algorithm iteratively to create a

hierarchical tree whose final level is an ordered list of the elements. The ordering of

elements at any level of the tree can be used to visualize the clustering structure in a

colored plot of the reordered data or distance matrix. Ordered distance matrix plots,

and to a certain degree ordered data matrix plots, help to determine the main cluster-

ing structures in the data set and provide information about the clusters such as their

strength and their similarity to each other. A collapsing step can be applied at any

level of the tree to unite similar clusters. By combining the strengths of two celebrated

approaches to clustering, partitioning and agglomerative methods, we create a more

flexible algorithm for finding patterns in data.

It is important to note that our methodology is a general approach which could

be applied with any choice of partitioning algorithm. Commonly employed partition-

ing algorithms include k-means and Self-Organizing Maps (SOMs). To be concrete,

however, we will henceforth assume that Partitioning Around Medoids (PAM) is being

used. We refer to our particular implementation with PAM as the partitioning al-

gorithm as HOPACH-PAM. Other possible algorithms would be HOPACH-KMEANS

and HOPACH-SOM.

2.1 Partitioning Around Medoids (PAM).

Our HOPACH-PAM algorithm is based on the output of the clustering procedure PAM

(Kaufman & Rousseeuw, 1990, chap. 2), which takes as input a dissimilarity matrix D

based on any distance metric. Let Dij denote the dissimilarity between genes i and j

5

where each gene is represented by an n dimensional vector. Possible dissimilarities are:

Dij = 1− ρij correlation

Dij = 1− | ρij | absolute correlation

Dij = 1− ρ0
ij cosine-angle

Dij = 1− | ρ0
ij | absolute-cosine-angle

Dij =
n∑

l=1

(Yil − Yjl)
2 euclidean,

where

ρ0
ij ≡

∑n
l=1 YilYjl√∑n

l=1 Y 2
il

√∑n
l=1 Y 2

jl

.

It is of interest to note that the 1− ρ0
ij equals 0.5 times the squared euclidean distance

of the two vectors standardized to have euclidean norm 1. This distance was used in

Eisen et al. (1998), and it has been our experience that it is a sensible choice in many

applications.

Let K be the number of clusters (i.e.: the number of causal mechanisms we believe

to be operating). Given K, PAM selects K potential medoids, calculates for each

gene its distance to the closest of these potential medoids and minimizes over the

vector of K potential medoids the sum of these distances over all genes. The solution

of this minimization problem is a vector of K medoids. Each medoid identifies a

cluster, defined as the genes which are closer to this medoid than to any of the other

K − 1 medoids. One can consider K as given or it can be data-adaptively selected,

for example, by maximizing the average silhouette as recommended by Kaufman &

Rousseeuw. The silhouette for a gene is calculated as follows. For each gene j, calculate

aj which is the average dissimilarity of gene j with each other member of gene j’s

cluster. For each gene j and each cluster k that is not gene j’s cluster, calculate bjk,

which is defined as the average dissimilarity of gene j with the members of cluster k.

Let bj ≡ mink bjk, where the minimum is taken over all clusters k that are not gene j’s

cluster. Finally, the silhouette of gene j is defined by the formula:

silhouettej =
bj − aj

max(aj, bj)
.

6

Note that the largest this can be is 1, which occurs only if there is no dissimilarity

within gene j’s cluster (i.e.: aj = 0). The other extreme is -1. Heuristically, the

silhouette measures how well matched an object is to the other objects in its own

cluster versus how well matched it would be if it were moved to another cluster.

The (minimal) output of PAM consists of two vectors: (1) a p-dimensional vector c,

where cj = k indicates that gene j belongs to cluster k, and (2) a K-dimensional vector

m, where mk = j indicates that the medoid of cluster k is gene j, where j ∈ {1, . . . , p}

and k ∈ {1, . . . , K}. An attractive property of PAM is that the clusters are identified

by the medoids, which are genes themselves, and it has been our experience that the

medoids are stable representations of the clusters.

2.2 HOPACH-PAM.

Firstly, we describe an interactive algorithmic explanation of the proposed HOPACH-

PAM algorithm for building a hierarchical tree of clusters at any level of detail (with

the extreme being an ordered list of genes), as we have implemented it in an Splus

program. Subsequently, we describe an automated version which finds the main clusters

by optimizing average silhouette over the possible partitioning and collapsing steps. Let

the distance metric d and integers “klow”, “khigh” be given. We will use the notation

PAM(data, k, d) for PAM applied to the data “data” with k being the number of

clusters and d the distance.

Subsetting/Pre-screening A typical first step is to select a subset of all p genes.

For example, this can be based on cut-off values for mean expression (e.g.: select

all genes which are on average 2-fold differentially expressed).

Initial level of tree Let subdata be the r × n data-frame of the r remaining genes.

We apply now PAM(subdata, k1, d) with a user-supplied number of clusters k1

(e.g. selected by maximizing average silhouette) to the subdata and we decide on

an ordering of the k1-clusters. If k1 = 2, then the ordering does not matter. It is

not necessary to use PAM here to decide on an initial split representing the main

clusters. For example, we also allow to set cluster1 equal to all genes which are

7

suppressed on average and cluster2 equal to all genes which are over-expressed on

average, or one can use the the automated HOPACH function rundownconverge()

proposed below to determine the initial level of clusters. If k1 > 2, then we

have two proposals for ordering the k1 clusters. Firstly, one needs to define a

distance between any pair of clusters. Here we define the distance between a

pair of clusters as the distance between the corresponding medoids, but other

distances are options. The first method consists of building a hierarchical tree

from the medoids with PAM as follows. Let “medoids.data” be the k1 by n matrix

containing the medoids. Initially, we apply PAM(medoids.data, 2, d) and label

the two clusters with clust1 and clust2. For each of the two clusters we can now

define the neighboring cluster “clust-next”. Subsequently, at each node we apply

PAM again with say k = 2 and we now order the k new clusters by their distance

with respect to medoid of “clust-next” going from maximal distance to smallest

distance if “clust-next” is to the right and from smallest distance to maximal

distance if “clust-next” is to the left. In this way each level of the tree has an

ordered list or clusters. By running down the tree until each cluster is of size one,

we obtain a unique ordering of the k1 medoids.

We also implemented a function correlationordering() which maps an initial or-

dering of the k1 medoids and corresponding k1 × k1 distance matrix into an

ordered list of medoids which maximizes the empirical correlation between dis-

tance j − i in the list and the corresponding distance d(i, j) across all pairs (i, j)

with i < j. The second method for ordering the clusters is to apply this function

to any initial ordering of medoids or the one provided by the Hierarchical-PAM

procedure described above. In our data examples this function did not change

the ordering obtained by the method described above.

One now computes a list “hclust1” containing as elements subdata, an r-dimensional

vector “labels” (assigning a cluster label to each gene), the total number of clus-

ters “k”, the row-numbers of the k medoids of the clusters “medoids”, and the

“cluster-sizes”. One sets “hclust.previous” equal to “hclust1”.

8

Step I: Next level of tree For each cluster “clust” in the previous level “hclust.previous”

of the tree, one carries out the following procedure. Let “clust-next” be the next

cluster in the previous level of the tree and if the current cluster is already the

last cluster in the previous level, then we set “clust-next” equal to the previous

cluster. Firstly, one applies PAM(clust, k, d) with k running between “klow”

and “khigh” and one selects the k = k∗ maximizing the average silhouette. Sub-

sequently, one orders the k∗-clusters by their distance with respect to the medoid

of “clust-next” going from maximal distance to smallest distance if “clust-next”

is to the right and from smallest distance to maximal distance if “clust-next” is

to the left. One can allow k∗ = 1, i.e. stop splitting a cluster, by using some cri-

teria. In particular, we allow not splitting a cluster if the “cluster-size” is below

a cut-off value or if it results in a silhouette below a cut-off value. Again, the

ordering of the clusters can be based on other pairwise distances between clusters

than distances between medoids.

One now computes a list hclust.next containing as elements 1) “subdata”, 2)

an r-dimensional vector “labels” which extends the previous labels with another

digit being the new cluster label, 3) the total number of clusters “k” at this level

of the tree, 4) the row numbers “medoids” in “subdata” of the corresponding

medoids and 5) the “cluster-sizes”. Thus, a typical label of a gene at level 4 in

the tree looks like “01.03.02.04” describing the path it walked through the tree. If

a cluster is not split (i.e. k∗ = 1), then the label of each of the genes in that cluster

is extended with the digit “00” so such a label will look like “01.03.02.04.00”.

Step II: Visualization of an ordered distance matrix. We can visualize the or-

dered distance matrix “distance”(l) corresponding with the l-th level of the tree.

In this case, groups (clusters) of genes have the same label and will thus need

to be ordered or left as in the original data matrix (i.e. randomly). We choose

to order the genes within each of the clusters of this level l of the tree by either

(i) their distance with respect to the medoid of that cluster so that the badly

clustered genes end up at the edge of these clusters or (ii) their distance with

9

respect to the medoid of the neighboring cluster.

Step III: Possibly collapse similar clusters Due to the nature of hierarchical trees,

it can happen that two or more clusters not next to each other are very similar.

Visual inspection of the distance matrix “distance”(l) will often make it possible

to identify medoids of different clusters, say i, j with i < j, which are very similar

so that one might want to collapse the two corresponding clusters into one cluster

i, with a medoid being (for example) the nearest neighbor of the average of the

two corresponding medoids. Rather than identifying clusters to collapse based

on distance between their medoids, one could also use other distances between

clusters. The labels of one cluster are changed to those of the other cluster, so

that the tree structure is preserved. The choice of labels could be based on sim-

ilarity of the old medoids to the new neighboring cluster or some other criteria.

After collapsing, one can visualize the distance matrix of the new ordered set of

clusters as in Step II and decide if more collapsing steps are needed.

In addition to visual inspection, we also allow the decision to collapse to be

based on comparing the average silhouette before and after the collapsing step.

In particular, we implement a function which collapses until there is no pair of

clusters for which a collapse improves average silhouette.

Iterate One can iterate this process by setting “hclust.previous” equal to “hclust.next”

and carry out Step I “Next level of tree”, Step II “Visualization”, and Step III

“Collapsing” again.

2.3 An automated version selecting the main clusters.

We also implement a completely automated HOPACH-PAM which has as its only

goal to find the main clusters. This is done by 1) creating an initial level of the tree

as above, 2) collapsing pairs of clusters until there is no pair of clusters for which a

collapse improves average silhouette and we refer to this as the initial level of the tree,

3) creating a next level of the tree as above, 4) collapsing pairs of clusters in this

next level of the tree until there is no pair of clusters for which a collapse improves

10

average silhouette, and then 5) accepting this collapsed next level of the tree if its

average silhouette improves on the average silhouette of the previous (i.e. initial) level

of the tree and accepting the previous level as final clustering output otherwise. If the

collapsed next level is accepted, then one sets the current level equal to this collapsed

next level and one repeats steps 2, 3 and 4 until one stops.

2.4 Final ordered list of genes and selecting the main clusters.

If we iterate the hierarchical PAM tree and run it down completely until every gene

in “subdata” has a unique label, then we can order the genes from smallest to largest

label which corresponds with the ordering of the clusters in the final level of the tree.

It has been our experience that the collapsing step is most important at the initial

levels of the tree, so that one can run down the tree automatically without further

visual inspections after several initial iterations. Let “subdata.ord” be the r × n-data

matrix obtained by ordering “subdata”. As in Eisen et al. (1998), we can visualize

this data matrix “subdata.ord” by mapping the gene expressions into a color scheme.

In addition, we can now compute the corresponding ordered r × r-distance matrix

“distance.final”.

The ordered list of genes has two important applications. The list itself is useful

since genes close in the list will be close in distance to each other. Given any gene

of biological interest, we can find similarly expressed genes nearby in the list. Visu-

alization of the distance matrix corresponding with the final ordering of all genes is

also of interest, since it shows clusters at all levels of detail. Inspection of the distance

matrices “distance”(l) at various levels l will often make it possible to select a level l∗

of the tree which already closely resembles the important clustering structures in the

final distance matrix “distance.final”.

One form of output is now the ordered list of genes as in “subdata.ord” with an

additional column giving their main cluster label. Additional output of interest is

obtained by ordering the genes within each of the clusters of this level l∗ of the tree

by their distance with respect to the medoids so that the badly clustered genes end up

at the edge of these clusters. It can also be of interest to add to each gene the vector

11

of relative distances (i.e. the sum of these add up to one) with respect to each of the

medoids at level l∗ of the tree so that the user can directly see how well a gene belongs

to one or more of the main clusters. The latter is known as “fuzzy clustering”.

2.5 The bootstrap.

Let µn, Σn be the p × 1 empirical mean and p × p covariance matrix. Since (for the

previously mentioned dissimilarities) the dissimilarity matrix is a function of µn, Σn, we

can view each particular HOPACH-PAM algorithm, as defined by the various choices

such as the level l∗ of the tree, as a particular functional (µ, Σ) → S(µ, Σ) applied to

(µn, Σn). Therefore we can consider the HOPACH-PAM clustering result S(µn, Σn) as

an estimator of a true clustering parameter S(µ, Σ). In order to establish the variability

and reproducibility of the clustering output S(µn, Σn) (e.g. the clusters in level l∗ of

the tree), we propose to run the parametric or nonparametric bootstrap. This involves

repeatedly sampling n observations Y #
1 , . . . , Y #

n from a multivariate normal distribution

N(µn, Σn) (van der Laan & Bryan (2001)) or from the empirical distribution which puts

mass 1/n on each of the original observations Y1, . . . , Yn. One estimates the distribution

(and, in particular, the variance) of the clustering output S(µn, Σn), with the empirical

distribution of S(µ#
n , Σ#

n). One useful application of the bootstrap is to estimate the

variability of the clusters at different levels of the tree and choose as main clusters the

lowest level which is reproducible at a certain level of stringency. We will now describe

some approaches to the bootstrap for estimating components of the distribution of

S(µn, Σn).

Bootstrap for a deterministic algorithm with fixed number of clusters at

each node. Useful summary measures of the bootstrap can be obtained by treating

S(µn, Σn) as a deterministic function of (µn, Σn) for which the number of clusters at

each each node is fixed, even when the number of clusters were in fact determined

by maximizing average silhouette at each partitioning step. This guarantees that the

number of clusters of S(µ#
n , Σ#

n) is fixed. In this case, the variability in number of

clusters at each node is not addressed by the bootstrap. If the actual clustering was

based on an interactive process with the user, then the steps defining S(µn, Σn) need to

12

be treated as fixed in the bootstrap. This approach views the data adaptive selection of

the number of clusters or the interactive process used as a way to decide on a particular

clustering parameter S(µ, Σ) and we use the bootstrap to estimate the variability of

this particular parameter (but not variability in choosing the parameter). For example,

the user might have split the original data into 2 clusters in the first level of the tree

and then split these into 2 and 4 clusters, respectively, before collapsing the closest

two clusters in this second level of the tree. Even if these splits and collapses were

made data-adaptively, they are treated as fixed and applied exactly to each bootstrap

sample. In this case, the bootstrapped S(µ#
n , Σ#

n) has the same number of clusters as

S(µn, Σn).

In order to infer a correspondence between each of the bootstrap clusters with one

of the original clusters in the original data, we propose to align the clusters in each

split of the tree by examining the matrix of pair-wise distances between all bootstrap

and original clusters in that split and consecutively matching the closest pairs. The

distance between clusters could be based on the distance between medoids or a measure

of the overlap in membership, such as (A∩B)/(A∪B) or P (A|B)/2+P (B|A)/2. Since

there is now a correspondence between each cluster of S(µn, Σn) with a cluster in the

bootstrapped S(µ#
n , Σ#

n), for each gene one can keep track of the proportion of times

among the bootstrap samples that gene fell into each of the clusters S(µn, Σn). van der

Laan & Bryan propose a cluster-probability plot to summarize these statistics which

provides a visual way to inspect the cluster reproducibility, where we order the clusters

as in S(µn, Σn). In addition, van der Laan & Bryan propose a sensitivity and positive

predictive value measure for each cluster measuring proportions of correct genes and

proportions of false positives.

Bootstrap for fixed medoids. A particular clustering output is to apply PAM with

fixed medoids being the medoids of the clusters in S(µn, Σn). The clusters are now

defined by the medoids and, in our data examples, they closely resembled the clusters

in S(µn, Σn). In order to establish the cluster variability when fixing the medoids,

one fixes the medoids in the bootstrap. Note that this bootstrap avoids estimating

the variability in the selection of the medoids. Nonetheless, it is a sensible approach

13

to understanding the variability of the specific clusters obtained in the data analysis.

Since the medoids are the same in each bootstrap sample, as in van der Laan & Bryan

(2001), for each gene one can keep track of the proportion of times among the bootstrap

samples that gene fell into each of the clusters and summarized these statistics in a

cluster-probability plot. These bootstrap cluster-specific probabilities can also be used

to order the genes within the clusters so that the badly clustered genes can be removed

or end up at the edge of the clusters. It is particularly interesting to carry out this

fixed medoids bootstrap to estimate the variability of the clustering output Sl∗(µn, Σn)

at a level l∗ of the tree for l∗ == 1, 2, 3, In this manner one can use the bootstrap

to establish the levels of detail which cannot be distinguished anymore from the noise

level.

Bootstrap for the automated HOPACH-PAM. One can also use the bootstrap to

establish the variability and reproducibility of the main clustering results found by the

automated HOPACH-PAM. Since the number of clusters is now also variable it does

not necessarily make sense to align the bootstrap clusters with the original clusters and

define cluster-specific variability measures, but one can still estimate the variability of

the number of clusters and measures such as average silhouette. It helps to at least

enforce an ordering of the bootstrapped clusters corresponding as close as possible

to the ordering in S(µn, Σn) by comparing their medoids. In that case, visualizing

a number of bootstrapped S(µ#
n , Σ#

n) provides a very good sense of the variability of

S(µn, Σn). One can also treat the tree produced by the automated HOPACH-PAM as

fixed and perform the bootstrap on this deterministic proceedure as described above. In

this case, the variability in number of clusters is no longer addressed by the bootstrap.

2.6 Clustering samples.

Researchers are not only interested in clustering genes, but also in clustering or classify

samples based on similarity of gene expression patterns. Thus, while gene clustering

results are of biological interest themselves, they serve an additional purpose if we can

use them to aid in the task of clustering samples. We have found that different subsets

of genes often cluster samples in different ways. Consider, for example, that different

14

gene clusters represent different biological mechanisms or states, so that there may be

clusters of genes which are very good for distinguishing different types of samples. In

addition to an overall clustering label, sub-groups of samples could be more accurately

characterized by their expression pattern for each of these gene clusters. The simulation

and data analysis illustrate, in particular, that a sensible strategy for clustering the

samples is to first cluster genes and then cluster samples for each cluster of genes

separately. These results can again be visualized in a reordered data matrix, where the

ordering of samples is produced by applying HOPACH-PAM to the transposed data

matrix. This approach can reveal underlying structure in the data which may not be

apparent when the samples are clustered using all genes.

For a more formal treatment of this subject we refer the reader to Pollard & van der

Laan (2001), where we extend the statistical framework of van der Laan & Bryan (2001)

to include clustering of both genes and samples by defining a simultaneous clustering

parameter which is a composition of a mapping for clustering genes and a mapping for

clustering samples.

3 A simulated example.

In order to investigate the clustering performance of HOPACH-PAM, we have con-

ducted simulations comparing the automated algorithm to the existing clustering rou-

tines PAM and KMEANS. We chose to use the Euclidean distance so that KMEANS

(which allows only this distance metric in its usual implementation) could be compared

to the other algorithms in the context where it performs best. We fixed the number of

clusters to be the correct number in PAM and KMEANS.

3.1 Data generation

Consider a sample of n = 60 relative gene expression profiles of dimension p = 500,

corresponding to cancer patients. Suppose that in truth there are three groups of 20

patients corresponding with three distinct types of cancer, but this is unknown to the

data analyst. To generate such data, we sampled three groups of 20 subjects from three

15

multivariate normal distributions with diagonal covariance matrices, which differed

only in their mean vector. All genes had common standard deviation log(1.6), which

corresponds with a 0.75-quantile of all standard deviations in an actual data set. For the

first subpopulation, the first 25 genes had µj = log(3), genes 25-50 had µj = − log(3),

and the other 350 genes had mean zero. Then for the second subpopulation, genes

51-75 had µj = log(3), genes 76-100 had µj = − log(3) and the other 350 genes had

mean zero. For the third subpopulation, genes 101-125 had µj = log(3), genes 126-150

had µj = − log(3) and the other 350 genes had mean zero. In other words, the cause

of each of the three types of cancer is related to 50 genes of which 25 are suppressed

(tumor-suppressor genes) and 25 are over-expressed (the onco-genes). All logs in the

simulation are base 10.

We generated B = 100 such data sets. Note that this data generating distribution

is such that a clustering routine is needed to identify the underlying structure. For

example, when we simply ordered the genes by mean expression and made a picture

of the corresponding Euclidean distance matrix, we saw no obvious pattern within the

over-expressed genes and suppressed genes. We applied PAM, KMEANS and auto-

mated HOPACH-PAM with “klow”=2, “khigh”=9 to each of the B = 100 data sets.

We used the Euclidean distance metric in all three algorithms and K = 7 clusters in

PAM and KMEANS.

3.2 Identifying the clustering parameter

Given this data generating distribution, each of the algorithms defines a clustering

parameter. These parameters were identified by running the algorithms on the true

Euclidean distance matrix, which is a function of the mean and covariance of the data

generating distribution. In this case, all three algorithms have the same clustering

parameter which is six clusters of 25 genes and one large cluster of 350 non-differentially

expressed genes. The true cluster labels correspond with a true average silhouette of

0.27. Since the algorithms are estimating the same clustering parameter, the distance of

average silhouette from this shared true average silhouette can be used as a measure of

clustering performance. For example, if average silhouette for an algorithm is far from

16

the true average silhouette then the cluster labels can not be correct. The converse

is not necessarily true, so that when average silhouette is close to the true average

silhouette, it is useful to also visualize the clustering result in order determine how

close it is to the true seven clusters.

3.3 Average silhouette.

Table 1 shows the mean and standard error of average silhouette across the B = 100

data sets for each algorithm. According to this criteria, HOPACH-PAM performed

better than the existing algorithms since it was less variable and produced higher av-

erage silhouettes. Both KMEANS and PAM were quite variable, sometimes producing

average silhouettes as high as HOPACH-PAM, but also many average silhouettes be-

low 0.1. On average, KMEANS performed better than PAM in terms of maximizing

average silhouette, but it was almost twice as variable.

Algorithm Mean (SE) Average Silhouette

KMEANS 0.16 (0.080)

PAM 0.094 (0.045)

HOPACH-PAM 0.24 (0.0059)

TRUE VALUE 0.27

Table 1: Average silhouettes from Euclidean distance simulation with K = 7 clusters

in PAM and KMEANS. The mean and standard error across the B = 100 simulated

data sets is reported for each clustering algorithm.

3.4 Visualization.

In order to investigate how well each algorithm is able to identify the seven clusters and

the degree to which average silhouette measures this success, we plotted the reordered

distance matrix for each data set according to the cluster labels from each algorithm

(so that genes clustered together would appear consecutively, but the clusters were

not ordered). The performance of the algorithms varied greatly, although all of the

17

algorithms identified the clusters perfectly at least once. KMEANS often split one or

more of the six small clusters or combined (parts of) two of these together, sometimes

with mean zero genes also. This result may be a consequence of the lack of robustness

of cluster means. These erroneous clustering results for KMEANS had relatively high

average silhouettes (> 0.15) because the errors only affect the average silhouettes of a

small group of genes. PAM did not tend to split or combine the six small clusters, but

often split the mean zero genes into two clusters, combining about half of them with

one of the six small clusters. This makes sense since PAM minimizes the sum of the

distances to the closest medoid and splitting the mean zero genes reduces the distance

to the closest medoid for many genes. The erroneous clustering results of PAM always

resulted in an average silhouette less than 0.10, since splitting of the ≈ 350 mean zero

genes creates two clusters whose neighbors are very close, making the silhouettes of the

genes in these two clusters very small. HOPACH-PAM selects the number of clusters

in addition to identifying the clusters. The automated algorithm usually chose k = 7

(see below), and when it did so, the clusters were the correct ones. These results

had high average silhouettes. Occasionally HOPACH-PAM chose k = 6 or 9 clusters.

These results corresponded with combining a small cluster with the mean zero genes

and dividing a small cluster into many clusters, for k = 6 and 9 respectively.

3.5 Choosing the number of clusters.

The number of clusters k can be given or it can be data-adaptively selected, for exam-

ple, by maximizing the average silhouette as recommended by Kaufman & Rousseeuw.

For each data set (with 500 genes and 60 samples), we applied PAM and KMEANS

with Euclidean distance and k = 2, . . . , 10 clusters. We observed that KMEANS pro-

duced clustering results with maximum average silhouette frequently at k = 6 and

PAM produced clustering results with average silhouettes increasing in k up to k = 8

or 9, so that choosing the number of clusters by maximizing average silhouette, as

suggested by Kaufman & Rousseeuw, would usually not result in the correct number

of clusters (k = 7) with KMEANS or PAM. The automated HOPACH-PAM simulta-

neously chooses the number of clusters (based on average silhouette) and performs the

18

clustering. In contrast to KMEANS and PAM, HOPACH-PAM frequently identified

the correct number of clusters, choosing k = 7 in 83%, k = 6 in 14%, and k = 9 in 3%

of the simulated data sets.

3.6 Variations in the simulation.

Number of genes. We repeated the simulations with many more genes, but cluster

sizes of the same proportions. The trends observed were the same as those reported

for 500 genes.

Number of samples. Since the clustering algorithms estimate the same clustering

parameter, their differing performance was the consequence of their having different

efficiencies for a fixed, relatively small number of samples (n = 60). In order to inves-

tigate the asymptotic consistency, we repeated the simulation for n = 1200 samples.

We generated B = 100 data sets, and fixed k = 7 in KMEANS and PAM. We observed

that KMEANS was very sensitive to its starting values, only some times finding the

true clusters. In contrast, PAM always found the true clusters. Next, we looked at the

KMEANS and PAM average silhouette for k = 2, . . . , 10. PAM always had a maxi-

mum average silhouette at k = 7, but KMEANS had a maximum average silhouette at

either k = 6 or 7. Thus, PAM was better able to identify the correct number of clusters

and to correctly assign genes to these clusters. HOPACH-PAM always identified the

true seven clusters. Hence, we see that for n large enough the outputs of PAM and

HOPACH-PAM consistently estimate the same clustering parameter. For a fixed size

data set with n << p, however, HOPACH-PAM is more efficient at estimating this

parameter.

Binary splits. We also ran the simulations with the automated HOPACH-PAM

allowing only binary splits at each node. In this case, the algorithm only identified the

true seven clusters about half of the time, frequently finding six or fewer clusters. This

result illustrates the importance of allowing a data-adaptive number of clusters in each

split of a hierarchical tree.

Using visualization. Rather than applying the automated HOPACH-PAM, it is also

possible to cluster the simulated data sets manually by visualizing the ordered distance

19

matrix at each level of the tree. When this method is used, it is clear which clusters

need to be collapsed since the ordered distance matrix contains off-diagonal blocks of

solid color corresponding with the correlated genes which have been put in different

clusters in the first level of the tree. By collapsing such pairs of clusters, the true seven

clusters are easily identified in the second level of the tree.

Distance metric. We repeated the simulations with the cosine-angle distance metric,

which is commonly employed in gene expression clustering analysis. With this distance

metric, the mean zero genes are no longer close to each other so that they do not form a

cluster. They each belong weakly to one of the six smaller clusters and can be referred

to as “noisy” genes. We often find genes like these in real data analyses and have

noted that existing clustering algorithms have trouble identifying the true underlying

clustering pattern in the presence of much noise. We applied each clustering algorithm

to B = 100 samples with K = 6 clusters in PAM and KMEANS. For the PAM and

HOPACH-PAM algorithms we used the cosine-angle distance. The results of these

cosine-angle distance simulations were similar to those reported above for Euclidean

distance except that, as expected, KMEANS performed very poorly since it is not able

to cluster with respect to cosine-angle distance. PAM often finds the correct clustering

pattern, and HOPACH-PAM nearly always does so. It was also observed that the PAM

family of algorithms has the property that the medoids are a good representation of

the true clustering patterns even in the presence of noise.

4 Data analysis.

We extracted a publicly available data set from the data base accompanying Ross et al.

(2000). The authors performed microarray experiments on 60 human cancer cell lines

(the NCI60) derived from tumors from a variety of tissues and organs by researchers

from the National Cancer Institute’s Developmental Therapeutics Program. The data

set includes gene expression measurements for 9,996 cDNAs representing approximately

8,000 unique transcripts. Each tumor sample was cohybridized with a reference sample

consisting of an equal mixture of twelve of the cell lines chosen to maximize diversity.

20

We used the normalized tumor:reference ratios, as in Ross et al. (2000). These were

transformed to a log base 10 scale and truncated above and below, so that any ratio

representing greater than 20-fold over- or under-expression was set to log10(20). We

applied HOPACH-PAM, always using the cosinus-angle distance and ordering relative

to the neighboring cluster medoid.

4.1 Gene clustering.

In order to create a real example that might represent a similar problem to that ex-

plored in the simulation, we selected three very different types of cancer from those

included in the NCI60: leukemia, colon and melanoma. We created a data set with

all samples from these three types of cancer, which included six leukemia, seven colon,

and eight melanoma cell lines. Next, we applied a subset rule in order to select all

genes differentially expressed in a significant proportion of samples. We retained those

genes where at least 25% of cell lines had a ratio corresponding with greater than 2-fold

over- or under-expression. The 25% cut-off was chosen so that if a gene was differen-

tially expressed in one type of cancer and not the other two, it would still be included.

HOPACH-PAM was used to cluster the resulting data set of 3445 genes.

In the first level of the hierarchical tree, average silhouette suggested strongly a

split into k = 2 clusters. These clusters corresponded closely (but not exactly) with

a split into the genes with negative and positive mean log ratios across the cell lines

(i.e.: genes over- and under-expressed on average).

In the second level of the tree, each of the two clusters from level 1 was split into

two clusters. When these were reordered, some structure began to appear in plots

of the data and distance matrices, but the clusters still seemed heterogeneous and no

collapsing appeared to be necessary. So, the third level of the tree was examined. In

this level, two of the clusters from the previous level were split into four clusters each

and two into two clusters each. The resulting twelve clusters were reordered and the

distance matrix was examined. Correlation between several clusters which had been

united in a large cluster in the previous level indicated that some collapsing might be

necessary. The clusters requiring collapsing were over-expressed genes, which we have

21

found tend to have more homogeneous expression profiles. After two collapsing steps,

the reordered distance matrix had the desired block diagonal structure. The resulting

ten medoids and corresponding clusters of genes were identified as the main clustering

result. The tree was run down completely from this level. The final reordered distance

matrix shows the clustering structure.

As discussed above, there are several ways to use the bootstrap to assess the vari-

ability of HOPACH-PAM clustering results. As an illustration, we applied PAM with

k = 10, fixing the ten medoids identified in level three after two collapsing steps in

each bootstrap sample. As a final step, we could perform post-screening and remove

genes with lowest probability of belonging to their cluster or greatest distance from

their cluster medoid.

Gene clustering was also performed with the automated HOPACH-PAM. As we

have seen in other data sets, if allowed to do so, the automated HOPACH-PAM will

converge to the first level of the tree with two clusters containing essentially the over-

and under-expressed genes. If we want a more detailed clustering result, we can require

that collapsing not occur until a lower level of the tree. In this case, the automated

HOPACH-PAM clustering result is similar to the one identified manually. There were

8 clusters identified in the third level of the tree, and collapsing was mostly applied to

the over-expressed genes.

4.2 Cell line clustering.

HOPACH-PAM can be applied to a transposed data matrix to obtain a final ordering

of the samples. This ordering can be used to make an improved version of the reordered

data matrix, where both genes and samples are ordered. The order obtained in this

way for the cell lines in the leukemia, colon and melanoma data set was perfect in

the sense that the three types of cancer were totally separated from each other (See

Table 2, column 1). This result is explored further in the comparison section.

It is also of interest to cluster the cell lines using only the genes from each of the

10 gene clusters. For most gene clusters, the cell line clustering labels corresponded

extremely well with distinctions between the different types of cancer. In many cases,

22

there were two clusters with one type of cancer clustering by itself (e.g.: gene cluster

4). In several cases, there were three clusters containing each of the types of cancer

(e.g.: gene cluster 6). We could use these gene cluster specific cell line cluster labels

to more accurately characterize the three types of cancer. For example, a gene cluster

where two of the types cluster together might represent a biological pathway which is

activated (or not activated) in two of these cancers, but not the other. A few gene

clusters produced a cluster result which did not correspond with the distinction of the

three types of cancer (e.g.: gene cluster 8). These gene clusters are also of interest as

they may include genes which differentiate cell lines on some other biological basis such

as tumor severity. In experiments with patient samples, this sort of clustering result

could be correlated with clinical outcomes such as survival or treatment history.

4.3 Comparison with other hierarchical clustering methods.

We compared the final ordering from HOPACH-PAM to orderings produced by other

hierarchical clustering routines and our proposed correlationordering() function, which

maximizes the empirical correlation between distance j − i in the list and the cor-

responding distance d(i, j) across all pairs of cell lines (i, j) with i < j. We used

HOPACH-PAM without collapsing because we were interested in a final ordering of

the cell lines rather than the main cluster results. Our knowledge of the cell line la-

bels was not used to supervise the clustering of cell lines, but rather to check (after

clustering) if the various orderings were able to separate different types of cancer. We

considered:

1. Correlationordering() function

2. HOPACH-PAM (without collapsing) with data adaptive numbers of clusters be-

tween 2 and 6 at each split (based on silhouettes)

3. HOPACH-PAM (without collapsing) with binary splits only

4. DIANA algorithm for divisive hierarchical clustering as implemented in Splus

Kaufman & Rousseeuw (1990)

23

5. AGNES algorithm for average linkage agglomerative clustering as implemented

in Splus Kaufman & Rousseeuw (1990)

6. AGNES algorithm for single linkage agglomerative clustering as implemented in

Splus Kaufman & Rousseeuw (1990)

7. Average linkage agglomerative clustering as implemented in the publicly available

packages Cluster and TreeView Eisen et al. (1998)

8. Single linkage agglomerative clustering as implemented in the publicly available

packages Cluster and TreeView Eisen et al. (1998)

The correlationordering() function is not a clustering routine, but simply a proposed

method for ordering elements using any distance metric. The other methods are all

hierarchical clustering routines that produce an ordering of the clustered elements.

HOPACH-PAM without collapsing and DIANA are divisive (or partitioning) methods,

which start with the entire data set and divide it into clusters. The other algorithms are

agglomerative methods, which start with every element in its own cluster and combine

the closest clusters. In average linkage methods, the distance between two clusters is

the average of the dissimilarities between the points in one cluster and the points in

the other cluster. In single linkage methods, the dissimilarity between two clusters is

the smallest dissimilarity between a point in the first cluster and a point in the second

cluster (nearest neighbor method). We used the cosinus-angle distance in all of the

algorithms. The data sets were selected a priori, not based on the performance of the

algorithms. We repeated the analysis with randomly permuted data matrices in order

to account for any effect of the original ordering of the cell lines on the final orderings

produced.

These algorithms were applied to the leukemia, colon and melanoma data set from

the data analysis above (See Table 2). The correlationordering() algorithm separated

the three types of cancer and placed colon between leukemia and melanoma. The

two versions of HOPACH-PAM produced the same ordering as each other, which also

placed the three types of cancer totally separately with colon lying between leukemia

and melanoma regardless of the original ordering of the data set. The other algorithms,

24

in contrast, placed the groups of different types of cancer in different orders depending

on the original ordering of the data set. The DIANA algorithm placed one melanoma

cell line with the leukemias. The AGNES algorithms placed this same melanoma cell

line with the colon cell lines. The Cluster algorithm (single and average linkage) kept

the colon cell lines together and distinct from melanoma, but spread the leukemia and

melanoma cell lines throughout the ordering.

Correlationordering() HOPACH-PAM HOPACH-PAM DIANA AGNES AGNES Cluster Cluster

k ∈ [2, 6] k = 2 average single average single

MEL10008 MEL10001 MEL10001 MEL10001 MEL10001 MEL10001 MEL10001 MEL10001

MEL10005 MEL10020 MEL10005 LEUK7010 COL4003 COL4003 LEUK7010 LEUK7010

MEL10002 MEL10014 MEL10008 LEUK7003 COL4010 COL4010 LEUK7019 MEL10002

MEL10014 MEL10021 MEL10007 LEUK7006 COL4015 COL4015 LEUK7006 MEL10021

MEL10020 MEL10007 MEL10021 LEUK7008 COL4002 COL4002 LEUK7003 MEL10007

MEL10021 MEL10008 MEL10020 LEUK7005 COL4017 COL4017 MEL10005 MEL10020

MEL10007 MEL10002 MEL10014 LEUK7019 COL4009 COL4009 MEL10002 MEL10008

MEL10001 MEL10005 MEL10002 COL4003 COL4001 COL4001 MEL10007 MEL10014

COL4003 COL4009 COL4001 COL4010 LEUK7019 LEUK7019 MEL10021 MEL10005

COL4002 COL4015 COL4003 COL4015 LEUK7010 LEUK7003 MEL10014 LEUK7006

COL4015 COL4010 COL4017 COL4002 LEUK7003 LEUK7006 MEL10020 LEUK7003

COL4017 COL4017 COL4010 COL4017 LEUK7006 LEUK7008 MEL10008 LEUK7008

COL4009 COL4002 COL4002 COL4009 LEUK7008 LEUK7005 COL4001 LEUK7005

COL4010 COL4003 COL4015 COL4001 LEUK7005 MEL10005 COL4003 COL4001

COL4001 COL4001 COL4009 MEL10005 MEL10005 MEL10008 COL4009 COL4003

LEUK7019 LEUK7006 LEUK7019 MEL10008 MEL10008 MEL10014 COL4017 COL4009

LEUK7006 LEUK7003 LEUK7010 MEL10021 MEL10014 MEL10020 COL4002 COL4017

LEUK7003 LEUK7008 LEUK7003 MEL10020 MEL10020 MEL10021 COL4015 COL4002

LEUK7008 LEUK7005 LEUK7006 MEL10007 MEL10021 MEL10002 COL4010 COL4015

LEUK7005 LEUK7019 LEUK7008 MEL10014 MEL10007 MEL10007 LEUK7008 COL4010

LEUK7010 LEUK7010 LEUK7005 MEL10002 MEL10002 LEUK7010 LEUK7005 LEUK7019

Table 2: Orderings of the cell lines in the NCI60 leukemia, colon, and melanoma data

set produced by different hierarchical clustering methods.

This analysis suggests that HOPACH-PAM can improve upon the orderings pro-

duced by currently employed hierarchical clustering algorithms. Although the binary

split and data-adaptive number of splits versions of HOPACH-PAM performed simi-

larly here, we have seen evidence in similar data analyses that it is beneficial to allow

greater than two clusters at each node of a HOPACH-PAM tree. The correlationorder-

ing() funtion also produced an ordering which separated the cell lines by cancer type.

In fact, in data sets where clustering is not so clear, we have seen that this function

performs better at creating an ordered list than any of the hierarchical clustering rou-

tines. Since correlationordering() allows any distance metric, it is a flexible tool for

25

creating an ordered list when the number of elements to order is not too large, such

as the medoids of gene clustering (but not all genes) or the samples themselves, as

illustrated here with cell lines.

5 Conclusions.

The application of the HOPACH methodology to a simulated and a publicly available

data set illustrated some of its strengths. One advantage of this algorithm over other

hierarchical methods is that the final ordering is unique. Also, partitioning algorithms

allow for splits into two or more clusters so that the nodes of the hierarchical tree need

not be binary. As we saw in the data analysis, lifting the binary split restriction can

improve the final ordering produced, even when the algorithm is otherwise identical.

We specifically like employing the PAM algorithm in HOPACH-PAM for two reasons.

First, we have found that the medoids of clusters, which are themselves elements in the

cluster, are much more robust profiles of a cluster than the cluster means. Secondly,

the clustering in HOPACH-PAM can be based on any choice of distance metric, such

as absolute correlation, which we have found is of interest to biologists since it clusters

together anti-correlated over- and under-expressed genes that may be part of the same

biochemical pathway. It is also intuitively appealing that this same distance metric is

then used for the partitioning, the ordering of clusters, and the ordering of the elements

within clusters.

A collapsing step can be applied at any level of the tree to unite similar clusters.

The automated version of HOPACH-PAM identifies the main clusters by performing

such collapsing steps until there is no more improvement in average silhouette. The

simulation illustrated the importance of collapsing for identifying clustering structure.

Collapsing serves two different purposes. First, collapsing can correct the number of

clusters k in a split. Usually, we choose k by maximizing average silhouette over a range

of values. Since PAM requires that the number of clusters be at least two, collapsing

can be used to reverse a k = 2 split when the cluster is homogeneous enough to stop

splitting. Also, using the average silhouette to choose k is an imperfect method, so that

26

we might want to make k smaller than the value indicated by the average silhouette by

reuniting one or more clusters. In fact, one might even choose to make k too high on

purpose and then collapse similar clusters. Secondly, collapsing can combine clusters

across branches in the tree. For example, a split of a heterogeneous parent cluster may

produce a cluster of genes which is more similar to clusters from another part of the

tree than to the clusters with which it shares a parent. This group represents an error

made at a higher level of the tree, which has only become apparent as the clusters got

smaller and more homogeneous. Collapsing can unite this cluster with the most similar

other cluster elsewhere in the level. By simply changing the cluster’s labels to those

of the other cluster (or vica versa), the structure of the tree is preserved. Thus, we

do not just use collapsing to select the number of clusters in PAM at each node of the

tree, but rather we use PAM to separate the elements into groups and then collapse to

decide on the final clusters at that level.

Employed with collapsing, HOPACH-PAM is a “hybrid” clustering method which

uses both partitioning and agglomerative steps. Agglomerative algorithms, such as

single and average linkage as implemented in Cluster and AGNES, are equivalent to

applying collapsing steps beginning at the bottom of the tree with each element initially

in its own cluster. Our hybrid algorithm is able to provide a data-adaptive, sensible

ordering of the clusters at each level of the tree. Hence, in particular, it produces a

better final ordering of the elements. For Cluster and AGNES, the ordering of the

clusters at every level of the resulting tree is determined by the initial ordering of the

data. Because they start at the bottom of tree, there is no data-adaptive way to order

the clusters at every level of the tree. On the other hand, HOPACH-PAM begins as

a partitioning method so that it produces an ordering of the clusters (based on the

distance metric) from the first level of the tree. This ordering is maintained after

collapsing. To obtain such an ordering is particularly important for producing a final

ordered list of genes which is unique and not dependent on the ordering in the original

data set.

Contrary to the other orderings examined in the data analysis, the ordering pro-

duced by HOPACH-PAM is a unique function of the distance metric, assuming that

27

PAM(data, k, d) at each node does not depend on the ordering of the data (which

it should not because it aims to minimize a sum of distances). Like many clustering

routines optimizing a criteria, however, PAM solves a minimization problem which

has many local minima. In this sense, HOPACH-PAM shares (through the imperfect

convergence of PAM) the dependence on the order of the original data matrix that we

have noted in other algorithms. We could regain full uniqueness by rerunning PAM on

a large number of permuted data sets (i.e.: starting values) and selecting the medoids

which give the smallest sum of distances. We have noted, however, that this is not

usually necessary since the cluster labels are often very stable so that the impact of

the original ordering of the data on the final ordering is much less for HOPACH-PAM

than for DIANA, AGNES or Cluster.

The HOPACH methodology as we have presented it is intentionally general enough

to allow for adaptations in specific parts of the algorithm. For example, a range

of different partitioning algorithms and distance metrics can be used. We have also

suggested multiple ways to perform the ordering step and to make the decision to

collapse. HOPACH algorithms need to combine partitioning and collapsing steps to

produce an ordered hierarchical tree and corresponding list of elements. Visualization

of the ordered distance matrix is an innovative approach to identifying the clustering

structure. In addition, we like methods which fit into in the general statistical frame-

work of van der Laan & Bryan (2001), so that we can treat the clustering output as

an estimate of a true underlying parameter and perform inference with the bootstrap.

Most commonly used algorithms fit into this framework, so the HOPACH approach

remains very flexible. We see this flexibility, along with the hybridizing of partitioning

and agglomerative algorithms to produce a sensible ordering, as HOPACH’s greatest

strengths.

References

Claverie, J.-M. (1999). Human Molecular Genetics, 8 (10), 1821–1832.

DeRisi, J., Penland, L., Brown, P., Bittner, M., Meltzer, P., Ray, M., Chen, Y., Su,

28

Y., & Trent, J. (1996). Nature Genetics, 14, 457–460.

Eisen, M., Spellman, P., Brown, P., & Botstein, D. (1998). Proc. Natl. Acad. Sci. 95,

14863–14868.

Herwig, R., Poustka, A., Moller, C., Bull, C., Lehrach, H., & O’Brien, J. (1999).

Genome Research, 9, 1093–1105.

Kaufman, L. & Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to

Cluster Analysis. New York: John Wiley & Sons.

Pollard, K. & van der Laan, M. (2001). Technical Report 96 Group in Biostatistics,

University of California.

Ross, D., Scherf, U., Eisen, M., Perou, C., Rees, C., Spellman, P., Iyer, V., Jeffrey, S.,

Van de Rijn, M., Waltham, M., Pergamenschikov, A., Lee, J., Lashkari, D., Shalon,

D., Myers, T., Weinstein, J., Botstein, D., & Brown, P. (2000). Nature Genetics,

24, 227–235.

Tibshirani, R., Hastie, T., Eisen, M., Ross, D., Botstein, D., & Brown, P. (1999).

Technical report Department of Statistics, Stanford University.

van der Laan, M. & Bryan, J. (2001). Biostatistics, 2, 445–461.

29

