
epigenomix — Epigenetic and gene expression

data normalization and integration with mixture

models

Hans-Ulrich Klein, Martin Schäfer

March 13, 2013

Contents

1 Introduction 2

2 Data preprocessing and normalization 3
2.1 Gene expression data . 3
2.2 Histone ChIP-seq data . 3
2.3 Data matching . 3

3 ChIP-seq data normalization 6

4 Data integration 7

5 Classification by mixture models 8
5.1 Maximum likelihood approach . 8
5.2 Bayesian approach . 9

1

1 Introduction

This package provides methods for an integrative analysis of gene expression
and epigenetic data, especially histone ChIP-seq data. Histone modifications
are an epigenetic key mechanism to activate or repress the expression of genes.
Several data sets consisting of matched microarray expression data and histone
modification data measured by ChIP-seq have been published. However, both
data types are often analysed separately and results are compared afterwards.
The methods implemented here are designed to detect genes that are differen-
tially expressed between two conditions due to an altered histone modification
and are suitable for very small sample sizes.
Briefly, the following workflow is described in this documnet:

1. Matching of both data types by assigning the number of ChIP-seq reads
aligning within the promoter region of a gene to the expression value of
that gene

2. Normalization of ChIP-seq values

3. Calculation of a correlation score for each gene by multiplying the stan-
dardized difference of ChIP-seq values by the standardized difference of
expression values

4. Fitting a (Bayesian) mixture model to this score: The implicit assignment
of genes to mixture components is used to classify genes into one of the
following groups: (i) Genes with equally directed differences in both data
sets, (ii) genes with reversely directed differences in both data sets and
(iii) genes with no differences in at least one of the two data sets. Group
(iii) is represented by centred normal components whereas an exponential
component is used for group (i) and a mirrored exponential component
for group (ii).

2

2 Data preprocessing and normalization

2.1 Gene expression data

First, we load an example gene expression data set. The data set consists of four
samples. Two wild type replicates and two CEBPA knock-out replicates. The
differences between CEBPA knock-down and wild type samples are of interest.
The data set is stored as an ExpressionSet object and was reduced to a few
probesets on chromosome 1.

> library(epigenomix)

> data(eSet)

> pData(eSet)

CEBPA

CEBPA_WT_a wt

CEBPA_WT_b wt

CEBPA_KO_a ko

CEBPA_KO_b ko

Data was measured using Affymetrix Mouse Gene 1.0 ST arrays and RMA
normalized. See packages affy and Biobase how to process affymetrix gene
expression data.

2.2 Histone ChIP-seq data

The example histone ChIP-seq data is stored as GRangesList object:

> data(mappedReads)

> names(mappedReads)

[1] "CEBPA_WT_1" "CEBPA_KO_1"

There are two elements within the list. One CEBPA wild type and one knock-
out sample. Most of the originally obtained reads were removed to reduce
storage space. Further, the reads were extended towards the 3 prime end to the
mean DNA fragment size of 200bps and duplicated reads were removed. See R
packages Rsamtools and GenomicRanges how to read in and process sequence
reads.

2.3 Data matching

The presented ChIP-seq data measured H3K4me3 histone modifications. This
modification primarily occures at promoter regions. Hence, we assign ChIP-seq
values to probesets by counting the number of reads lying wihtin the promoter
of the measured transcript. Therefore, we first create a list with one element for
each probeset that stores the Ensemble transcript IDs of all transcripts measured
by that probeset:

3

> probeToTrans <- fData(eSet)$transcript

> probeToTrans <- strsplit(probeToTrans, ",")

> names(probeToTrans) <- featureNames(eSet)

Next, we need the transcriptional start sites for each transcript.

> data(transToTSS)

> head(transToTSS)

ensembl_transcript_id chromosome_name transcript_start

159 ENSMUST00000001172 1 36547201

441 ENSMUST00000003219 1 39535802

631 ENSMUST00000004829 1 171559193

766 ENSMUST00000006037 1 13374083

1202 ENSMUST00000013842 1 172206804

1306 ENSMUST00000015460 1 171767127

strand

159 -1

441 1

631 1

766 -1

1202 -1

1306 1

Such a data frame can be obtained e.g. using biomaRt :

> library("biomaRt")

> transcripts <- unique(unlist(transToTSS))

> mart <- useMart("ensembl", dataset="mmusculus_gene_ensembl")

> transToTSS <- getBM(attributes=c("ensembl_transcript_id",

"chromosome_name", "transcript_start",

"transcript_end", "strand"),

filters="ensembl_transcript_id",

values=transcripts, mart=mart)

Having these information, the promoter region for each probeset can be cal-
culated unsing matchProbeToPromoter. Argument mode defines how probesets
with multiple transcripts should be handled.

> promoters <- matchProbeToPromoter(probeToTrans,

transToTSS, promWidth=6000, mode="union")

> promoters[["10345616"]]

GRanges with 2 ranges and 1 metadata column:

seqnames ranges strand | probe

<Rle> <IRanges> <Rle> | <character>

[1] 1 [37869206, 37875205] + | 10345616

[2] 1 [37887407, 37893406] - | 10345616

4

seqlengths:

1

NA

Note that some promoter regions, like for probeset "10345616", may consist of
more than one interval.
Finally, summarizeReads is used to count the number of reads within the pro-
moter regions:

> chipSetRaw <- summarizeReads(mappedReads, promoters, summarize="add")

> chipSetRaw

ChIPseqSet (storageMode: lockedEnvironment)

assayData: 180 features, 2 samples

element names: chipVals

protocolData: none

phenoData

sampleNames: CEBPA_WT_1 CEBPA_KO_1

varLabels: totalCount

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation:

> head(chipVals(chipSetRaw))

CEBPA_WT_1 CEBPA_KO_1

10344803 145 401

10344813 145 401

10344897 2 8

10345007 8 6

10345037 69 122

10345099 38 90

The method returns an object of class ChIPseqSet , which is derived from class
eSet and is the ChIP-seq counterpart to ExpressionSet .

5

3 ChIP-seq data normalization

It may be necessary to normalize ChIP-seq data due to different experimental
conditions during ChIP.

> chipSet <- normalizeChIP(chipSetRaw, method="quantile")

In addition to quantile normalization, other methods like the method presented
by [Anders and Huber, 2010] are available.

> par(mfrow=c(1,2))

> plot(chipVals(chipSetRaw)[,1], chipVals(chipSetRaw)[,2],

xlim=c(1,600), ylim=c(1,600), main="Raw")

> plot(chipVals(chipSet)[,1], chipVals(chipSet)[,2],

xlim=c(1,600), ylim=c(1,600), main="Quantile")

●●

●●

●

●

●●

●●

● ●

●

●●

●

●●

●

●

●

●

●

●
●

●●●●

●

●●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●●
●●●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●●●●
●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●

●●●●●●●●●
●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0

Raw

chipVals(chipSetRaw)[, 1]

ch
ip

V
al

s(
ch

ip
S

et
R

aw
)[

, 2
]

●●

●●

●
●

●●

● ●

● ●

●

●●

●

●●

●

●

●

●

●

●
●

●●●●

●

● ●

●
●

●

●

●

●

●

●●
●

●

●
●●

●

●●
●●●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●

●

●

●●●●
●

●
●

●

●

●

●
●

●

●

●●●

●
●

●

●

●●●●●●●●●
●

●

●

●●

●

●

●

●●●

●

●

●
●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

0 100 200 300 400 500 600

0
10

0
20

0
30

0
40

0
50

0
60

0
Quantile

chipVals(chipSet)[, 1]

ch
ip

V
al

s(
ch

ip
S

et
)[

, 2
]

Figure 1: Raw and quantile normalized ChIP-seq data.

6

4 Data integration

In order to integrate both data types, a correlation score Z (motivated by the
work of [Schäfer et al., 2012]) can be calculated by multiplying the standardized
difference of gene expression values with the standardized difference of ChIP-seq
values. Prior to this, pheno type information must be added to the chipSet

object.

> eSet$CEBPA

[1] wt wt ko ko

Levels: ko wt

> sampleNames(chipSet)

[1] "CEBPA_WT_1" "CEBPA_KO_1"

> chipSet$CEBPA <- factor(c("wt", "ko"))

> pData(chipSet)

totalCount CEBPA

CEBPA_WT_1 8687 wt

CEBPA_KO_1 17122 ko

> intData <- integrateData(eSet, chipSet,

factor="CEBPA", reference="wt")

> head(intData)

expr_ko expr_wt chipseq_ko chipseq_wt z

10354832 8.864536 8.392561 193.0 202.5 -0.8048761

10359770 7.161367 7.305733 213.0 224.5 0.2980229

10355974 7.956849 7.850496 214.5 271.0 -1.0786664

10348378 5.384252 5.339577 49.0 85.5 -0.2927146

10353775 4.780612 4.700385 15.0 13.5 0.0216021

10352827 6.175612 5.873558 8.5 8.5 0.0000000

7

5 Classification by mixture models

5.1 Maximum likelihood approach

We now fit a mixture model to the correlation score Z. The model consists of
two normal components with fixed µ = 0. These two components should capture
Z values close to zero, i.e. genes that show no differences between wild type
and knock-out in at least one of the two data sets. The positive (negative) Z
scores are represented by a (mirrored) exponential component. Parameters are
estimated using the EM-algorithm as implemented in the method mlMixModel.

> mlmm = mlMixModel(intData[,"z"],

normNull=c(2, 3), expNeg=1, expPos=4,

sdNormNullInit=c(0.5, 1), rateExpNegInit=0.5, rateExpPosInit=0.5,

pi=rep(1/4, 4))

> mlmm

MixModel object

Number of data points: 180

Number of components: 4

1: ExpNeg

rate = 1.532987

weight pi = 0.2219707

classified data points: 30

2: NormNull

mean = 0

sd = 0.01644812

weight pi = 0.2154126

classified data points: 48

3: NormNull

mean = 0

sd = 0.1213587

weight pi = 0.3526906

classified data points: 70

4: ExpPos

rate = 0.6931467

weight pi = 0.2099261

classified data points: 32

The method returns an object of class MixModelML, a subclass of MixModel .
We now plot the model fit and the classification results:

8

> par(mfrow=c(1,2))

> plotComponents(mlmm, xlim=c(-2, 2), ylim=c(0, 3))

> plotClassification(mlmm)

Data

D
en

si
ty

−2 −1 0 1 2

0.
0

1.
0

2.
0

3.
0

●● ●● ●●● ●●●●●●● ●●●● ●● ● ●●● ●●●●●●

−2 0 2 4 6

1.
0

2.
0

3.
0

4.
0

Data

M
ix

tu
re

 c
om

po
ne

nt

● ● ●● ●● ●● ●● ●●● ● ●● ● ● ● ●● ● ●●●●●● ●● ●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

Figure 2: Model fit and classification results of the maximum likelihood ap-
proach.

5.2 Bayesian approach

Alternatively, an Bayesian approach can be used.

> set.seed(1515)

> bayesmm = bayesMixModel(intData[,"z"],

normNull=c(2, 3), expNeg=1, expPos=4,

sdNormNullInit=c(0.5, 1), rateExpNegInit=0.5, rateExpPosInit=0.5,

shapeNorm0=c(10, 10), scaleNorm0=c(10, 10), shapeExpNeg0=0.01,

scaleExpNeg0=0.01, shapeExpPos0=0.01, scaleExpPos0=0.01,

pi=rep(1/4, 4), itb=2000, nmc=8000, thin=5)

bayesMixModel returns an object of class MixModelBayes, which is also a sub-
class of MixModel .

> bayesmm

MixModel object

Number of data points: 180

Number of components: 4

1: ExpNeg

rate = 0

weight pi = 0.005949889

classified data points: 0

2: NormNull

mean = 0

sd = 0.0712299

9

weight pi = 0.2435747

classified data points: 96

3: NormNull

mean = 0

sd = 0.6347255

weight pi = 0.4605196

classified data points: 71

4: ExpPos

rate = 0.1145572

weight pi = 0.2899559

classified data points: 13

The same methods for plotting the model fit and classification can be applied.

> par(mfrow=c(1,2))

> plotComponents(bayesmm, xlim=c(-2, 2), ylim=c(0, 3))

> plotClassification(bayesmm, method="mode")

Data

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

● ●● ● ●● ●●● ● ●●●● ●● ●●●● ●●● ●● ●● ●●● ●●● ● ●●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●●● ●●●● ●●

−2 0 2 4 6

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Data

M
ix

tu
re

 c
om

po
ne

nt

●●

●● ● ●●● ●● ● ● ●● ●

Figure 3: Model fit and classification results of the Bayesian approach.

Note, that the parameters ’burn in’ (itb) and ’number of iterations’ (nmc)
have to be choosen carefully. The method plotChains should be used to assess
the convergence of the markov chains for each parameter. The settings here
lead to a short runtime, but are unsuitable for real applications.

Both models tend to classify more genes to the positive component (compo-
nent 4) than to the negative one (component 1):

> table(classification(mlmm, method="maxDens"),

classification(bayesmm, method="mode"))

2 3 4

1 0 30 0

10

2 48 0 0

3 48 22 0

4 0 19 13

This is in line with the fact, that H3K4me3 occurs in the promoters of active
genes. Since each z corresponds to a probeset (and so to at least one transcript),
the corresponding microarray annotation packages can be used to obtain e.g. the
gene symbols of all positivly classified z scores.

> posProbes <- rownames(intData)[classification(bayesmm, method="mode") == 4]

> library("mogene10sttranscriptcluster.db")

> unlist(mget(posProbes, mogene10sttranscriptclusterSYMBOL))

11

References

[Anders and Huber, 2010] S. Anders and W. Huber (2010) Differential expres-
sion analysis for sequence count data. Genome Biol., 11(10), R106.

[Schäfer et al., 2012] M. Schäfer, O. Lkhagvasuren, H.-U. Klein et al. (2012)
Integrative analyses for Omics data: A Bayesian mixture model to assess the
concordance of ChIP-chip and ChIP-seq measurements. J Toxicol Environ
Health A., 75(8-10), 461–470.

12

	Introduction
	Data preprocessing and normalization
	Gene expression data
	Histone ChIP-seq data
	Data matching

	ChIP-seq data normalization
	Data integration
	Classification by mixture models
	Maximum likelihood approach
	Bayesian approach

