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1 Introduction

This package provides algorithms for calling single nucleotide variants in deep sequencing experi-
ments of polyclonal samples. The package uses a clonal control experiment for estimating the local
error rate and tests whether the observed nucleotide frequencies differ between test and control.
The basic model is a binomial model for the counts Xi,j and Yi,j of nucleotide j at position i, in
the test and the control experiment, respectively:

Xi,j ∼ Bin(ni, pi,j)

Yi,j ∼ Bin(mi, qi,j). (1)

Here ni and mi denote the coverage in the two experiments, and pi,j and qi,j are learned from the
data. The presence of an SNV in the test experiment amounts to testing the hypothesis H1 : pi,j >
qi,j against the null-hypothesis H0 : pi,j = qi,j . The deepSNV algorithm uses likelihood ratio test
with a χ2

1-distribtution.
As an alternative to the binomial distribution, a beta-binomial model can be used that has a

global parameter of overdispersion:

Xi,j ∼ BB(ni, α, pi,j)

Yi,j ∼ BB(mi, α, qi,j). (2)

The parameter α defines a parameter that quantifies the overdispersion of the model, shared
across sites and nucleotides. This parametrization is equivalent to setting βi,j = α(1 − pi,j)/pi,j .
For small pi,j , one obtains a variance of E[Xi,j ] ≈ nipi,j + (nipi,j)

2/α.
All parameters are determined by a maximum likelihood criterion, where for pi,j (and similarly

for qi,j) a methods-of-moments approximation is used, α/(α+β̂i,j) = Xi,j/ni. The binomial model
arises from the beta-binomial model in the limit α→∞.

To achieve a higher specifitiy the test is performed on both strands separately, and the resulting
p-values are combined into a single one using either the product, average, or maximum as a
statistic and their corresponding distributions under a uniform for computing a joint p-value. For
more information and for citing the deepSNV package please use:

• Gerstung M, Beisel C, Rechsteiner M, Wild P, Schraml P, Moch H and Beerenwinkel N (2012).
“Reliable detection of subclonal single-nucleotide variants in tumor cell populations.” Nat
Commun, 3, pp. 811.

2 Working example

In this example, we load some real world data. The data of length 1,512 nt were sequenced with a
Roche 454 Junior sequencer at about 500x coverage. They consist of a mixture of two HIV clones
at 10% and 90%(test) and a clonal control. The data were aligned to the HXB2 reference genome
with novoalign, and can be downloaded from the authors’ website, or attached . We first load the
package and define the genomic region of interest:
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> library(deepSNV)

> regions <- data.frame(chr="B.FR.83.HXB2_LAI_IIIB_BRU_K034", start = 2074, stop=3585)

Now the data can be loaded from the remote .bam files with the deepSNV command (not run)

> # HIVmix <- deepSNV(test = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/test.bam",

> # control = "http://www.bsse.ethz.ch/cbg/software/deepSNV/data/control.bam",

> # regions=regions, q=10)

The data.frame regions contains the genomic region to be parsed from the two files by the
method deepSNV. The additional parameter q=10 specifies that only nucleotides with PHRED
higher than 10 are counted. As this might fail in the absence of a running internet connection, we
load the resulting object that comes along with the deepSNV package:

> data(HIVmix) # Attach the data instead, as it could fail in routine checks without internet connection.

> show(HIVmix)

Data: 1512 positions x 10 characters

Model: bin

Alternative: greater

Combine Method: fisher

P-Values:

A T C G -

[1,] NA 0.5965736 0.5965736 0.5965736 0.5965736

[2,] 0.5965736 0.5965736 0.5965736 NA 0.5965736

[3,] NA 0.5965736 0.5965736 0.5965736 0.5965736

[4,] 0.5965736 0.5965736 NA 0.5965736 0.5965736

[5,] NA 0.5965736 0.5965736 0.5965736 0.5965736

[6,] 0.5965736 0.5965736 0.5965736 NA 0.5965736

...

A T C G -

[1507,] NA 0.5965736 0.5965736 0.5965736 0.5965736

[1508,] 0.8465736 0.5965736 0.8465736 NA 0.5965736

[1509,] 0.5965736 0.5965736 NA 0.5965736 0.5965736

[1510,] 0.8465736 0.5965736 NA 0.5965736 0.5965736

[1511,] NA 0.5965736 0.5965736 0.4737885 0.5965736

[1512,] 1.0000000 NA 0.8465736 0.8465736 0.8465736

The counts are stored in the slots test and control:

> control(HIVmix)[100:110,]

A T C G - a t c g _

[1,] 1170 0 0 0 0 163 0 0 1 0

[2,] 0 0 0 1170 0 1 0 0 147 0

[3,] 0 1170 0 0 0 0 118 0 3 6

[4,] 0 1170 0 0 0 0 125 0 0 0

[5,] 0 1170 0 0 0 1 99 10 0 0

[6,] 0 0 1170 0 0 1 0 91 5 0

[7,] 0 0 0 1168 0 0 0 1 85 0

[8,] 0 0 0 1169 0 0 1 0 94 0

[9,] 0 0 0 1170 0 0 3 0 99 0

[10,] 0 1170 0 1 0 0 109 0 0 0

[11,] 0 1173 0 0 0 0 115 0 0 0

> test(HIVmix)[100:110,]
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A T C G - a t c g _

[1,] 442 0 0 0 0 70 0 0 0 0

[2,] 0 0 0 441 0 0 0 0 66 0

[3,] 0 427 13 0 0 0 50 6 0 3

[4,] 0 440 0 0 0 0 56 0 0 0

[5,] 0 440 0 0 0 0 42 7 0 0

[6,] 1 1 437 0 0 0 1 38 4 0

[7,] 10 0 2 424 0 3 0 1 33 0

[8,] 0 0 0 429 0 0 0 0 36 0

[9,] 0 0 0 425 0 0 0 0 38 0

[10,] 0 425 0 0 0 0 42 0 0 0

[11,] 0 425 0 0 0 0 47 0 0 0

Uppercase nucleotides are from the reference strand, lowercase nucleotides from the reverse. Also
note the strand bias.

A visual representation of the data can be obtained with the plot method:

> plot(HIVmix)
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One realizes that there are many variants nicely separated by the test at the topleft corner,
althought the noise level also extends along the diagonal to similar frequencies. Grey dots have a
P -values smaller than 0.05.

Significant SNVs are tabularized with the summary command:

> SNVs <- summary(HIVmix, sig.level=0.05, adjust.method="BH")

> head(SNVs)
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chr pos ref var p.val freq.var

1 B.FR.83.HXB2_LAI_IIIB_BRU_K034 3317 C T 6.535962e-72 0.03878536

2 B.FR.83.HXB2_LAI_IIIB_BRU_K034 3485 A T 1.315137e-71 0.03502822

3 B.FR.83.HXB2_LAI_IIIB_BRU_K034 3282 A G 6.300291e-69 0.04278264

4 B.FR.83.HXB2_LAI_IIIB_BRU_K034 3283 A C 1.043249e-66 0.04243180

5 B.FR.83.HXB2_LAI_IIIB_BRU_K034 3263 A G 2.557500e-66 0.03930098

6 B.FR.83.HXB2_LAI_IIIB_BRU_K034 3509 T C 2.776494e-63 0.03485991

sigma2.freq.var n.tst.fw cov.tst.fw n.tst.bw cov.tst.bw n.ctrl.fw cov.ctrl.fw

1 9.315960e-06 64 1370 98 2814 0 2302

2 7.506701e-06 32 729 132 3961 0 1033

3 1.185024e-05 70 1327 85 2302 0 2184

4 1.183474e-05 70 1318 84 2305 1 2170

5 1.018556e-05 71 1568 85 2369 3 2775

6 7.611893e-06 29 683 142 4105 2 943

n.ctrl.bw cov.ctrl.bw raw.p.val

1 0 5625 1.080682e-75

2 0 7616 4.348999e-75

3 0 4695 3.125144e-72

4 0 4687 6.899797e-70

5 0 4817 2.114335e-69

6 6 7826 3.213535e-66

> nrow(SNVs)

[1] 107

> min(SNVs$freq.var)

[1] 0.004624562

We chose a significance level of sig.level=0.05 and Benjamini-Hochberg correction for multiple
testing (adjust.method="BH"). The test selected 107 variants. This compares to

> sum(RF(test(HIVmix), total=T) > 0.01 & RF(test(HIVmix), total=T) < 0.95)

[1] 417

candidate variants with frequencies above 0.01! In this experiment we also know the truth from
direct Sanger sequencing of the clones before pooling. Load the data and study the confusion
matrix with:

> data(trueSNVs, package="deepSNV")

> table(p.adjust(p.val(HIVmix), method="BH") < 0.05, trueSNVs)

trueSNVs

FALSE TRUE

FALSE 5933 8

TRUE 14 93

So 93 of 101 SNVs could be recovered by the experiments.

3 Normalization

We want to further assess the null model with experimental data from two homogeneous repli-
cates. In particular we want to analyze whether the empirical distribution of the p-values is
uniform. The data we study comes from two phiX sequences sequenced on separate runs on a
GAIIx.

4



A) B)

Figure 1: Scatterplot for two phiX experiments before (A) and after (B) normalization.

> data(phiX, package="deepSNV")

> jpeg("deepSNV-phiX.jpg", 2.5, 2.5, units="in", res=600, pointsize=7)

> par(mar=c(4,4,1,1), bty="n")

> plot(phiX, cex.min=.5)

> dev.off()

(We use a jpg device to reduce the plot size.) From the plot in Figure 1A it appears that there is
a systematic bias between the two experiments, likely because they were sequenced in different
runs. We therefore normalize with:

> phiN <- normalize(phiX, round=TRUE)

> jpeg("deepSNV-phiN.jpg", 2.5, 2.5, units="in", res=600, pointsize=7)

> par(mar=c(4,4,1,1), bty="n")

> plot(phiN, cex.min=.5)

> dev.off()

The results are shown in Figure 1B. The points now symmetrically scatter around the diagonal
and all p-values are within the expected range:

> p.norm <- p.val(phiN)

> n <- sum(!is.na(p.norm))

> qqplot(p.norm, seq(1/n,1, length.out=n), log="xy", type="S", xlab="P-value", ylab="CDF")

> p.val <- p.val(phiX)

> points(sort(p.val[!is.na(p.val)]), seq(1/n,1, length.out=n), pch=16, col="grey", type="S", lty=2)

> legend("topleft", c("raw data", "normalized data"), pch=16, col=c("grey", "black"), bty="n", lty=3)

> abline(0,1)
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After normalization the cumulative distribution of the p-values is close to the diagonal, even
for the smallest values. Hence the p-values accurately measure the probability of type-1 errors.

4 Overdispersion

In some situations, the variance of the binomial model is too small, for example for templates
with long repeats or heavy PCR amplification for target selection. An alternative model is the
beta-binomial distribution that allows for a larger variance.

We load a data-set from two deep sequencing experiments of four genes extracted from a
metastatic renal cell carcinoma with sequenced on separate lanes of a GAIIx:

> data("RCC", package="deepSNV")

> show(RCC)

Data: 14813 positions x 10 characters

Model: bin

Alternative: two.sided

Combine Method: average

P-Values:

A T C G -

[1,] NA 1.0000000 1.0000000 1.0000000 1

[2,] NA 1.0000000 0.8395837 1.0000000 1

[3,] NA 0.8901412 1.0000000 0.9144178 1

[4,] 0.5000127 0.5969902 NA 0.5717729 1

[5,] NA 0.9977519 0.5858255 0.6729237 1
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A) B)

Figure 2: Scatterplot of the RCC data in a binomial (A) and beta-binomial model (B).

[6,] 1.0000000 0.9810956 0.7530014 NA 1

...

A T C G -

[14808,] 0.9733845 1.0000000 0.8896366 NA 1

[14809,] 1.0000000 1.0000000 NA 1 1

[14810,] NA 0.9201851 0.5000416 1 1

[14811,] 0.9414135 1.0000000 0.9944664 NA 1

[14812,] NA 1.0000000 0.8270151 1 1

[14813,] NA 1.0000000 1.0000000 1 1

> jpeg("deepSNV-RCC-bin.jpg", 2.5, 2.5, units="in", res=600, pointsize=7)

> par(mar=c(4,4,1,1), bty="n")

> plot(RCC, cex.min=.5)

> dev.off()

We see that a binomial model was used to generate the data. An inspection of the plot in Figure
2A, shows a long noise tail where apparently the dispersion is underestimated causing some false
positives. We use a beta-binomial model instead and conservatively estimate the dispersion factor
on both sides with the argument alternative="two.sided":

> RCC.bb = estimateDispersion(RCC, alternative="two.sided")

Note: The initial object used a binomial model. Will be changed to beta-binomial.

Estimated dispersion factor 136.926849574802

> jpeg("deepSNV-RCC-bb.jpg", 2.5, 2.5, units="in", res=600, pointsize=7)

> par(mar=c(4,4,1,1), bty="n")

> plot(RCC.bb, cex.min=.5)

> dev.off()

The plot is shown in Figure2B. The log-likelihood of the two models are:

> RCC.bb@log.lik
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[1] -270110.7

> RCC@log.lik

[1] -283851.7

> RCC.bb@log.lik - RCC@log.lik

[1] 13740.93

> log(4*nrow(test(RCC)))

[1] 10.98955

Note that the difference is larger than log(n), the difference in BIC of the two models.
If we compare the number of called SNVs, we find

> summary(RCC, adjust.method="bonferroni")[,1:6]

chr pos ref var p.val freq.var

1 chr3 10167762 T C 0.000000e+00 -0.1323133971

2 chr3 10167672 A G 0.000000e+00 0.1399872390

3 chr3 10163206 T - 0.000000e+00 0.2440057869

4 chr3 10168683 T G 2.134656e-304 -0.1324653452

5 chr3 10167709 C T 6.203881e-304 -0.1440679712

6 chr3 10163012 - C 2.512916e-211 0.1242483980

7 chr3 10166943 G A 1.406981e-158 -0.1325781118

8 chr3 10158274 C T 6.596999e-152 -0.1420016772

9 chr3 10163428 T G 1.026389e-79 -0.1110488166

10 chr3 10166219 G C 6.538408e-74 0.1591538377

11 chr17 7513782 A G 6.137099e-57 0.0523114590

12 chr3 10167220 C G 2.960126e-36 0.0046430287

13 chr3 10158255 A - 7.414419e-27 0.0374533958

14 chr3 10158337 G A 8.455105e-09 -0.1457719757

15 chr10 89710231 C T 1.812318e-06 -0.0521225577

16 chr17 7512879 G A 4.923709e-03 0.0095654638

17 chr3 10163208 G - 1.908223e-02 0.0007613176

compared to

> tab <- summary(RCC.bb, adjust.method="bonferroni")[,1:6]

> tab

chr pos ref var p.val freq.var

1 chr3 10163206 T - 6.777306e-304 0.2440057869

2 chr3 10167220 C G 5.481366e-30 0.0046430287

3 chr3 10158274 C T 4.185423e-03 -0.1420016772

4 chr3 10167762 T C 8.715540e-03 -0.1323133971

5 chr3 10166943 G A 9.499875e-03 -0.1325781118

6 chr3 10163208 G - 2.829051e-02 0.0007613176

7 chr3 10167709 C T 3.466312e-02 -0.1440679712

8 chr3 10168683 T G 4.237323e-02 -0.1324653452

A closer inspection will show that the variants with a negative change in frequency are all
known SNPs on chromosome 3, which drop in frequency due to loss of heterozygousity in the
tumor. The remaining variants have positive frequencies. The first is a deletion of chr3:10163206T
on 24.4% of the alleles that truncates the VHL protein. The second is a C>G conversion in the
5′-UTR of the VHL gene at chr3:10167220C in 0.46% of the alleles. The third variant is likely to
be an alignment artifact resulting from imperfect alignments of the deletion of chr3:10163206T.
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5 sessionInfo()

• R version 3.0.0 (2013-04-03), x86_64-unknown-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, grDevices, graphics, methods, parallel, splines, stats, stats4,
utils

• Other packages: BiocGenerics 0.6.0, Biostrings 2.28.0, GenomicRanges 1.12.0,
IRanges 1.18.0, Rsamtools 1.12.0, VGAM 0.9-0, deepSNV 1.6.0

• Loaded via a namespace (and not attached): bitops 1.0-5, tools 3.0.0, zlibbioc 1.6.0
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