Introduction to VariantAnnotation

Valerie Obenchain

October 1, 2013

Contents
1__Introduction| 1
[2° Variant Call Format (VCF) files| 2
2.1 Data import and exploration| o 2
RI1 Header informationl. L 2
[2.1.2 Genomic positions| 3
I3 Genotype datal 4
2.1.4 Infodatal 6
2.2 TImport data subsets| L 8
[2.2.1 Select genomic coordinates| Lo o 8
222 Select VOEF fleldsl o o o 9
[3 Locating variants in and around genes| 10
[4 Amino acid coding changes| 11
[6 SIFT and PolyPhen Databases| 13
[6 Other operations| 14
[6.1 Create a SnpMatrix| L 14
6.2 xpand a VCE| . . . o o o e 16
6.3 rite out esl . e e e e e 16
[T _References] 16
8 Session Information| 16

1 Introduction

This vignette outlines a work flow for annotating and filtering genetic variants using the VariantAnnota-
tionpackage. Sample data are in VariantCall Format (VCF) and are a subset of chromosome 22 from (1000
Genomes. VCF text files contain meta-information lines, a header line with column names, data lines with
information about a position in the genome, and optional genotype information on samples for each position.
The 1000 Genomes page describes the VCF format|in detail.

Data are read in from a VCF file and variants identified according to region such as coding, intron,
intergenic, spliceSite etc. Amino acid coding changes are computed for the non-synonymous variants
and SIFT and PolyPhen databases provide predictions of how severly the coding changes affect protein
function.

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41

2 Variant Call Format (VCF) files

2.1 Data import and exploration
Data are parsed into a VCF object with readvVct.

> library(VariantAnnotation)

> f1 <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")
> vcf <- readVcf(f1, "hg19")

> vcef

class: CollapsedVCF
dim: 10376 5
rowData(vef):

GRanges with 5 metadata columns: paramRangeID, REF, ALT, QUAL, FILTER
info(vcf):

DataFrame with 22 columns: LDAF, AVGPOST, RSQ, ERATE, THETA, CIEND...
info(header (vcf)):

Number Type Description

LDAF 1 Float MLE Allele Frequency Accounting for LD
AVGPOST 1 Float Average posterior probability from MaCH...
RSQ 1 Float Genotype imputation quality from MaCH/T...
ERATE 1 Float Per-marker Mutation rate from MaCH/Thunder
THETA 1 Float Per-marker Transition rate from MaCH/Th...
CIEND 2 Integer Confidence interval around END for impr...
CIPOS 2 Integer Confidence interval around POS for impr...
END 1 Integer End position of the variant described i...
HOMLEN . Integer Length of base pair identical micro-hom...
HOMSEQ . String Sequence of base pair identical micro-h...
SVLEN 1 Integer Difference in length between REF and AL...
SVTYPE 1 String Type of structural variant
AC . Integer Alternate Allele Count
AN 1 Integer Total Allele Count
AA 1 String Ancestral Allele, ftp://ftp.1000genomes. ..
AF 1 Float Global Allele Frequency based on AC/AN
AMR_AF 1 Float Allele Frequency for samples from AMR b...
ASN_AF 1 Float Allele Frequency for samples from ASN b...
AFR_AF 1 Float Allele Frequency for samples from AFR b...
EUR_AF 1 Float Allele Frequency for samples from EUR b...
VT 1 String indicates what type of variant the line...
SNPSOURCE . String indicates if a snp was called when anal...
geno (vcf):
SimplelList of length 3: GT, DS, GL
geno (header (vcf)) :
Number Type Description
GT 1 String Genotype
DS 1 Float Genotype dosage from MaCH/Thunder
GL . Float Genotype Likelihoods

2.1.1 Header information

Header information can be extracted from the VCF with header (). We see there are 5 samples, 1 piece of
meta information, 22 info fields and 3 geno fields.

> header (vcf)

class: VCFHeader

samples(5): HGO0096 HGO0097 HGO0099 HGO0100 HGO0101
meta(1l): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

Data can be further extracted using the named accessors
> samples (header (vcf))
[1] "HGOO096" "HGOO097" "HGOO099" "HGOO100" "HGOO101"
> geno (header (vcf))

DataFrame with 3 rows and 3 columns

Number Type Description
<character> <character> <character>

GT 1 String Genotype
DS 1 Float Genotype dosage from MaCH/Thunder
GL . Float Genotype Likelihoods

2.1.2 Genomic positions

rowData contains information from the CHROM, POS, and ID fields of the VCF file, represented as a
GRanges. The paramRangeID column is meaningful when reading subsets of data and is discussed further
below.

> head(rowData(vcf), 3)

GRanges with 3 ranges and 5 metadata columns:

seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
rs7410291 22 [50300078, 50300078] * | <NA>
rs147922003 22 [50300086, 50300086] * | <NA>
rs114143073 22 [50300101, 50300101] * | <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
rs7410291 A G 100 PASS
rs147922003 C T 100 PASS
rs114143073 G A 100 PASS
seqlengths:
22
NA

Individual fields can be pulled out with named accessors. Here we see REF is stored as a DNAStringSet
and qual is a numeric vector.

> ref(vef)[1:5]

A DNAStringSet instance of length 5

width seq
[1] 1A
[2] 1C
[3] 1G
[4] 1C
[5] 1C

> qual(vcf) [1:5]
[1] 100 100 100 100 100

ALT is a DNAStringSetList (allows for multiple alternate alleles per variant) or a DNAStringSet. When
structural variants are present it will be a CharacterList.

> alt(vef)[1:5]

DNAStringSetList of length 5
([11l G

(211 T
(0311 A
(f411 t
(le11 T

2.1.3 Genotype data

Genotype data described in the FORMAT fields are parsed into the geno slot. The data are unique to each
sample and each sample may have multiple values variable. Because of this, the data are parsed into
matrices or arrays where the rows represent the variants and the columns the samples. Multidimentional
arrays indicate multiple values per sample. In this file all variables are matrices.

> geno (vcf)

List of length 3
names(3): GT DS GL

> sapply(geno(vcf), class)

GT DS GL
"matrix" "matrix" "matrix"

Let’s take a closer look at the genotype dosage (DS) variable. The header provides the variable definition
and type.

> geno (header (vcf)) ["DS",]

DataFrame with 1 row and 3 columns

Number Type Description
<character> <character> <character>
DS 1 Float Genotype dosage from MaCH/Thunder

These data are stored as a 10376 x 5 matrix. Each of the five samples (columns) has a single value per
variant location (row).

> DS <-geno(vcf)$DS
> dim(DS)

[1] 10376 5

> DS[1:3,]

HGO0096 HGO0097 HGO0099 HGO0100 HGOO101
rs7410291 0 0 1 0 0
rs147922003 0 0 0 0 0
rs114143073 0 0 0 0 0

DS is also known as ’posterior mean genotypes’ and range in value from [0, 2]. To get a sense of variable
distribution, we compute a five number summary of the minimum, lower-hinge (first quartile), median,
upper-hinge (third quartile) and maximum.

> fivenum(DS)
[1] 00002
The majority of these values (86%) are zero.
> length(which(DS==0))/length(DS)
[1] 0.8621627

View the distribution of the non-zero values.

> hist(DS[DS != 0], breaks=seq(0, 2, by=0.05),
+ main="DS non-zero values", xlab="DS")

DS non-zero values

Frequency
1500 2000 2500

1000

500
l

o -W_r}TT_TTW—rTTﬁ—TTj_r{_ I i |

0.0 0.5 1.0 15 2.0

DS

2.1.4 Info data

In contrast to the genotype data, the info data are unique to the variant and the same across samples. All
info variables are represented in a single DataFrame.

> info(vef)[1:4, 1:5]

DataFrame with 4 rows and 5 columns

LDAF AVGPOST RSQ ERATE THETA

<numeric> <numeric> <numeric> <numeric> <numeric>

rs7410291 0.3431 0.9890 0.9856 2e-03 0.0005
rs147922003 0.0091 0.9963 0.8398 5e-04 0.0011
rs114143073 0.0098 0.9891 0.5919 Te-04 0.0008
rs141778433 0.0062 0.9950 0.6756 9e-04 0.0003

We will use the info data to compare quality measures between novel (i.e., not in dbSNP) and known
(i.e., in dbSNP) variants and the variant type present in the file. Variants with membership in dbSNP can
be identified by using the appropriate SNPlocs package for hg19.

> library(SNPlocs.Hsapiens.dbSNP.20101109)
> dbsnprd <- renameSeqlevels(rowData(vcf), c("22"="ch22"))

> ch22snps <- getSNPlocs("ch22")
> dbsnpchr22 <- sub("rs", "", names(dbsnprd)) Jinj), ch22snps$RefSNP_id
> table(dbsnpchr22)

dbsnpchr22
FALSE TRUE
6259 4117

Info variables of interest are "VT’, 'LDAF’ and '"RSQ’. The header offers more details on these variables.

> info(header (vcf)) [c("VT", "LDAF", "RSQ"),]

DataFrame with 3 rows and 3 columns

Number Type
<character> <character>
VT 1 String
LDAF 1 Float
RSQ 1 Float
Description
<character>
VT indicates what type of variant the line represents
LDAF MLE Allele Frequency Accounting for LD
RSQ Genotype imputation quality from MaCH/Thunder

Create a data frame of quality measures of interest ...

> metrics <- data.frame(QUAL=qual(vcf), inDbSNP=dbsnpchr22,
+ VT=info(vcf)$VT, LDAF=info (vcf)$LDAF, RSQ=info(vcf)$RSQ)

and visualize the distribution of qualities using ggplot2. For instance, genotype imputation quality is
higher for the known variants in dbSNP.

> library(ggplot2)

> ggplot(metrics, aes(x=RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

scale_x_continuous (name="MaCH / Thunder Imputation Quality") +
scale_y_continuous (name="Density") +

theme (legend.position="top")

+ + +

inDbSNP IZ FALSE|Z|TRUE

15-

10 -

Density

0.00 0.25 0.50 0.75 1.00
MaCH / Thunder Imputation Quality

2.2 Import data subsets

When working with large VCF files it may be more efficient to read in subsets of the data. This can be
accomplished by selecting genomic coordinates (ranges) or by specific fields from the VCF file.

2.2.1 Select genomic coordinates

To read in a portion of chromosome 22, create a GRanges with the regions of interest.

> rng <- GRanges (seqnames="22", ranges=IRanges(

+ start=c (50301422, 50989541),
+ end=c (50312106, 51001328),
+ names=c ("gene_79087", "gene_644186")))

When ranges are specified, the VCF file must have an accompanying Tabix index file. See ?7indexTabix
for help creating an index.

> tab <- TabixFile(fl)
> vcf_rng <- readVcf(tab, "hgl9", param=rng)

The paramRangesID column distinguishes which records came from which param range.

> head(rowData(vcf_rng), 3)

GRanges with 3 ranges and 5 metadata columns:

segnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
rs114335781 22 [50301422, 50301422] * | gene_79087
rs8135963 22 [50301476, 50301476] * | gene_79087
22:50301488 22 [50301488, 50301488] * | gene_79087
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
rs114335781 G A 100 PASS
rs8135963 T C 100 PASS
22:50301488 C T 100 PASS
seqlengths:
22
NA

2.2.2 Select VCF fields

Data import can also be defined by the fixed, info and geno fields. Fields available for import are described
in the header information. To view the header before reading in the data, use ScanVcfHeader.

> hdr <- scanVcfHeader (f1)
> ## e.g., INFO and GENO fields
> head(info(hdr), 3)

DataFrame with 3 rows and 3 columns

Number Type
<character> <character>
LDAF 1 Float
AVGPOST 1 Float
RSQ 1 Float
Description
<character>
LDAF MLE Allele Frequency Accounting for LD
AVGPOST Average posterior probability from MaCH/Thunder
RSQ Genotype imputation quality from MaCH/Thunder
> head(geno (hdr), 3)
DataFrame with 3 rows and 3 columns
Number Type Description
<character> <character> <character>
GT 1 String Genotype
DS 1 Float Genotype dosage from MaCH/Thunder
GL . Float Genotype Likelihoods

To subset on "LDAF” and "GT” we specify them as character vectors in the info and geno arguments
to ScanVcfParam. This creates a ScanVcfParam object which is used as the param argument to readVct.

> ## Return all 'fixed' fields, "LAF" from 'info' and "GT" from 'geno'
> svp <- ScanVcfParam(info="LDAF", geno="GT")

> vcfl <- readVcf(fl, "hgl9", svp)

> names (geno (vcf1))

[1] nGT"
To subset on both genomic coordinates and fields the ScanVcfParam object must contain both.

> svp_all <- ScanVcfParam(info="LDAF", geno="GT", which=rng)
> svp_all

class: ScanVcfParam
vcfWhich: 1 elements
vcfFixed: character() [All]
vcfInfo: LDAF

vcfGeno: GT

3 Locating variants in and around genes

Variant location with respect to genes can be identified with the locateVariants function. Regions are
specified in the region argument and can be one of the following constructors: CodingVariants, IntronVa-
riants, FiveUTRVariants, ThreeUTRVariants, IntergenicVariants, SpliceSiteVariants or PromoterVariants.
Location definitions are shown in Table [Il

Location Details

coding falls within a coding region

fiveUTR falls within a 5’ untranslated region

threeUTR | falls within a 3’ untranslated region

intron falls within an intron region

intergenic | does not fall within a transcript associated with a gene

spliceSite | overlaps any portion of the first 2 or last 2 nucleotides of an intron
promoter | falls within a promoter region of a transcript

Table 1: Variant locations

For overlap methods to work properly the chromosome names (seqlevels) must be compatible in the ob-
jects being compared. The VCF data chromosome names are represented by number, i.e., ’22’, but the TxDb
chromosome names are preceded with ’chr’. Modify the seqlevels in the VCF object with renameSeqlevels.

library(TxDb.Hsapiens.UCSC.hgl19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene

vcf <- renameSeqlevels(vcf, c("22"="chr22"))

rd <- rowData(vcf)

loc <- locateVariants(rd, txdb, CodingVariants())
head(loc, 3)

vV V.V Vv Vv Vv

GRanges with 3 ranges and 7 metadata columns:

seqnames ranges strand | LOCATION QUERYID
<Rle> <IRanges> <Rle> | <factor> <integer>
[1] chr22 [50301422, 50301422] * | coding 24
(2] chr22 [50301476, 50301476] * | coding 25
[3] chr22 [50301488, 50301488] * | coding 26
TXID CDSID GENEID PRECEDEID FOLLOWID
<integer> <integer> <character> <character> <character>
[1] 73482 217009 79087 <NA> <NA>
(2] 73482 217009 79087 <NA> <NA>

10

v

[3] 73482 217009 79087 <NA> <NA>

seqlengths:
chr22
NA

Locate variants in all regions with the Al1Variants() constructor,
allvar <- locateVariants(rd, txdb, AllVariants())
To answer gene-centric questions data can be summarized by gene reguardless of transcript.

Did any coding variants match more than one gene?
splt <- split(mcols(loc)$GENEID, mcols(loc)$QUERYID)
table(sapply(splt, function(x) length(unique(x)) > 1))

FALSE TRUE

>

956 15

Summarize the number of coding variants by gene ID.

> splt <- split(mcols(loc)$QUERYID, mcols(loc)$GENEID)
> head(sapply(splt, function(x) length(unique(x))), 3)

113730 1890 23209

22 15 30

4 Amino acid coding changes

predictCoding computes amino acid coding changes for non-synonymous variants. Only ranges in query
that overlap with a coding region in the subject are considered. Reference sequences are retrieved from
either a BSgenome or fasta file specified in seqSource. Variant sequences are constructed by substituting,
inserting or deleting values in the varAllele column into the reference sequence. Amino acid codes are

computed for the variant codon sequence when the length is a multiple of 3.

The query argument to predictCoding can be a GRanges or VCF. When a GRanges is supplied the
varAllele argument must be specified. In the case of a VCF, the alternate alleles are taken from alt (<VCF>)

and the varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding regions. Each row repre-

sents a variant-transcript match so more than one row per original variant is possible.

> library(BSgenome.Hsapiens.UCSC.hg19)
> coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)
> coding[5:7]

GRanges with 3 ranges and 17 metadata columns:

seqnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
22:50301584 chr22 [50301584, 50301584] - <NA>
rs114264124 chr22 [50302962, 50302962] - | <NA>
rs149209714 chr22 [50302995, 50302995] - <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
22:50301584 C T 100 PASS
rs114264124 C T 100 PASS

11

rs149209714

22:50301584
rs114264124
rs149209714

22:50301584
rs114264124
rs149209714

22:50301584

rs114264124

rs149209714

seqlengths:
chr22
NA

Using variant rs114264124 as an example, we see varAllele A has been substituted into the refCodon
CGG to produce varCodon CAG. The refCodon is the sequence of codons necessary to make the variant allele
substitution and therefore often includes more nucleotides than indicated in the range (i.e. the range is
50302962, 50302962, width of 1). Notice it is the second position in the refCodon that has been substituted.
This position in the codon, the position of substitution, corresponds to genomic position 50302962. This
genomic position maps to position 698 in coding region-based coordinates and to triplet 233 in the protein.
This is a non-synonymous coding variant where the amino acid has changed from R (Arg) to Q (Gln).

When the resulting varCodon is not a multiple of 3 it cannot be translated. The consequence is considered

C G 100 PASS
varAllele CDSLOC PROTEINLOC QUERYID
<DNAStringSet> <IRanges> <IntegerList> <integer>
A [777, 7771 259 28
A [698, 698] 233 57
C [665, 665] 222 58
TXID CDSID GENEID CONSEQUENCE
<character> <integer> <character> <factor>
73482 217009 79087 synonymous
73482 217010 79087 nonsynonymous
73482 217010 79087 nonsynonymous
REFCODON VARCODON REFAA VARAA
<DNAStringSet> <DNAStringSet> <AAStringSet> <AAStringSet>
CCG CCA P P
CGG CAG R Q
GGA GCA G A

a frameshift and varAA will be missing.

> ## CONSEQUENCE is 'frameshift' where translation is not possible
> coding[mcols(coding)$CONSEQUENCE == "frameshift"]

GRanges with 1 range and 17 metadata columns:

22:50317001

22:50317001

22:50317001

22:50317001

22:50317001

seqlengths:

segnames ranges strand | paramRangeID
<Rle> <IRanges> <Rle> | <factor>
chr22 [50317001, 50317001] + | <NA>
REF ALT QUAL FILTER
<DNAStringSet> <DNAStringSetList> <numeric> <character>
G GCACT 233 PASS
varAllele CDSLOC PROTEINLOC QUERYID
<DNAStringSet> <IRanges> <IntegerList> <integer>
GCACT [808, 808] 270 359
TXID CDSID GENEID CONSEQUENCE
<character> <integer> <character> <factor>
72592 214765 79174 frameshift

REFCODON VARCODON REFAA VARAA

<DNAStringSet> <DNAStringSet> <AAStringSet> <AAStringSet>

GCC GCC A

12

chr22
NA

5 SIFT and PolyPhen Databases

From predictCoding we identified the amino acid coding changes for the non-synonymous variants. For this
subset we can retrieve predictions of how damaging these coding changes may be. SIFT (Sorting Intolerant
From Tolerant) and PolyPhen (Polymorphism Phenotyping) are methods that predict the impact of amino
acid substitution on a human protein. The SIF'T method uses sequence homology and the physical properties
of amino acids to make predictions about protein function. PolyPhen uses sequence-based features and
structural information characterizing the substitution to make predictions about the structure and function
of the protein.

Collated predictions for specific dbSNP builds are available as downloads from the SIFT and PolyPhen
web sites. These results have been packaged into SIFT. Hsapiens.dbSNP132.db and PolyPhen.Hapiens.dbSNP131.db
and are designed to be searched by rsid. Variants that are in dbSNP can be searched with these database
packages. When working with novel variants, SIFT and PolyPhen must be called directly. See references for
home pages.

Identify the non-synonymous variants and obtain the rsids.

nms <- names (coding)

idx <- mcols(coding)$CONSEQUENCE == "nonsynonymous"

nonsyn <- coding[idx]

names (nonsyn) <- nms[idx]

rsids <- unique (names (nonsyn) [grep("rs", names(nonsyn), fixed=TRUE)])

vV V. Vv Vv Vv

Detailed descriptions of the database columns can be found with ?SIFTDbColumns and ?PolyPhenDb-
Columns. Variants in these databases often contain more than one row per variant. The variant may have
been reported by multiple sources and therefore the source will differ as well as some of the other variables.

It is important to keep in mind the pre-computed predictions in the SIFT and PolyPhen packages are
based on specific gene models. SIFT is based on Ensembl and PolyPhen on UCSC Known Gene. The
TranscriptDb we used to identify the coding snps was based on UCSC Known Gene so we will use PolyPhen
for predictions. PolyPhen provides predictions using two different training datasets and has considerable
information about 3D protein structure. See ?PolyPhenDbColumns or the PolyPhen web site listed in the
references for more details.

Query the PolyPhen database,

> library(PolyPhen.Hsapiens.dbSNP131)

> pp <- select(PolyPhen.Hsapiens.dbSNP131, keys=rsids,

+ cols=c("TRAININGSET", "PREDICTION", "PPH2PROB"))
> head(pp[!is.na(pp$PREDICTION), 1)

RSID TRAININGSET PREDICTION PPH2PROB
11 1rs8139422 humdiv possibly damaging 0.228
12 rs8139422 humvar possibly damaging 0.249
13 rs74510325 humdiv possibly damaging 0.475
14 rs74510325 humvar possibly damaging 0.335
15 rs73891177 humdiv benign 0.001
16 rs73891177 humvar benign 0.005

13

6 Other operations

6.1 Create a SnpMatrix

The GT’ element in the FORMAT field of the VCF represents the genotype. These data can be converted
into a SnpMatrix object which can then be used with the functions offered in snpStats and other packages
making use of the SnpMatrix class.

The genotypeToSnpMatrix function converts the genotype calls in geno to a SnpMatrix. No dbSNP
package is used in this computation. The return value is a named list where ’genotypes’ is a SnpMatrix and
‘map’ is a DataFrame with SNP names and alleles at each loci. The ignore column in 'map’ indicates which
variants were set to NA (missing) because they met one or more of the following criteria,

e variants with >1 ALT allele are set to NA
e only single nucleotide variants are included; others are set to NA
e only diploid calls are included; others are set to NA

See 7genotypeToSnpMatrix for more details.

> res <- genotypeToSnpMatrix(vct)

> res
$genotypes
A SnpMatrix with 5 rows and 10376 columns
Row names: HGO0O096 ... HGO0101
Col names: 1rs7410291 ... rs114526001
$map
DataFrame with 10376 rows and 4 columns
snp.names allele.1 allele.2 ignore

<character> <DNAStringSet> <DNAStringSetList> <logical>
1 rs7410291 A G FALSE
2 rs147922003 C T FALSE
3 rs114143073 G A FALSE
4 rs141778433 C T FALSE
5 rs182170314 C T FALSE
10372 rs187302552 A G FALSE
10373 rs9628178 A G FALSE
10374 rsb5770892 A G FALSE
10375 rs144055359 G A FALSE
10376 rs114526001 G C FALSE

In the map DataFrame, allele.1 represents the reference allele and allele.2 is the alternate allele.

> allele2 <- res$map[["allele.2"]]
> ## number of alternate alleles per variant
> unique(elementLengths (allele2))

[1] 1

In addition to the called genotypes, genotype likelihoods or probabilities can also be converted to a SnpMa-
trix, using the snpStats encoding of posterior probabilities as byte values. To use the values in the "GL’ or
"GP’ FORMAT field instead of the called genotypes, use the uncertain=TRUE option in genotypeToSnpMatrix.

14

> fl.gl <- system.file("extdata", "gl_chrl.vcf", package="VariantAnnotation")
> vcf.gl <- readVcf(fl.gl, "hg19")
> geno(vef.gl)

List of length 3
names(3): GT DS GL

> ## Convert the "GL" FORMAT field to a SnpMatrix
> res <- genotypeToSnpMatrix(vcf.gl, uncertain=TRUE)

> res
$genotypes
A SnpMatrix with 85 rows and 9 columns
Row names: NA06984 ... NA12890
Col names: 1rs58108140 ... rs200430748
$map
DataFrame with 9 rows and 4 columns
Snp.names allele.1 allele.2 ignore

<character> <DNAStringSet> <DNAStringSetList> <logical>
1 1rs58108140 G A FALSE
2 rs189107123 C TRUE
3 rs180734498 C T FALSE
4 rs144762171 G TRUE
5 rs201747181 TC TRUE
6 rs151276478 T TRUE
7 rs140337953 G T FALSE
8 rs199681827 C TRUE
9 rs200430748 G TRUE
> t(as(res$genotype, "character"))[c(1,3,7), 1:5]

NA06984 NA06986 NA06989 NA06994 NAO7000

rs58108140 "Uncertain" "Uncertain" "A/B" "Uncertain" "Uncertain"

rs180734498 "Uncertain" "Uncertain" "Uncertain" "Uncertain" "Uncertain"
rs140337953 "Uncertain" "Uncertain" "Uncertain" "Uncertain" "Uncertain"

> ## Compare to a SnmpMatrix created from the "GT" field
> res.gt <- genotypeToSnpMatrix(vcf.gl, uncertain=FALSE)
> t(as(res.gt$genotype, "character"))[c(1,3,7), 1:5]

NA06984 NA06986 NA06989 NA06994 NAO7000

rs58108140 "A/B" "A/B" "A/B" "A/A" "A/A"
rs180734498 "A/B" "A/A" "A/A" "A/A" "A/B"
rs140337953 "B/B" "B/B" "A/B" "B/B" "A/B"

> ## What are the original likelihoods for rs581081407
> geno(vef.gl)$GL["rs58108140", 1:5]

$NA06984
[1] -4.70 -0.58 -0.13

$NA06986

15

[1] -1.15 -0.10 -0.84

$NA06989
[1] -2.05 0.00 -3.27

$NA06994
[1] -0.48 -0.48 -0.48

$NAO7000
[1] -0.28 -0.44 -0.96

For variant rs58108140 in sample NA06989, the "A /B” genotype is much more likely than the others, so
the SnpMatrix object displays the called genotype.

6.2 Expand a VCF
Coming soon ... CollapsedVCF and ExpandedVCF classes and expand,CollapsedVCF-method.

6.3 Write out VCEF files

A VCF file can be written out from data stored in a VCF class. Methods to write out from more general
structures are in progress.

fl <- system.file("extdata", "ex2.vcf", package="VariantAnnotation")
outl.vef <- tempfile()

out2.vcf <- tempfile()

inl <- readVcf(fl, "hgl9")

writeVcf(inl, outl.vcf)

in2 <- readVcf (outl.vcf, "hgl9")

writeVcf (in2, out2.vcf)

in3 <- readVcf (out2.vcf, "hgl9")

identical (in2, in3)

VVVVVVVVYV

[1] FALSE

7 References

Wang K, Li M, Hakonarson H, (2010), ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Research, Vol 38, No. 16, e164.

McLaren W, Pritchard B, RiosD, et. al., (2010), Deriving the consequences of genomic variants with the
Ensembl API and SNP Effect Predictor. Bioinformatics, Vol. 26, No. 16, 2069-2070.

SIFT home page : http://sift.bii.a-star.edu.sg/

PolyPhen home page : http://genetics.bwh.harvard.edu/pph2/

8 Session Information

R version 3.0.1 (2013-05-16)
Platform: x86_64-unknown-linux-gnu (64-bit)

16

http://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] splines parallel stats graphics grDevices utils
[7] datasets methods base

other attached packages:
[1] snpStats_1.10.0
[2] Matrix_1.0-14
[3] lattice_0.20-23
[4] survival_2.37-4
[5] PolyPhen.Hsapiens.dbSNP131_1.0.2
[6] RSQLite_0.11.4
[7] DBI_0.2-7
[8] BSgenome.Hsapiens.UCSC.hg19_1.3.19
[9] BSgenome_1.28.0
[10] TxDb.Hsapiens.UCSC.hgl9.knownGene_2.9.2
[11] GenomicFeatures_1.12.4
[12] AnnotationDbi_1.22.6
[13] Biobase_2.20.1
[14] ggplot2_0.9.3.1
[15] SNPlocs.Hsapiens.dbSNP.20101109_0.99.6
[16] VariantAnnotation_1.6.8
[17] Rsamtools_1.12.4
[18] Biostrings_2.28.0
[19] GenomicRanges_1.12.5
[20] IRanges_1.18.4
[21] BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] MASS_7.3-29 RColorBrewer_1.0-5 RCurl_1.95-4.1
[4] XML_3.98-1.1 biomaRt_2.16.0 bitops_1.0-6
[7] colorspace_1.2-4 dichromat_2.0-0 digest_0.6.3
[10] grid_3.0.1 gtable_0.1.2 labeling 0.2
[13] munsell_0.4.2 plyr_1.8 proto_0.3-10
[16] reshape2_1.2.2 rtracklayer_1.20.4 scales_0.2.3
[19] stats4_3.0.1 stringr_0.6.2 tools_3.0.1
[22] zlibbioc_1.6.0

17

	Introduction
	Variant Call Format (VCF) files
	Data import and exploration
	Header information
	Genomic positions
	Genotype data
	Info data

	Import data subsets
	Select genomic coordinates
	Select VCF fields

	Locating variants in and around genes
	Amino acid coding changes
	SIFT and PolyPhen Databases
	Other operations
	Create a SnpMatrix
	Expand a VCF
	Write out VCF files

	References
	Session Information

