Creating In Silico Interactomes

Tony Chiang
April 3, 2013

1 Introduction

We explore the problem of estimating in silico interactomes: a collection of protein complexes for some
cell or tissue under certain specific conditions. We will focus our attentions on Saccharomyces cerevisiae
though this need not be the case in general.

This document will detail the various functions of ScISI by creating a running example for an in
silico interactome. It is recommended that the reader has a working session of R and investigates the
examples as they arise.

> library("ScISI")

2 Obtaining Information

2.1 Gene Ontology

Before an in silico interactome can be assembled, we must obtain the necessary information. As
remarked earlier, two sources are online databases, Gene Ontology (GO) and the Munich Information
Center for Protein Sequences (MIPS), and the third is a catalogue of apComplex estimates from a
number of small and large wet-lab experiments. We start by discussing how information is parsed from
the GO and MIPS databases.

Parsing through the GO database to collect the required information is done by calling the getGOInfo
function:

> goECodes = c("IEA", "NAS", "ND", "NR")
> go = getGOInfo(wantDefault = TRUE, toGrep = NULL, parseType=NULL,
+ eCode = goECodes, wantAllComplexes = TRUE)

All the information that is obtained from the getGOInfo function comes from the R packages GO
and GOstats. It is important to note that the Gene Ontology repository has periodic updates, so
the protein complexes obtained will reflect the version of GO you are using. getGOInfo essentially
parses through the Cellular Component (CC) of GO and (a)greps for specified key terms within certain
boundary conditions. The parsing is carried out on terms (i.e. character vectors) together with perl
regular expressions (this accounts for a boundary condition on protein complexes). The parameters of
getGOInfo have the following characteristics:

1 wantDefault: A logical: if passed into the function as TRUE, three default terms will be parsed:
complex by agrep, “\\Base\\b” by grep, and “\\Bsome\\b” by grep. The latter terms will search
for protein complexes such as RNA polymerase or Ribosomes which may not contain the term
complex.

2 toGrep: A named list with only one entry named “pattern” supplied. The pattern entry holds a
character vector of terms, with perl regular expressions, supplied by the users. getGOInfo will
parse for these terms within the CC ontology. If toGrep is not NULL, parseType must not be
NULL. This argument lets the user append to the search terms if wantDefault is TRUE, or it
allows the user to set the search terms if FALSE.

3 parseType: A character vector of parse terms, e.g. “grep” or “agrep”. This vector must either be of
length one or of the same length as the vector contained in toGrep. If parseType is of length one,
all entries of toGrep will be parsed uniformly. Otherwise, the i'" entry from parseType defines
the command for the i** entry from toGrep.

To illustrate one example of appending to the search defaults, we have supplied the suffix —somal
as a candidate for toBeParsed:

> toBeParsed = list()

> toBeParsed$pattern = "\\Bsomal\\b"

> goGrep = getGOInfo(wantDefault = TRUE, toGrep = toBeParsed, parseType = '"grep",
+ eCode = NULL, wantAllComplexes = TRUE)

> getGOTerm(setdiff (names (goGrep), names(go)))

$cc
G0:0022625
"cytosolic large ribosomal subunit"
G0:0022627
"cytosolic small ribosomal subunit"
G0:0000407
"pre-autophagosomal structure"
G0:0005778
"peroxisomal membrane"
G0:0005762
"mitochondrial large ribosomal subunit"
G0:0005763
"mitochondrial small ribosomal subunit"
G0:0005779
"integral to peroxisomal membrane"
G0:0005780
"extrinsic to intraperoxisomal membrane"
G0:0005782
"peroxisomal matrix"
G0:0015934
"large ribosomal subunit"
G0:0015935
"small ribosomal subunit"
G0:0034045
"pre-autophagosomal structure membrane"

>

Because wantDefault is still kept as TRUF, the three default search terms were also parsed. The
last line of code displays those GO protein complexes found with the addition of the term —somal
which were not found with only the default search terms.

4 eCode: A character vector of evidence code terms (cite here). The is another search restriction;
whereas perl regular expression put restrictions on the protein complexes as a whole, the evidence

codes operate on the individual proteins themselves. If a protein is only referenced by evidence
codes found within the eCode vector, it is dis-allowed and removed from the protein complex. In
the example above, we have chosen the evidence codes TEA (Inferred from Electronic Annota-
tion), NAS (Non-traceable Author Statement), ND (No biological Data available), and NR (Not
Recorded).

5 wantAllComplexes: A logical. If TRUE, the children of parsed nodes will also be returned
(accounting for sub-complexes). In addition, nodes that are children of the node “G0:0043234”
(the protein complex node) are returned as well.

> class(go)

[1] "list"

> names (go) [1:5]

[1] "GD:0000015" "GO:0000110" "GO:0000111" "GO:0000112" "GD:0000113"
> go$"G0:0005830"

NULL

The return value of getGOInfo is a named list (the code and actual output is shown above). The
names of this list corresond to the GO ID’s of the protein complexes selected, and the entries of the
list correspond to the yeast genes (using their systematic names) annotated to the repsective GO ID
(node). The list is one way to represent the hyper-graph. Each entry of the return value represents a
particular hyper-edge, and the union over all the entries of the list (i.e. over all the hyper-edges) yields
the vertex set.

The incidence matrix, M, of a bi-partite graph has its rows indexed by proteins and has its columns
indexed by the protein complexes. M;; = 1 if and only if protein 4 is a member of complex j, and
M, ; = 0 otherwise. Therefore, M is a {0,1} matrix which is generally sparse.

The function createGOMatrix takes the output of getGOInfo and creates the bi-partite graph
incidence matrix of this hyper-graph list.

> goM = list2Matrix(go)

We remark that we the proteins names used to index the rows of the incidence matrix are the
systematic gene names for yeast. To establish uniformity, we have used the systematic gene names
across all data sets. The columns of the incidence matrix are indexed by the GO id’s corresponding to
certain protein complexes.

Unfortunately, term mining is rarely comprehensive nor exhaustive. There exists GO nodes that
neither have the term complex within the Go terms nor do they have any terms ending in the suffixes
—ase nor —some. We have manually found additionally GO nodes of potential interest. The xtraG0
data set is a character vector of these hand selected GO protein complexes. There are 32 total extra
complexes though 6 of these complexes were already obtained by the getGOInfo function. From the
remaining 26 complexes, only 6 complexes were found to have non-trivial overlap with S. cerevisae in
the GO CC ontology. To check possible GO nodes and to add to the GO protein complexes, we call
the xtraGONodes function (example code shown below). It is important to note that the xtraGONodes
can only be called after an initial incidence matrix for the bi-partite graph of the GO protein complexes
has been built since this function will compare the extra GO nodes with those existing GO protein
complexes.

2.2 Munich Information Center for Protein Sequences

Parsing for information from the MIPS database (http://mips.gsf.de/genre/proj/yeast/) is completely
analogous to parsing the GO database and is done by calling the getMipsInfo function:

> mips = getMipsInfo(wantDefault = TRUE, toGrep = NULL, parseType = NULL,
+ eCode = NULL, wantSubComplexes = TRUE, ht=FALSE)

Unlike the getGOInfo function, getMipsInfo parse through three files downloaded from the complex
catalogue of the MIPS database. One file contains a hierarchy for the protein complexes (i.e. complexes
are built from sub-complexes) while the second file contains the protein composition of each of the
levels of the hierarchy from the first. Finally, the third file contains evidence codes which are used to
annotate proteins to each protein complex. These files are updated bi-annually, so it is important to
note that getMipsInfo should be updated periodically to correspond with the newer data files. With
the exception of the wantSubComplexes argument, the functionality of getMipsInfo is identical to that
of getGOInfo though the implementation is quite different. Thus, the parameters of getMipsInfo have
the following characteristics:

1 wantDefault: A logical: if passed into the function as TRUE, three default terms will be parsed:
complex by grep, “\\Base\\b” by grep, and “\\Bsome\\b” by grep.

2 toGrep: A named list with only one entry named “pattern”. The entry is a character vector
containing terms, with perl regular expressions, supplied by the users. getMipsInfo will parse for
these terms within the hierarchy. If toGrep is not NULL, parseType must not be NULL neither.
The terms supplied will be in addition to those of the default if wantDefault is TRUE or will be
the only terms parsed if FALSE.

3 parseType: A character vector of parse terms, e.g. “grep” or “agrep”. This vector must either
be of length one or of the same length as the vector toGrep. If parseType is of length one, all
entries of toGrep will be parsed uniformly. Otherwise, the i*" entry from parseType defines the
command for the i*" entry from toGrep.

Exactly like our in example with the getGOInfo function, we append to the default search terms
with the suffix —somal.

> toBeParsed = list()

> toBeParsed$pattern = "\\Bsomal\\b"

> mipsGrep = getMipsInfo(wantDefault = TRUE, toGrep = toBeParsed, parseType = "grep",
+ eCode = NULL, wantSubComplexes = TRUE)

> #mNm = setdiff (names (mipsGrep$Mips), names (mips$Mips))

> #mld = strsplit(mNm, split = "-")

> #sapply(mId, function(q) mipsGrep$DESC[q[2]])

Again the output of the code above shows the extra protein clusters obtained with the addition
of —somal to the three default search terms.

4 eCode: A character vector. This is a character vector of evidence codes. If a protein is only
indexed by the evidence codes given in this vector, it is removed from the protein complex it was
annotated using only these evidence codes. The default setting of this parameter is set to NULL
as the vast majority of the evidence codes pertain to the protein complex estimates obtained from
Affinity Purification - Mass Spectrometry (AP-MS) experiments.

5 wantSubComplexes: A logical. If FALSE, only the top levels of the hierarchy will be returned (the
aggregate protein complex); if TRUE, all the intermediates of the hierarchy will also be returned
(the sub-complexes as well). There are certain computational instances when retaining only the

top level protein complexes is necessary, but the default setting is to retain all protein complexes,
and hence the logical is TRUE.

6 ht: A logical. If FALSE, then the protein complexes obtained by high throughput experimentation
will not be extracted. Otherwise, if TRUE, those protein complexes obtained by high throughput
analysis are extracted.

Another difference between the getGOInfo and getMipsInfo functions is their respective outputs.
We have seen that the output from the getGOInfo is a named list that represents the hyper-graph, but,

from looking at the output printed below, this is not the case for getMipsInfo.
The output of getMipsInfo is a list with two entries:

> class(mips)

[1]

Illistll

> names (mips)

[1] "MIPS-60" "MIPS-90.10" "MIPS-90.20"

[4] "MIPS-90.30" "MIPS-125.10.10" "MIPS-130"

[7] "MIPS-133.30" "MIPS-133.40" "MIPS-133.50"

[10] "MIPS-140.30.30.20" "MIPS-140.30.30.30" "MIPS-160"

[13] "MIPS-230.10" "MIPS-230.20.10" "MIPS-230.20.20"
[16] "MIPS-230.20.40" "MIPS-240.20" "MIPS-260.20"

[19] "MIPS-260.20.10" "MIPS-260.20.20" "MIPS-260.20.30"
[22] "MIPS-260.20.40" "MIPS-260.30.30" "MIPS-260.30.30.10"
[25] "MIPS-260.30.30.20" "MIPS-260.40" "MIPS-260.50.10.10"
[28] "MIPS-260.60" "MIPS-260.70" "MIPS-260.80"

[31] "MIPS-260.90" "MIPS-260.100" "MIPS-265"

[34] "MIPS-270.10" "MIPS-270.10.10" "MIPS-270.20"

[37] "MIPS-270.20.10" "MIPS-270.20.20" "MIPS-270.20.30"
[40] "MIPS-270.20.40" "MIPS-270.20.50" "MIPS-290"

[43] "MIPS-290.20.10" "MIPS-290.20.20" "MIPS-290.20.30"
[46] "MIPS-295" "MIPS-300" "MIPS-310"

[49] "MIPS-310.10" "MIPS-310.20" "MIPS-310.40"

[52] "MIPS-320" "MIPS-350.10.10" "MIPS-400"

[55] "MIPS-410.10" "MIPS-410.20" "MIPS-410.30"

[68] "MIPS-410.35" "MIPS-410.40.20" "MIPS-410.40.30"
[61] "MIPS-410.40.60" "MIPS-420.20" "MIPS-420.30"

[64] "MIPS-420.40" "MIPS-420.50" "MIPS-440.12.10"
[67] "MIPS-440.12.30" "MIPS-440.30.10.10" "MIPS-440.30.10.20"
[70] "MIPS-445.10" "MIPS-445.20" "MIPS-445.30"

[73] "MIPS-470.10" "MIPS-470.20" "MIPS-475.05"

[76] "MIPS-475.10" "MIPS-480.10.05" "MIPS-490"

[79] "MIPS-500.10.110" "MIPS-510.30" "MIPS-510.40.20"
[82] "MIPS-510.160" "MIPS-510.170" "MIPS-510.180.10.10"
[85] "MIPS-510.180.10.20" "MIPS-510.180.10.30" "MIPS-510.180.10.40"
[88] "MIPS-510.180.30.10" "MIPS-510.180.30.30" "MIPS-510.180.50.10"
[901] "MIPS-510.180.50.20" "MIPS-510.190.10.10" "MIPS-510.190.10.20.10"
[94] "MIPS-510.190.10.20.20" "MIPS-510.190.30" "MIPS-510.190.40"
[97] "MIPS-510.190.50" "MIPS-510.190.60" "MIPS-510.190.70"
[100] "MIPS-510.190.80" "MIPS-510.190.90" "MIPS-510.190.100"
[103] "MIPS-510.190.110" "MIPS-510.190.120" "MIPS-510.190.130"

[106]
[109]
[112]
[115]
[118]
[121]
[124]
[127]
[130]
[133]
[136]
[139]
[142]
[145]
[148]
[151]
[154]
[157]
[160]
[163]

"MIPS-510.
"MIPS-510.
"MIPS-510.
"MIPS-520.
"MIPS-80"
"MIPS-120.
"MIPS-170"
"MIPS-180.30"
"MIPS-200"
"MIPS-250"
"MIPS-340"
"MIPS-370"
"MIPS-410.40.90"
"MIPS-410.50"
"MIPS-440.14.10"
"MIPS-485"
"MIPS-510.40.10"
"MIPS-510.180.30.20"
"MIPS-360"
"MIPS-510.180.10"

190.140"
190.160.20"
190.200"
10.20"

10"

"MIPS-510.190.150"
"MIPS-510.190.160.30"
"MIPS-520.10"
"MIPS-20"
"MIPS-110"
"MIPS-120.20"
"MIPS-180.10"
"MIPS-190.10"
"MIPS-210"
"MIPS-280"
"MIPS-350.20"
"MIPS-390"
"MIPS-410.40.100"
"MIPS-430"
"MIPS-440.40.10"
"MIPS-510.10"
"MIPS-510.110"
"MIPS-520.20"
"MIPS-360.10"

"MIPS-510.190.160.10"
"MIPS-510.190.190"
"MIPS-520.10.10"
"MIPS-70"
"MIPS-120"
"MIPS-123"
"MIPS-180.20"
"MIPS-190.20"
"MIPS-220"
"MIPS-330"
"MIPS-350.30"
"MIPS-380"
"MIPS-410.40.110"
"MIPS-440.12.20"
"MIPS-450"
"MIPS-510.40"
"MIPS-510.120"
"MIPS-520.30"
"MIPS-360.10.10"

The first, Mips, is a named list of character vectors where the names are the MIPS IDs and the
vectors contain the constituent members to the respective protein complexes (i.e. it is also a hyper-graph
representation exactly like the getGOInfo output):

> class(mips)

[1] "list"

> names (mips) [1:10]

[1]
[4]
[7]
[10]

"MIPS-60" "MIPS-90.10" "MIPS-90.20"
"MIPS-90.30" "MIPS-125.10.10" "MIPS-130"
"MIPS-133.30" "MIPS-133.40" "MIPS-133.50"

"MIPS-140.30.30.20"

> mips$Mips$"MIPS-510.40"

NULL

And the second is a named character vector where the names, again, correspond to MIPS ID and
the entries contain a description of its respective protein complex:

> names (mips$DESC) [1:5]

NULL

> mips$DESC["510.40"]

NULL

The GO package has methods of returning descriptions of any GO ID, and, therefore, it is redundant
to create such a character vector containing the descriptions. Since there is no such methods for the
MIPS dataset, it is necessary to record this vector as we parse the MIPS files.

The MIPS bi-partite graph incidence matrix is created exactly as the GO bipartite graph incidence
matrix. The argument for createMipsMatrix is the output from getMipsInfo.

> mipsM = list2Matrix(mips)

Again we use the systematic gene names for yeast to index the rows of the MIPS incidence matrix
and the the MIPS ID’s corresponding to protein complexes index the columns. It is important to note
that createMipsMatrix has prefixed each of the MIPS id’s with the term “MIPS-". This is useful when
we merge different incidence matrices, for it allows us to know where each protein complex orginates.

2.3 Purified Data Set Complexes estimated by apComplex

Protein complexes obtained from the both the GO and MIPS repository haven generally come from
small-scale experiments, and the resulting protein complex estimates have been curated. These esti-
mates, therefore, have a stronger likelihood to correctly represent true protein complexes found in vivo.
Within the last five years, high throughput techniques such as Tandem Affinity Purification followed
by Mass Spectroscopy have assayed protein complex co-membership relationships in large scale. We
use data derived from such AP-MS experiments and complex estimation algorithms on such data to
generate novel protein complex estimates (which have not been curated).

> library("ppiData")
> get ("Gavin2006BPGraph")

A graphNEL graph with directed edges
Number of Nodes = 2551
Number of Edges = 19105

Presently, three small-scale and two large-scale AP-MS experimental datasets are publically avail-
able. The R-data package ppiData contain these five datasets and store them as a directed graph object
(as seen from the example "Gavin2006BPGraph”). These directed graphs represent bait to prey co-
membership data assayed from the experiment rather than explicit protein complex composition. In
fact, protein complex estimation is a difficult computational problem that is in itself an active area of
research.

From the bait/prey data obtained from ppiData, we applied a quality assessment on the protein
interactions (cite); those proteins which are likely affected by a systematic bias of the experimental
assay are removed from further analysis. Once the quality assessment is completed, we applied the
penalized likelihood method of protein complex estimation given in apComplex (cite) to obtain protein
complex estimates from the data.

The methods and discussion for conducting the quality assessment on the AP-MS protein interaction
data can be found within the R-package ppiStats, and we defer discussion of this process to that package.
Likewise, a discussion concerning the estimation of protein complexes from the bait to prey data can
be found within apComplex. For the purposes of generating high quality protein complexes to be added
to the in silico interactome, we generated protein complexes via apComplex by removing all proteins
likely affected by a systematic bias at the p-value threshold of 0.01 and then setting the commonFrac
parameter of the findComplexes function of apComplex to % One further step taken to produce higher
quality complexes is to use statistically significant derived data, i.e. only those estimates which fall
under the multi-bait (more than one protein in the complex was used as a bait protein in the AP-MS
techonology) and multi-edge (the directed graph showed higher instances of reciprocity) were taken to
be high quality protein complex estimates.

Again the bi-partite graph incidence matrix are indexed in the rows by the yeast standard gene
names, but since there are no complex id’s for the estimates reported by apComplex, the getAPMSData
function denominates ad hoc id’s for these complexes. The columns are indexed by such ad hoc ids
which reference the wet-lab experiments from where the were derived.

3 Comparing Protein Complexes Within and Across Databases

Now that we have obtained the various bi-partite graph incidence matrices, we need to evaluate and
cross reference the protein complexes within a single database as well as across databases and eliminate
redundancy. There are two items for which we must find when cross referencing protein complexes:
equality or inclusion. To compare two bi-partite graph incidence matrices, we use the runCompareCom-
plex function:

> mips2mips = runCompareComplex(mipsM, mipsM)
> go2go = runCompareComplex(goM, goM)

> mips2go = runCompareComplex (mipsM, goM)

> names (mips2go)

(11 "Jjc» "equal" "toBeRm" "subcomplex" "toBeRmSubC"

The runCompareComplex function takes two bi-partite graph incidence matrices as arguments, and
compares each complex from the first bipartite graph to the each complex from the second bi-partite
graph. The argument byW hich shall be elucidated in the following paragraphs. Note that the bi-partite
graphs need not be different as we can run this function on a single bi-partite graph. The output of
this function is a named list whose entries carry various statistical information. An explanation of each
entry follows:

3.1 Jaccard Coefficients

The JC entry of the output from runCompareComplex contains a matrix of the Jaccard similarity coef-
ficient between the two incidence matrices that are compaired - in our running example, the complexes
of mips and the complexes of go. The (i,)" entry of this matrix corresponds to the Jaccard similarity
between the i® complex of mips and the j* complex of go. The coefficient is calculated by taking the
quotient of the cardinality of the intersection of these complexes mips; N go; by the cardinality of the
union of the same complexes mips; U go;:

_ |mips; N goj|

JC;j = (1)

|mips; U go;|’
> all(diag(mips2mips[["JC"]]) == 1)
[1] TRUE

Equality of complexes returns a Jaccard index of unity while disjoint complexes return zero. So
when we compared the Incidence matrix of MIPS against itself, we would have gotten 1’s along the
main diaganol. We remark that if one complex completely contains another, e.g. go; C mips;, the
Jaccard index will be the cardinality of go; divided by the cardinality of mips;:

9o,
~ 2
mipsi] (2)

it is important to realize that containment is not easily ascertained without the cardinality of each
complex at hand.

3.2 Alignment of Protein Complexes

The maxIntersect entry of mips2go aligns either the complexes of go to complexes of mips or com-
plexes of mips to complexes of go or both. We define alignment in this context to mean for a given
protein complex of one bipartite graph which complex(es) in the second bipartite graph will return a

maximal Jaccard coefficient. This operation is not symmetric, and therefore the byW hich argument
in runCompareComplex instructs the function as to which alignment to produce: “ROW” compares all
the complexes of the second bi-partite graph with each complex to the first; “COL”compares all the
complexes of the first bi-partite graph with each complex of the second; and “BOTH” will produce both
the the outputs. This particular alignment will often not be one to one, but rather, one to many if
either the “ROW?” or the “COL” parameters are set. The mapping will be many to many if the “BOTH”
parameter is set.
The mazxIntersect entry is itself a named list with two entries:

> names (mips2go$maxIntersect)
NULL

The maximize entry records the maximum Jaccard indices for each of the complex aligned either
by “row” or by “column” or both if they are both called. The maxComp entry contains a list of named
vectors also either by “row” or “column”; the names of the vectors correspond to the complex aligned
and the entries are the names of those complexes for which produce the highest Jaccard index.

> mips2go$maxIntersect$maximize$row[1:3]
NULL

> mips2go$maxIntersect$maxComp$row([1:3]
NULL

>

The information obtained by the maxzIntersect entry allows us to interpret how similar (or close)
each complex is with respect to other complexes. From this information, we can decide whether to
allow or dis-allow any protein complex within the in silico interactome if they are deemed to be too
similar. For the creation of the working example interactome, we only dis-allow one complex from a
pair of complexes if and only if that pair returns Jaccard index 1 which implies equality between the
two complexes.

3.3 Equality of Protein Complexes

The equal entry records protein complexes of the first bi-partite graph matrix equal to those in the
second and this is easily done by selecting those complexes which have a Jaccard index of unity. To
produce an in silico interactome, we will eventually merge the different bi-partite graph matrices, and if
two different bi-partite graphs have common protein complexes, we need to determine those complexes
and eliminate redundancy.

> length(mips2go$equal)

[1] 47

> names (mips2go$equal [[1]])

[1] "BGiComp" "BG2Comp" "orderBG1Comp" "orderBG2Comp" "intersect"

> mips2go$equal[[1]]

$BG1Comp
[1] "MIPS-90.10"

$BG2Comp
[1] "GD:0033186"

$orderBG1Comp
(1] 3

$orderBG2Comp
[11 3

$intersect
[1] 3

The equal entry is a list of list which in turn has five entries: “BG1Comp” records the complex of the
first bi-partite graph; “BG2Comp” records the complex of the second bi-partite graph; “orderBG1Comp”
records the cardinality of “BG1Comp”; analogously for “orderBG2Comp”; and finally, “intersect” records
the cardinality of BG1Comp N BG2Comp. Rather than just recording the complex names, this data
structure allows the user to inspect relative size of those common complexes.

We remark here that there can be redendancy even within a single database as well, and it is
necessary that we find and eliminate those protein complexes that may have occurred more than once
in a database:

> ind = which(sapply(mips2mips$equal, function(w) w$BG1Comp != w$BG2Comp))
> mips2mips$equal [ind]

The code above shows the redundancy within the Mips data-base. Though we have hidden the
outputs, we encourage the user to run these commands to see the redundancies found within Mips and
within any other data repository.

3.4 Eliminating Redundancy

The “toBeRm” entry takes only those protein complexes of the first bi-partite graph (in our running
example, this would be mips or equivalently mipsM) which are equal to some protein complexes of
the second bi-partite graph. The result is a character vector of protein complexes that will need to be
deleted in order to avoid redundancy in the in silico interactome.

3.5 Protein Sub-Complexes

The “subcomplex” looks for any complex from one bi-partite graph which is completely contained in a
complex from the other bi-partite graph. The outputs in this entry are identical to those of the equal
and defer the reader to the explanation written previously.

While the storage of the data does not explicitly state which complex contains the other complex,
it is pretty clear that the sub-complex must have the smaller cardinality. It is quite evident that if
two complexes are equal, then one of the two complexes must be removed to eliminate redundancy; it
is not clear, however, whether or not to remove sub-complexes. For the purpose of simulating AP-MS
technology, sub-complexes will be masked by the aggregate complex, and thus, removal is needed to
avoid redundancy. There may be other computational tools that require the availability of the sub-
complexes, so there is no consistent framework calling for the removal of sub-complexes, and hence,
we leave that decision to the users. For the construction of the working example of the in silico
interactome, we do not remove protein sub-complexes, and so our estimates will carry through with
their inclusion.

10

3.6 Removing Protein Sub-Complexes From the Interactome

If removal of sub-complexes is necessary, we have built a simple component into the runCompareComplex
function that makes this process fairly simple. The toBeRmSubC' entry records all those protein clusters
which a proper sub-complexes of another protein complex, either within a single database or across
databases.

> mips2mips$toBeRmSubC[1:3]

[1] "MIPS-230.20.10" "MIPS-260.20.10" "MIPS-260.20.20"
> mips2go$toBeRmSubC[1:3]

[1] "MIPS-60" "MIPS-90.20" "MIPS-125.10.10"

Much like the toBeRm entry of the output from runCompareComplex, the toBe RmSubC entry is a
a character vector of protein complexes that should be removed if sub-complexes are irrelevant.

As an aside, we remark that it is necessary to record what we have removed, either redundant protein
complexes or protein sub-complexes, so we advise users who are building these in silico interactomes
to save the pair-wise comparison data from the output of runCompareComplex.

> save(mips2go, file="mips2go.rda", compress=TRUE)

4 Combining Bi-Partite Graphs - Building In Silico Interac-
tomes

After we have called the runCompareComplex function on two different bi-partite graph matrices, we can

merge these repsective graph incidence matrices to form an aggregate incidence matrix and thus creating

an aggregate bi-partite graph. The aggregate bi-partite graph, A, has certain important characteristics:

the rows of A are indexed by the union of the proteins of the two constituent bi-partite graphs and the

columns are indexed by the union of the protein complexes of the two constituent bi-partite graphs.
To merge two incidence matrices, we simply call the mergeBGMat function:

> dim(mipsM)
[1] 814 163

> dim(goM)
[1] 2486 373

> ISI = mergeBGMat (mipsM, goM, toBeRm = c(mips2go$toBeRm, mips2Zmips$toBeRm, go2go$toBeRm))
>

The first two arguments of the mergeBGMat function is two bi-partite graph incidence matrices;
the last argument is a character vector of those protein complexes which should be deleted in order
to avoid redundancy or to eliminate certain protein complexes that should be dis-allowed from the
in silico interactome. We have chosen to only remove redundant protein complexes in our working
example; the end user has the freedom to choose whichever protein complexes to remove from the in
silico interactome. A character vector consisting of the identification code of the unwanted protein
complexes should be passed into the toBeRm parameter so that these protein complexes are disallowed.

Once two bi-partite graphs are merged, we can now call the runCompareComplex on the merged
incidence matrix and a new bi-partite graph matrix (one which is not any of the constituent matrices
of merged). It is also important to call the runCompareComplex function on each bi-partite graph
from within one database in addition to comparing across databases. In this way, redundancy can be
eliminated in all avenues, and we can construct the in silico interactome iteratively by merging a new
incidence matrix in each subsequent iteration.

11

5 The estimated Saccharomyces cerevisiae In Silico Interac-
tome

Up until now, we have demonstrated how to use the various functions of the SclSl, but we diverge from
that endeavor to explore the characteristics of our working example in silico interactome for budding
yeast. By obtaining the dimension tag of incidence matrix representing the interactome,

> dim(ISI)
[1] 2737 484

we can determine the number of uniquely expressed genes of the yeast genome (i.e. the number of
rows of the IST which is the first entry of the output above), and the number of distinct multi-protein
complexes derived from the five different data sources (respectively the number of columns of the ISI
which corresponds to the second entry).

There are two summary statistics that are of some importance. The first figure gives an indication of
the distribution of the cardinality of the protein complexes within the in silico interactome. We can see
from this figure that the majority of the protein complexes have less than ten constituent proteins. This
statistic verfies what many have conjectured - that most multi-protein complexes are have relatively
few proteins. It is also widely conjectured that the larger multi-protein complexes are built from the
union of sub-complexes (e.g. Mitochondrial translocase complex) which can be verified in our working
interactome by exploring the relationships between aggregate complexes and sub-complexes. We have
touched upon this analysis in Table [2] but a more thorough and exhaustive analysis is conducted in
(cite).

The second summary statistic gives the distribution of the number of complexes for which each
protein may have membership. This statistic is important because we can use this distribution (along
with the summary statistic above concerning protein complex size) to give us a sense of the nodal degree
of a generic protein in this rather large co-membership network.

The second histogram shows that an overwhelming majority of proteins participate in fewer that
five distinct protein complexes. Because the majority of complexes have fewer than ten members and
because the majority of proteins are members of fewer than 5 protein complexes, the number of neighbors
of a generic protein in the protein-protein co-membership graph should also be relatively small.

We also discuss some simple summary statistic concerning the pairwise comparisons between the
five data-sets in which we have obtained our protein complexes.

Table || reports the number of protein complexes that were redundant by comparing the repositories
pairwise including self comparisons. Table[I]shows that the only data-set with self-redundancy is derived
from the MIPS repository; and upon investigation, MIPS has categorized protein complexes by known
functionality, and three protein complexes were placed in two different categories each. Table (1| directly
shows that the no two repositories has extremely large overlap.

MIPS GO Gavin Ho Krogan

MIPS 4 38 1 2 0
GO 38 0 5 2 1
Gavin 1 5 0 0 1
Ho 2 2 0 0 0
Krogan 0 1 1 0 0

Table 1: Number of repetitive Protein Complexes
Not limited to redundant protein complexes, we also process each data-set independently to find

and to remove all protein sub-complexes. The results are reported in Table [2| where the row names
indicate the location of the sub-complex and the column names indicate the location of the aggregate

12

protein complex. Reading across row two of Table [2] we see that GO contains protein complexes that
were protein sub-complexes in each of the other data repositories including itself. Table 2] is much less
sparse relative to Table |1} and it is this relative comparison that makes all the estimates more credible
since each data repository is based on unique experiments coupled with unique estimation algorithms.

MIPS GO Gavin Ho Krogan

MIPS 39 52 21 0 2
GO 34 14 19 1 7
Gavin 10 26 0 5 1
Ho 12 14 9 0 1
Krogan 11 8 14 4 0

Table 2: Number of Protein Sub-Complexes

While these four summary statistics give a good description of the in silico interactome, these
statistics cannot give a comprehensive description; that would take a much more considerable dissection
of the interactome (for which computational experiments should be conducted). It is also necessary to
state that this interactome represents Saccharomyces cerevisiae for some set of environmental conditions,
and so is one of the many estimates that can be created by this package.

We remark that the interactome can only give predicted members of the protein complexes of interest,
but it cannot ascertain the multiplicity of each individual constituent protein member. Therefore, it is
important to be mindful that the in silico interactome is a good model and representation of known
biology, and so it is limited in its presentation.

6 Customizing the Interactome

We have successfully built an in silico interactome, and for some computational methodologies, this
interactome is the best interactome to use. In this section, we present some other functions within SclSI
that allows the users to refine the interactome from the coarser one built.

6.1 Generating an Instance of Class yeastData

One of the functionalities of the SclSI package is to create an instance of the class yeastData. Before
we can instantiate this class, some preliminary functions need to be called.

The class yeastData will contain all the available information of some bi-partite graph, and so we
must collate these sets of information into one usable format. We can do this by calling either the
createGODataFrame or createMipsDataFrame function.

> goDF = createGODataFrame(go, goM)
> mipsDesc <- sapply(mips, function(x) {attr(x, "desc")})
> mipsDF = createMipsDataFrame (mipsDesc, mipsM)

The names of these two functions describe the output quite explicitly, but the arguments need
some clarification. The arguments for the both functions are essentially the same. The arguments for
createGODataFrame are:

1 go - A named list whose entries are character vectors. This is essentially the hyper-graph of the
GO protein complexes. The GO id’s are obtained by calling the names function on the list, and
the description for the protein complexes is obtained by calling the getGOTerm function from GO.

2 goM - The incidence matrix representing the GO hyper-graph. The names of the GO protein
complexes are obtained by calling the colnames on this matrix.

13

The arguments for the function createMipsDataFrame are:

1 mips$DESC - A named character vector. The MIPS’ id’s are obtained by calling names on the
vector, and the description is obtained by accessing the vector values.

2 mipsM - The incidence matrix representing the MIPS hyper-graph. The names of the MIPS’
protein complexes are obtained by calling the colnames on this matrix.

The generated database holds three distinct pieces of information for each protein complex: its name
relative to the incidence matrix; its id (GO or MIPS); and its description.

> #head (mipsDF)

Once we have created either the GO dataframe or the MIPS dataframe, we can proceed to call an
instance of the yeastData class. Instantiating an yeastData object is done by calling the createYeast-
DataObj function:

> mipsOb = createYeastDataObj (mipsDF)
> goOb = createYeastDataObj (goDF)

With the instance of the yeastData class, we have access to three generic methods: ID, Desc, and
getURL.

> ID(mipsOb, "MIPS-510.40")
[1] "MIPS-510.40"
> Desc(mipsOb, "MIPS-510.40")

MIPS-510.40
"RNA polymerase II holoenzyme"

> getURL (mipsOb, "MIPS-510.40")
[1] "http://mips.gsf.de/genre/proj/yeast/searchCataloglistAction.do?style=cataloglist.xslt&table=CELLU

The arguments for each of the methods are identical: the first argument (mipsOb in our running
example) is the instance of yeastData; the second argument (“MIPS-510.40” in the running example) is
the name of the protein complex as defined in the incidence matrix mipsM, i.e. the column names. A
good exercise is too create an instance of yeastData with the GO dataframe and work with the generic
methods.

The return values the ID and Desc are self-explanatory. The output for getURL returns the url
for the web-page containing a detailed description of the MIPS or GO protein complex. This allows
the user to parse through the derived protein complexes manually and refine the in silico interactome.
Simply call the browseURL function with the output of getURL as the argument to open a browser with
the specified web-page.

6.2 Generating an Informational .html File

Once we have created an instance of yeastData, we can call the ScISI2html function to generate a .html
file in the user’s home directory.

14

mipsNames = colnames (mipsM)
mipsCompOrder = colSums (mipsM)
url = vector(length = length(mipsNames))
linkNames = vector(length = length(mipsNames))
for(i in 1:length(mipsNames)){
url[i] = getURL(mipsOb, mipsNames[i])
linkNames[i] = Desc(mipsOb, mipsNames[i])
}
ScISI2html (urlVect = url, linkName = linkNames, filename = "mips.html",
title = "MIPS Protein Complex", compSize = mipsCompOrder)
goNames = as.character(goDF[,1])
goCompOrder = colSums (goM[,goNames])
url = vector(length = length(goNames))
linkNames = vector(length = length(goNames))
for(i in 1:length(goNames)){
print (i)
url[i] = getURL(goOb, goNames[i])
linkNames[i] = Desc(goOb, goNames[i])
}
ScISI2html (urlVect = url, linkName = linkNames, filename = "go.html",
title = "GO Protein Complex", compSize = goCompOrder)

+V+ 4+ ++VVVVV+VH++VYVYVVY

The arguments for the ScISI2html are somewhat self explanatory, but we will provide a terse
description of each argument:

1 urlVect is a character vector consisting of url address for the protein complexes.
2 linkName is a character vector taht will be anchored by url.

3 filename is a character that will name the file, e.g. in our running example, the output file will
be named “mips.html” and “go.html”.

4 title will be the title of the .html file.

The purpose for this .html file is a quick and efficient way for users to manually parse the protein
complexes derived from SclSi either for quality control and for refinement.

#ISI2 = unWantedComp (ISI, unwantedComplex =

c("G0:0000262",
"G0:0000228",
"GO:0000775",
"G0:0010008",
"G0O:0005792",
"GO:0005768",
"GO:0005769",
"GO:0005770",
"GO:0005777",
"G0:0005844",
"GO:0001400"))

HOH R R R OB OB R R KRR

data(ScISIC)

>
>
>
>
>
>
>
>
>
>
>
>
>
>
> identical(ISI, ScISIC)

[1] FALSE

15

The function has two arguments, the bi-partite graph incidence matrix and a character vector. Each
entry of the character vector is an protein complex ID which will be deleted. After the deletion of these
protein complexes, the function also removes any proteins which are no longer apart of any protein
complex.

7 Conclusion

The process given above has created one example on an in silico interactome. For the purposes of
simulating AP-MS data and generating estimates of via estimation algorithms, this interactome is a
sound place from where to begin. It is clearly not the most suitable interactome for every computational
experiment, and we concede that refinements will inevitably be made. The in silico interactome will
also change and refine itself as the data from the GO and MIPS databases are refined. One of the most
important aspect to the R package SclSI is its dynamic nature, for the basic principal in which it has
been built is that the in silico interactome must be amenable to change due to a number of outside
circumstances.

16

Frequency

Complex Cardinality

o

O pa—

g

o

o —

™ >
[S]
e
()
>
o

8 o

L 7 L

o

o —]

i

o JdL b=

1T 17T 17T 17T 1T T
0 100 200 300
SclSI Protein Complex Cardinality
Figure 1:

17

Complex Membership

1500

1000

500

1T 1T 1T 711
0O 2 4 6 8 10

Complex Membership per Protein

	Introduction
	Obtaining Information
	Gene Ontology
	Munich Information Center for Protein Sequences
	Purified Data Set Complexes estimated by apComplex

	Comparing Protein Complexes Within and Across Databases
	Jaccard Coefficients
	Alignment of Protein Complexes
	Equality of Protein Complexes
	Eliminating Redundancy
	Protein Sub-Complexes
	Removing Protein Sub-Complexes From the Interactome

	Combining Bi-Partite Graphs - Building In Silico Interactomes
	The estimated Saccharomyces cerevisiae In Silico Interactome
	Customizing the Interactome
	Generating an Instance of Class yeastData
	Generating an Informational .html File

	Conclusion

