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1 Introduction

This document contains instructions on how to employ the functions con-
tained within the SANTA package. SANTA builds upon Ripley’s K-function
[1], a well-established approach in spatial statistics that measures the clus-
tering of points on a plane, by applying it to networks. Using this approach,
the K** and K*°% functions are defined. K** detects the clustering of hits
across a network in order to measure the strength of association between the
network and a phenotype. K% ranks genes according their distance from
the hits, providing a natural way of prioritising vertices for follow-up analyses.

The SANTA package contains functions that can be used to measure the
distance between vertex pairs (GraphDiffusion and GraphMFPT), a function
to create graphs according to set parameters (CreateGraph) and a function
that can be used to visualise the K*** function (plot.Knet).

SANTA uses the igraph package to handle the networks.

2 Overview of SANTA

2.1 Guilt-by-association

The guilt-by-association (GBA) principle states that genes with the same in-
teraction partners are more likely to share biological function. For example,
two genes seen to interact in a synthetic genetic array (SGA) are more likely
to encode products involved in the same pathway or complex than two genes
not seen to interact. K"°* uses this principle to measure the strength of as-
sociation between a network and a phenotype. By measuring the clustering
of the gene set across biological networks it becomes possible to identify the
network that best explains the mechanisms and processes that produce the
set.

This principle is also used by K2°% to prioritise genes for follow up studies.
If a set of genes has been identified as being associated with a particular
cellular function, then the GBA principle states that genes seen interacting
with this set are also likely to be involved in the function.



SANTA addresses two complementary goals: it can (i) functionally annotate
experimentally derived networks using curated gene sets, and (ii) annotate
experimentally derived gene sets using curated networks. To exemplify the
first goal, we show that our approach helps to elucidate the functional content
of the S. cerevisiae genetic interaction network and its rewiring in DNA
damage response (Section 3).

2.2 Ripley’s K-statistic on networks

Ripley’s K statistic is a tool used to analyse the spatial distribution of points
on a plane. It is typically applied to two- or higher-dimensional spaces. In
two dimensions, the function works by counting the number of points con-
tained within circles of radius s, positioned around each point on the plane.
As s is increased, a greater proportion of the points become contained within
each circle. If the points on the plane are clustered, then the number of
points contained within each circle will increase faster with s.

By taking the distances between vertex pairs in networks, it becomes possi-
ble to apply Ripley’s K statistic and measure the clustering of high-weight
vertices:

ne 2 — . .

K"(s) = e Y pi) (=) Ud(i,j) < s) (1)
i J

where p; is the weight of node i, d9(i,j) is the distance between node i

and node j according to the distance method selected (see Section 2.5).

I(d9(i,j) < s) is an indicator function and equals 1 if d9(i,j) < s and 0

otherwise. p = >, p and p = %, where n, equals the number of vertices

within the network.

Ripley’s K-function has previously been applied to geographical networks
(such as road networks) in order to identify the clustering of objects along
these networks [2]. However, key differences between the previous implemen-
tation and the implementation of the K-function used in SANTA (such as
the inclusion of continuous weights and the position of the weight on ver-
tices rather than on edges) allows for the function to be applied to numerous
biological networks.



2.3 Using K*** to measure the clustering of high-weight
vertices

SANTA applies spatial statistics and the GBA principle to networks in order
to measure the strength of association between a network and a phenotype.
It does this by quantifying the clustering of high-weight vertices within the
network. High-weight vertices represent those genes that are part of a gene
set or are most strongly linked with the phenotype. As previously explained,
the GBA principle implies that the stronger the clustering, the better the
network is at describing the mechanisms that produce and maintain the phe-
notype.

The AUK of a K®®* or K** curve can be computed by subtracting the area
of the region between K“(s) = 0 and negative regions of the curve from
the region between K“(s) = 0 and positive regions of the curve. If there is
clustering of high-weight vertices on the network then the K** function will
initially increase with s and the AUK will be high. Conversely, if there is
no clustering of high-weight vertices then the function is unlikely to increase
and AUK will equal a value closer to 0.

In some scenarios, weights may only be available for a subset of graph ver-
tices. For example, in RNAI screens, some genes may be identified as being
involved in maintaining a phenotype (and be given a high weight), some
genes may be identified as not being involved (and be given a low weight or
a weight of 0) and some genes may not be tested. Genes for which no data
is available should be excluded from the K** function. However, the gene
should remain in the graph to allow for the correct calculation of vertex pair
distances. This is done by giving the vertex a weight of NA.

Because of the large number of possible graph structures, it is not possible
to determine how significant an observed K*¢* curve is by simply taking the
AUK. In order to determine significance, the vertex weights on the graph
are randomly permuted and the K** AUK calculated for each of these per-
mutations. It is then possible to compare the observed AUK score to the
distribution of permuted AUK scores and quantify the significance. The
distribution of permuted AUK statistics is modelled as a normal distribu-
tion and a z-test performed to produce an empirical p-value for the observed
AUK. The p-values produced represents the probability that the clustering



of vertex weights at least as extreme as what is observed occurs given that
the vertex weights are distributed randomly across the network. The figures
produced in Section 3 visualise this comparison of observed and permuted
AUK scores.

2.4 Using K" to rank vertices by their strength of
association with high-weight vertices

Taking the inner sum of the K*¢* equation makes it possible to rank vertices
by their distance from high-weight vertices. This inner sum is called the K»°%¢
function:
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The K®°% function provides a natural way to prioritise genes for follow up
studies. This function incorporates the network structure and each vertex
weight in order to quantify the strength of association between an individ-
ual vertex and a distribution of vertex weights. For those vertices close to
a large number of high-weight vertices, the K**% function will initially in-
crease with s, before returning to 0 as s reaches the diameter of the graph.
Conversely, for those vertices positioned further away from the high-weight
vertices, the K*? function will remain closer to 0. By calculating the K»°d®
AUK of each vertex, it is possible to rank them according to their distance
from the high-weight vertices. Vertices with high AUKSs are closest to, and
therefore most-strongly associated with, these high-weight vertices.

2.5 Maeasuring the distance between vertex pairs in a
graph

2.5.1 Shortest path method

One of the simplest ways to measure the distance between vertex pairs in
a graph is by taking the distance along the shortest path between the ver-
tices. In a graph without weighted edges, the length of the shortest path is
equal to the number of edges in the path. In a graph with weighted edges, the



length of the shortest path is equal to the sum of the edge weights in the path.

2.5.2 Diffusion kernel-based method

The diffusion kernel-based distance measure can be considered as the physical
process of diffusion though the graph. Therefore, unlike the shortest paths
distance measure, the diffusion kernel-based measure incorporates not only
the distance of the shortest path connecting two vertices, but the distances
across multiple paths.

The distance between each vertex pair is calculated using the negative graph
Laplacian H, a square matrix of size |V| with entries (in the unweighted and
weighted case, respectively):

1 for i~ j
unweighted __ .
H;; =< —k; fori=j (3)
0 otherwise
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where k; is the degree of node i (the number of edges associated with node 7)
and w;; is the weight of the edge between nodes ¢ and j. A diffusion kernel
is then defined by the matrix exponential:
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To compute the matrix exponential we make use of the fact that H is di-

agonizable, i.e. H = UAU™!, where A is a diagonal matrix with entries

(6;)i=1...n- It follows that D = exp(B8H) = U exp(BA)U~!, where exp(SA)

simply is a diagonal matrix with entries (exp(£0;))i=1....n-

2.5.3 Mean first-passage time-based method

The mean first-passage time distance measure computes the distance between

vertex a and b (mg) by calculating the expected amount of time that a ran-
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dom walk emanating from node a takes to reach node b for the first time [3].

map =y 0 [ (6)
n=1

n)

where n is the number of steps taken and féb is the probability that the
random walk reaches node b for the first time after n steps. Because the
mean first-passage time from vertex a to vertex b and the mean first-passage
time from vertex b to vertex a may not be equal, a distance between the two
nodes d? , is derived by taking the mean.

3 Case study I - Using K"** to investigate the
re-wiring of a cell undergoing DN A damage

This section will demonstrate how the SANTA K** function can be used
to measure the clustering of high-weight vertices on a network and thereby
quantify the strength of association between a network and a phenotype.

Bandyopadhyay et al. mapped genetic interaction (GI) networks in yeast un-
der normal laboratory conditions and in yeast exposed to the DNA-damaging
agent methyl methanesulfonate (MMS) [4]. In order to investigate the dif-
ferences between these functional networks, we will use K*** to quantify the
clustering of genes involved in responding to DNA damage. This will al-
low us to determine whether gene associated with this function cluster more
strongly on one of the networks, thereby allowing us to better understand
the changes that are occurring within the cell.

We will now load the SANTA package and two data frames containing the
interactions within the networks. Lists of edges, along with associated scores,
can be converted into SANTA -compatible graphs (igraph objects) using the
graph.data.frame function contained within the igraph package.

> library (SANTA)
> data(treated.dataframe)
> data(untreated.dataframe)



> g.treated <- graph.data.frame(treated.dataframe, directed=FALSE )
> g.untreated <- graph.data.frame(untreated.dataframe, directed=FALSE)

SANTA requires any networks to be in the form of an igraph graph. An-
other commonly used graph structure is graphNEL. This graphNEL structure
is used in other R-packages, including KEGGgraph and Graphite, which con-
tain graph objects sourced from the NCI, KEGG, Biocarta and Reactome
databases. Graphs can be converted between the graphNEL and igraph struc-
tures using the igraph.from.graphNEL and igraph.to.graphNEL functions
contained within the igraph package.

In order to make a fair comparison between the two networks, it is advisable
to ensure that the networks contain the same genes. Therefore, we will com-
pare the genes contained within each network and add those that are missing.

name.treated <- get.vertex.attribute(g.treated, '"name")
name.untreated <- get.vertex.attribute(g.untreated, "name")
mis.treated <- name.untreated[which(! name.untreated Jinj, name.treated)]
mis.untreated <- name.treated[which(! name.treated 7inj, name.untreated)]
g.treated <- add.vertices(g.treated, length(mis.treated),
attr=1ist (name=mis.treated))
g.untreated <- add.vertices(g.untreated, length(mis.untreated),
attr=1ist(name=mis.untreated))

+ VvV + VvV VvV VYV

We will use information from the Gene Ontology (GO) project [5], made
available through the org.Sc.sgd.db package, to identify those genes in-
volved in responding to DNA damage. The Gene Ontology project groups
into genes according to shared function. The GO term with ID GO:0006974
is Response to DNA Damage Stimulus. We will now use the org.Sc.sgd.db
package to identify the network genes associated with GO:0006974. Similar
code can be used to identify genes associated with other GO terms.

> library(org.Sc.sgd.db)

> xx <- as.list(org.Sc.sgdGO2ALLORFS)

> associated.genes <- xx[["G0O:0006974"]]

> association.treated <- as.numeric(get.vertex.attribute(g.treated,



+ "name") 7,inj, associated.genes)
> association.untreated <- as.numeric(get.vertex.attribute(g.untreated,
+ "name") Jinj, associated.genes)

If a gene is associated with the GO term it will given a score of 1 in associ-
ation.values. If it is not associated, it will be given a score of 0. We will
now store these scores in the 2 graphs under a vertex attribute called rdds.

> g.treated <- set.vertex.attribute(g.treated,

+ name="rdds", value=association.treated)
> g.untreated <- set.vertex.attribute(g.untreated,
+ name="rdds", value=association.untreated)

K"** is also able to incorporate edge weights when quantifying the clustering
of high-weight vertices. Edge weights can represent numerous different bio-
logical properties, including the strength of a physical interaction between 2
gene products, or in the case of our 2 networks, the strength of the genetic
interaction. It is necessary to convert these weights into distances, so that
strongly connected genes are linked by edges with small distances. We will
convert the genetic interactions into distances by taking the absolute values
of the interaction strengths and subtracting them from the largest absolute
interaction strength value. This will also ensure that all edge distances are
positive. The inclusion of negative edge distances will result in K*** produc-
ing a error.

> s.treated <- get.edge.attribute(g.treated, name="gi-score")

> s.untreated <- get.edge.attribute(g.untreated, name="gi-score")
> g.treated <- set.edge.attribute(g.treated, name="distance",

+ value=max (abs(s.treated)) - abs(s.treated))

> g.untreated <- set.edge.attribute(g.untreated, name="distance",
+ value=max(abs(s.untreated)) - abs(s.untreated))

We will now apply the K** function to the GO term on each network in
order to determine on which network the GO term clusters most strongly.
The greater the number of permutations run, the greater the reproducibility
of the p-value. We will use 100 permutations of the vertex weights in order



to produce the p-values.

By default, the function attempts to use a vertex attribute named pheno as
vertex weights and an edge attribute named distance as edge distances. We
will need to specify that the GO term associations should be used a vertex
weights, but can leave the default edge attribute, as the modified GI scores
were saved under this attribute name previously.

res.treated <- Knet(g.treated, nperm=100, dist.method="shortest.paths",
vertex.attr="rdds")

res.untreated <- Knet(g.untreated, nperm=100, dist.method="shortest.paths",
vertex.attr="rdds")

res.treated$pval

vV + VvV + V

[1] 1.412728e-07
> res.untreated$pval
[1] 4.058756e-06

As the permutations of the vertex weights are random, the p-values you cal-
culate may not be the same as the ones shown above.

Since the GO term tested was the Response to DNA Damage Stimulus term,
it is not surprising that the gene set clusters more significantly on the treated
network (as indicated by the lower p-value). The yeast exposed to the DNA-
damaging agent would have activated or upregulated pathways involved in
responding to the agent, thereby increasing the strength of the genetic in-
teraction between DNA-damage response-related genes. The same method
can be used to GO terms for which the relative association strengths are less
predictable.

We will now visualise the observed and permuted K** curves and AUKSs for
the GO term on the DNA-damaged and undamaged networks.
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Figure 1: (Left) The observed K** -function curve (red line) and the per-
muted K** -function curve quantiles (yellow area) for the Response to DNA
Damage Stimulus gene set on the DNA-damaged (Top Left) and undamaged
(Bottom Left) GI networks. The position of the observe curves relative to
the permuted quantiles indicates that the gene set clusters on both networks.
(Right) The observed K** -function AUK (red line) and the permuted K»*
-function AUKs (grey histogram) on the DNA-damaged (Top Right) and
undamaged (Bottom Right) GI networks. The fact that the observed AUKs
are greater than the permuted AUKSs again indicates that the gene set clus-
ters on both networks. The greater distance between the observed AUK and
the permuted AUKSs in the DNA-damaged network indicates that clustering
of the gene set is more significant in Eliis network.



The left-hand plots display the the observed curve in red and the quantiles of
the permuted curves in yellow. The quantile boundaries are displayed as grey
lines. These boundaries are specified in the K*** function. The right plot dis-
plays the observed AUK as a red line and the distribution of permuted AUKSs
in grey. If clustering of high-weight vertices is present on a graph, then the
observed K** curve and AUK will be greater than the permuted K*** curves
and AUKs. The greater the degree of clustering, the greater the difference
between the observed and permuted statistics. If the degree of clustering
is low, then the observed and permuted curves and AUKs will overlap. A
z-test is performed on the observed and permuted AUKSs in order to produce
a p-value for the clustering.

4 Case study II - Using K" to prioritise genes
for follow-up functional studies

This section will demonstrate how the SANTA K*°% function can be used
to rank vertices in a network by their respective strength of association with
high-weight vertices present on the network.

The GO database contains the largest number of gene-function annotation
currently available. However, a significant proportion of known genes re-
main unannotated or under-annotated. Experimentally testing the function
of genes is an expensive and time-consuming process. Therefore, it is im-
portant to be able to computationally identify the unannotated genes that
are most likely to share functionality with previously identified sets of genes.
Under the GBA principle, unannotated genes that share a large number of
functional interactions with an annotated gene set are likely to be involved
in the gene sets function. Because of this, the K*°% function is a useful tool
for ranking unannotated genes by their likely association with a function.

We will use a GI network used in the previous section [4] to rank unannotated
genes by their likely involvement in the Response to DNA Damage Stimulus
function [5]. We will now load the SANTA library and a data frame contain-
ing the edges from the MMS-treated (DNA-damaged) network and create a
SANTA -compatible graph.
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> library(SANTA)
> data(treated.dataframe)
> g.treated <- graph.data.frame(treated.dataframe, directed=FALSE)

As previously shown, the Response to DNA Damage Stimulus GO term as-
sociates more strongly with the MMS-treated GI network. This is due to the
functional re-wiring that occurs within the cell in response to exposure to this
DNA-damaging agent. We will therefore again identify the genes contained
within this network that are association with this GO term and store them
under a vertex attribute call rdds.

> library(org.Sc.sgd.db)

> xx <- as.list(org.Sc.sgdGO2ALLORFS)

> associated.genes <- xx[["G0O:0006974"]]

> association.values <- as.numeric(get.vertex.attribute(g.treated,
+ "name") Jinj, associated.genes)

> g.treated <- set.vertex.attribute(g.treated, name="rdds",

+ value=association.values)

As mentioned in the previous section, it is important to convert edge weights
to meaningful measures of distance between connected vertices. The GI
scores are converted by subtracting the absolute GI score of each edge from
the maximum absolute GI score. This ensures that those gene pairs seen to
have the strongest interactions are connected by the shortest distances.

> s.treated <- get.edge.attribute(g.treated, name="gi-score'")
> g.treated <- set.edge.attribute(g.treated, name="distance",
+ value=max (abs(s.treated)) - abs(s.treated))

We will use the vertex attribute containing GO term association information
as the vertex weights in the K*°% function. By default, the edge attribute
named distance is used as edge distances.

Alongside each vertices’ AUK score, a number of other centrality scores can
be returned by the K*°?¢ function, including each vertices’ weight, degree,
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betweenness and Markov centrality. Specifying only.Knode=FALSE results in
this information being returned alongside the AUK score as a data frame.

> res <- Knode(g.treated, vertex.attr="rdds", only.Knode=FALSE)
> res[1:10, 1:2]

nodeAUK vertex.weights

YDL106C 0.1361992 0
YBLO46W 0.1347715 1
YCRO66W 0.1338610 1
YGLO19W 0.1334129 1
YNL136W 0.1319775 1
YBR112C 0.1315502 1
YDRO17C 0.1313863 0
YBR160W 0.1310819 1
YELO18W 0.1306317 1
YBR136W 0.1304297 1

The genes with the highest AUK scores are those with the strongest asso-
ciations to the gene set. Since we only want to look at the ranking of the
unannotated genes, we can remove annotated genes using the vertex weight
information given in the second column of the data frame.

> res[res[,2]'=1, J[1:10, 1:2]

nodeAUK vertex.weights

YDL106C 0.1361992 0
YDRO17C 0.1313863 0
YGR135W 0.1271454 0
YDR216W 0.1258819 0
YBR245C 0.1256333 0
YDR173C 0.1252847 0
YGLO59W 0.1233614 0
YJL187C 0.1208257 0
YGLO96W 0.1199538 0
YNL204C 0.1193900 0

—_
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The genes ranked above are the unannotated genes most strongly associated
with the functional set. These genes represent the unannotated genes most
likely be involved in the response to DNA damage stimulus. Experimental
testing of these genes would be able to verify whether this is true or not.
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Session info

This document was produced using:

> toLatex(sessionInfo())

R version 3.0.0 (2013-04-03), x86_64-unknown-1inux-gnu

Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, utils

Other packages: AnnotationDbi 1.22.0, Biobase 2.20.0,
BiocGenerics 0.6.0, DBI 0.2-5, RSQLite 0.11.2, SANTA 1.0.0,
igraph 0.6.5-1, org.Sc.sgd.db 2.9.0, snow 0.3-12

Loaded via a namespace (and not attached): IRanges 1.18.0,
msm 1.1.4, mvtnorm 0.9-9994, splines 3.0.0, stats4 3.0.0,
survival 2.37-4, tools 3.0.0
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