Subread /Rsubread Users Guide

Subread v1.3.5-p5/Rsubread v1.10.5

26 Jun 2013

Wei Shi and Yang Liao

Bioinformatics Division
The Walter and Eliza Hall Institute of Medical Research
Melbourne, Australia

Copyright (©) 2011 - 2013

Contents

Introduction

Preliminaries

2.1 Citation e e

2.2 Download and installation
2.2.1 Subread package
2.2.2 Bioconductor Rsubread package

23 Howtogethelp

The seed-and-vote mapping paradigm

3.1 Seed-and-vote

3.2 Indel detection

3.3 Junction detection

Mapping reads generated by genomic DNA sequencing technologies

4.1 A quick start for SourceForge Subreado
4.2 A quick start for Bioconductor Rsubread L.
4.3 Index building
4.4 Read mapping
4.5 Mapping quality scoreso
Mapping reads generated by RNA sequencing technologies

5.1 A quick start for SourceForge Subread
5.2 A quick start for Bioconductor Rsubread
5.3 Local read alignment Lo
5.4 Global read alignment Lo
Read summarization

6.1 A quick start for SourceForge Subread
6.2 A quick start for Bioconductor Rsubread
6.3 Introduction
6.4 Annotation format
6.5 featureCounts

S O Ot Ot ot

© 0o N

16
16
17
18
18

7 Case studies
7.1 A Bioconductor R pipeline for analyzing RNA-seq data

Chapter 1

Introduction

This document describes in details the programs included in the Subread software package.
The Subread package includes a suite of programs that are useful in processing next-generation
sequencing data. The programs have the functions of read alignment, junction detection, indel
detection, read summarization

Subread itself is a superfast, sensitive and accurate read aligner[1], which is designed to
align reads generated from the 2nd and 3rd generation sequencers to a reference genome . It
supports a variety of sequencing platforms including Illumina GA/HiSeq, ABI SOLiD, Life
Science 454, Helicos Heliscope and Ion Torrent. It can align short reads, long reads and reads
of variable lengths. Subread has been shown to be very accurate in mapping I[llumina and 454
data [2, 3]

Subread employs a mapping paradigm called “seed-and-vote” [1], which is fundamentally
different from the “seed-and-extend” paradigm used by many read aligners. The “seed-and-
vote” paradigm extracts a number of subreads (16 mers) from the read and then uses these
subreads to vote for the mapping location of the read, rather than performing an compu-
tational expensive extension operation to determine the location of the read like “seed-and-
extend” does. The power and flexibility of the new mapping paradigm enables Subread to
achieve a superior efficiency without losing accuracy and sensitivity. This paradigm is espe-
cially powerful for the alignment of RNA-seq data because it can automatically determines if
the reads should be globally aligned or locally aligned. This paradigm also enables a highly
accurate detection of insertions and deletions, via using perfectly matched subreads flanking
the indels to call them.

The subjunc program included in this package is designed to detect exon-exon junctions
and to perform full alignments for RNA-seq reads. It also take advantage of the powerful
“seed-and-vote” paradigm to achieve a highly accurate junction detection and read mapping
[1]. It returns a BED file which includes the chromosomal locations of exon-exon junctions
and the number of reads supporting these junctions. It also outputs a SAM file which records
the detailed mapping results for reads.

The featureCounts program is designed to assign mapped reads or fragments (for paired-
end data) to genomic features such as genes, exons and promoters. It is a light-weight
read counting program suitable for count both gDNA-seq and RNA-seq reads for genomic

features|[4].

Many of the programs inclued in the Subread package have also been implemented in
the Bioconductor package Rsubread, providing R users easy access to these programs via
their fimiliar programming environment. The Rsubread package can be downloaded from:
http://bioconductor.org/packages/2.10/bioc/html/Rsubread.html.

Chapter 2

Preliminaries

2.1 Citation

If you use Subread or Subjunc aligners, please cite:

Liao Y, Smyth GK and Shi W. The Subread aligner: fast, accurate and scalable
read mapping by seed-and-vote. Nucleic Acids Research, 41(10):e108, 2013
http://nar.oxfordjournals.org/content/early/2013/04/03/nar.gkt214.abstract

If you use featureCounts, please cite:

Liao Y, Smyth GK and Shi W. featureCounts: an efficient general-purpose read
summarization program. arXiv:1305.3347, 2013
http://arxiv.org/abs/1305.3347

2.2 Download and installation

2.2.1 Subread package

Download the Subread package from http://subread.sourceforge.net and type the fol-
lowing command to uncompress it:

tar zxvf subread-1.x.x.tar.gz

Enter the src subdirectory under the home directory of this package and then issue the
following command to install it on a Linux/unix computer:

make -f Makefile.Linux

To install it on a Mac OS X computer, issue the following command:
make -f Makefile.MacOS

A new subdirectory called bin will be created under the home directory of the software
package, and the executables generated from the compilation will be saved to that subdirec-
tory. To enable easy access to these executables, you may copy them to a system directory
such as /usr/bin or add the path to them to your search path (your search path is usually
specified in the environment variable ‘PATH?).

2.2.2 Bioconductor Rsubread package

You have to get R installed on my computer to install this package. Lauch an R session and
issue the following command to install it:

source("http://bioconductor.org/biocLite.R")
biocLite("Rsubread")

Alternatively, you may download the Rsubread source package directly from http://
bioconductor.org/packages/release/bioc/html/Rsubread.html and install it to your
R from the source.

2.3 How to get help

Bioconductor mailing list (http://bioconductor.org/) and SeqAnswer forum (http://www.
seqanswers.com) are the best places to get help and report bugs. Alternatively, you may
contact Wei Shi (shi at wehi dot edu dot au) directly.

Chapter 3

The seed-and-vote mapping paradigm

3.1 Seed-and-vote

We have developed a new read mapping paradigm called “seed-and-vote” for efficient, accurate
and scalable read mapping [1]. The seed-and-vote strategy uses a number of overlapping seeds
from each read, called subreads. Instead of trying to pick the best seed, the strategy allows
all the seeds to vote on the optimal location for the read. The algorithm then uses more
conventional alignment algorithms to fill in detailed mismatch and indel information between
the subreads that make up the winning voting block. The following figure illustrates the
proposed seed-and-vote mapping approach with an toy example.

oL 2 votes
R 0001011010] =
T
: 5 votes
e 0011110110] w8 . . .
c (final mapping location)
G
A
g 0110100011
T
A
A
< 1000101101] 1 vote
< T
G 1010111000 s
G
A i 2 votes
c 7701000011 [d——

Read n
Hash table Reference genome

Two aligners have been developed under the seed-and-vote paradigm, including Subread
and Subjunc. Subread is a general-purpose read aligner, which can be used to map both
genomic DNA-seq and RNA-seq read data. Its running time is determined by the number of
subreads extracted from each read, not by the read length. Thus it has an excellent maping
scalability, ie its running time has only very modest increase with the increase of read length.

Subread uses the largest mappable region in the read to determine its mapping location,
therefore it automatically determines whether a global alignment or a local alignment should
be found for the read. For the exon-spanning reads in a RNA-seq dataset, Subread performs
local alignments for them to find the target regions in the reference genome that have the
largest overlap with them. Note that Subread does not perform global alignments for the
exon-spanning reads and it soft clips those read bases which could not be mapped. However,
the Subread mapping result is sufficient for carrying out the gene-level expression analysis
using RNA-seq data, because the mapped read bases can be reliably used to assign reads,
including both exonic reads and exon-spanning reads, to genes.

To get the full alignments for exon-spanning RNA-seq reads, the Subjunc aligner can be
used. Subjunc is designd to discover exon-exon junctions from using RNA-seq data, but it
performs full alignments for all the reads at the same time. The Subjunc mapping results
should be used for detecting genomic variations in RNA-seq data, allele-specific expression
analysis and exon-level gene expression analysis. The Section 3.3 describes how exon-exon
junctions are discovered and how exon-spanning reads are aligned using the seed-and-vote
paradigm.

3.2 Indel detection

Reference genome

—o—

subreads

Insertion size)

L—1— 5 ":
covered bases | covered bases
(perfectly matched) uncovered

d gDeIetion size)

Jlia

....................

wawubly |

a——"
—a— E

covered bases +—— A covered bases
uncovered

The seed-and-vote paradigm is very powerful in detecting indels (insertions and deletions).
The figure below shows how we use the subreads to confidently detect indels. When there is
an indel existing in a read, mapping locations of subreads extracted after the indel will be
shifted to the left (insertion) or to the right (deletion), relative to the mapping locations of

8

subreads at the left side of the indel. Therefore, indels in the reads can be readily detected
by examining the difference in mapping locations of the extracted subreads. Moreover, the
number of bases by which the mapping location of subreads are shifted gives the precise length
of the indel. Since no mismatches are allowed in the mapping of the subreads, the indels can
be detected with a very high accuracy.

3.3 Junction detection

The seed-and-vote paradigm is also very useful in detecting exon-exon junctions, because the
short subreads extracted across the entire read can be used to detect short exons in a sensitive
and accurate way. The figure below shows the schematic of detecting exon-exon junctions and
mapping RNA-seq reads by Subjunc, which uses this paradigm.

The first scan detects all possible exon-exon junctions using the mapping locations of the
subreads extracted from each read. Matched donor and receptor sites are required for calling
junctions. Exons as short as 16bp can be detected in this step. The second scan verifies the
putative exon-exon junctions discovered from the first scan by performing re-alignments for
the junction reads. The output from Subjunc includes the list of verified junctions and also
the mapping results for all the reads.

1000 10610 1110 11?0 1220 1270

Reference s L lcr L lor g 6T AG
: c 41157

anchor \ H .
Discover candidate a?ghgn N ; raemi:;‘:r First
junctions using best 9 N S \ / 9: bread scan
two mapping locations Read 1 y¥=—— ==/ ="| |subreads
Pping | junction Read 2 "junction
(L=Lr+13) l
Putative junctions Anchor information
Splicing Splicing Location in | Location in | Region
Ch
" |Point 1 (SP1)|Point 2 (SP2) Reads | Chr genome read | length
! 1000 1060 Read1 | 1 950 5 46
1 1100 1150 Read2 | 1 1157 o 5
1 1220 1270 s R TR} TR} TR}
10 500 10,000 Read 50| 1 1168 26 46
SP1 Sp2 SF'I SILJZ

1000 1060 1110 1150 1220 12170
}

Reference 5' : a ' ¢ ' -3
Validate junctions ‘ ' ‘ WM Second
by examining all g scan

mapping possibilities N -+ Read 50

~ -
junction l junctions
Validated junctions Read mapping results
i ti
Chr| sp1 | sp2 [! SUPPOrting Reads | Chr | Location CIGAR
Read1 | 1 945 55M50N45M
1_[1000 | 1060 20 Ve Read2 | 1 | 1073 3BM30N62ZM
T 91107150 = \/
1 [1220] 1270 20 v Read 50| 1 | 1102 [9M4ON7OMSONSM1D16M
10 |500 [10,000 0 X

Chapter 4

Mapping reads generated by genomic
DNA sequencing technologies

4.1 A quick start for SourceForge Subread

An index must be built for the reference first and then the read mapping can be performed.
Step 1: Building an index

Build a base-space index (default). You can provide a list of FASTA files or a single FASTA
file including all the reference sequences.

subread-buildindex -o my_index chrl.fa chr2.fa ...
Step 2: Aligning the reads

Map single-end reads using 5 threads:
subread-align -T 5 -i my_index -r reads.txt -o subread results.sam

Detect indels of up to 16bp:

subread-align -I 16 -i my_index -r reads.txt -o subread_results.sam

Report up to three best mapping locations:
subread-align -B 3 -i my_index -r reads.txt -o subread_results.sam

Report uniquely mapped reads only:
subread-align -u -i my_index -r reads.txt -o subread._results.sam

Map paired-end reads:

subread-align -d 50 -D 600 -i my_index -r readsl.txt -R reads2.txt
-0 subread_results.sam

10

4.2 A quick start for Bioconductor Rsubread

An index must be built for the reference first and then the read mapping can be performed.
Step 1: Building an index

To build the index, you must provide a single FASTA file (eg. “genome.fa”) which includes
all the reference sequences.

library (Rsubread)
buildindex(basename="my_index",reference="genome.fa")

Step 2: Aligning the reads

Map single-end reads using 5 threads:

align(index="my_index" ,readfilel="reads.txt",output_file="rsubread.sam",nthreads=5)
Detect indels of up to 16bp:
align(index="my_index",readfilel="reads.txt",output_file="rsubread.sam",indels=16)
Report up to three best mapping locations:
align(index="my_index",readfilel="reads.txt",output_file="rsubread.sam",nBestLocations=3)
Report uniquely mapped reads only:
align(index="my_index",readfilel="reads.txt",output_file="rsubread.sam",unique=TRUE)
Map paired-end reads:

align(index="my_index",readfilel="readsl.txt",readfile2="reads2.txt",output_file="rsubread.sam",
minFraglength=50,maxFraglLength=600)

4.3 Index building

The subread-buildindex (buildindex function in Rsubread) program builds an base-space or
color-space index using the reference sequences. The reference sequences should be in FASTA
format (the header line for each chromosomal sequence starts with “>7).

This program extracts all the 16 mer sequences from the reference genome at a 2bp in-
terval and then uses them to build a hash table. Keys in the hash table are unique 16 mers
and values are their chromosomal locations. Table 1 describes the arguments used by the
subread-buildindex program.

11

Table 1: Arguments used by the subread-buildindex program (buildindex function in
Rsubread). Arguments in parathesis in the first column are used by buildindex.

Arguments Description

-0 < basename > Specify the base name of the index to be created.

(basename)

-t <int > Specify the threshold for removing uninformative subreads (highly

(TH_subread)

repetitive 16mers). Subreads will be excluded from the index if
they occur more than threshold number of times in the reference
genome. Default value is 24.

-M <int > Specify the Size of requested memory(RAM) in megabytes, 8000MB

(memory) by default. With the default value, the index built for a mammalian
genome (eg. human or mouse genome) will be saved into one block,
enabling the fastest mapping speed to be achieved. The amount of
memory used is ~ 7600MB for mouse or human genome (other
species have a much smaller memory footprint), when performing
read mapping. Using less memory will increase read mapping time.

-C Build a color-space index.

(colorspace)

chrl.fa, chr2.fa, ...

(reference)

Give names of chromosome files. Note that in Rsubread, only a sin-
gle FASTA file including all reference sequences should be provided.

4.4 Read mapping

The subread-align program (align in Rsubread) extracts a number of subreads from each
read and then uses these subreads to vote for the mapping location of the read. It uses the
the “seed-and-vote” paradigm for read mapping. subread-align program automatically de-
termines if a read should be globally aligned or locally aligned, making it particularly poweful

in mapping RNA-seq reads. Table 2 describes the arguments used by the subread-align

program (align function in Rsubread).

12

Table 2: arguments used by the subread-align program included in the SourceForge
Subread package and align function in the Rsubread package. Arguments in parathesis in
the first column are used by align function in Rsubread.

Arguments Description

-i < index > Specify the base name of the index.

(index)

-r < input > Give the name of an input file(FASTQ/FASTA format). For paired-

(readfilel) end read data, this gives the first read file and the other read file
should be provided via the -R option.

-0 < output > Give the name of the output file (SAM format).

(output_file)

-n < int > Specify the number of subreads extracted from each read, 10 by

(nsubreads) default.

-m < int > Specify the consensus threshold, which is the minimal number of

(TH1) consensus subreads required for reporting a hit. The consensus
subreads are those subreads which vote for the same location in the
reference genome for the read. If pair-end read data are provided,
at least one of the two reads from the same pair must satisfy this
criteria. 3 by default.

-T <int > Specify the number of threads/CPUs used for mapping. 1 by de-

(nthreads) fault.

-I <int > Specify the number of INDEL bases allowed in the mapping. 5 by

(indels) default.

-P<3:6> Specify the format of Phred scores used in the input data, '3’ for

(phredOffset) phred+33 and 6’ for phred-+64. '3’ by default. For align function
in Rsubread, the possible values are ‘33" (for phred+33) and ‘64’
(for phred+64). ‘33’ by default.

-u Output the uniquely mapped reads only.

(unique)

-B <int > Specify the maximal number of equally-best mapping locations al-

(nBestLocations) lowed to be reported for a read. Its value has to be within the
range of 1 to 16. The default value is 1. The number of equally-
best locations reported for a read will be less than or equal to the
specified value. For example, if a read has two equally-best map-
ping locations, but the ‘B’ was set to 5, then only two locations will
be reported for this read.

-Q Use mapping quality scores to break ties when more than one best

(codetieBreakQs) mapping locations are found.

-H Use Hamming distance to break ties when more than one best map-

(tieBreakHamming) ping locations are found.

13

-J

(markJunctionReads)

Mark those bases which can not be aligned together with other
bases from the same read using the ‘S’ operation in the CIGAR
string (soft-clipping). This option is useful for marking exon-
spanning reads and fusion reads. For RNA-seq data, ‘Subjunc’
program shall then be used to perform full alignments for these
reads.

-R < input >
(readfile2)

Provide the name of the second reads file from paired-end data.
The program will then be switched to paired-end read mapping
mode.

-p <int >
(TH2)

Specify the minimum number of consensus subreads both reads
from the same pair must have. This argument is only applicable
for paired-end read data. The value of this argument should not be
greater than that of ‘-m’ option, so as to rescue those read pairs in
which one read has a high mapping quality but the other does not.
1 by default.

-d <int >
(minFraglength)

Specify the minimum fragment/template length, 50 by default.
Note that if the two reads from the same pair do not satisfy the
fragment length criteria, they will be mapped individually as if they
were single-end reads.

-D <int >
(maxFragLength)

Specify the maximum fragment/template length, 600 by default.

S<ff:ifr:rf>

(PE_orientation)

Specify the orientation of two reads from the same pair, ‘fr’ by
default (first read is located on the forward strand and second read
on the reverse strand).

-G <int >
(DP,Gap0penPena1ty)

Specify the penalty for opening a gap when applying the Smith-
Waterman dynamic programming to detecting indels. -2 by defaut.

-E <int >
(DP_GapExtPenalty)

Specify the penalty for extending the gap when performing the
Smith-Waterman dynamic programming. 0 by defaut.

-X <int >
(DP_MismatchPenalty)

Specify the penalty for mismatches when performing the Smith-
Waterman dynamic programming. 0 by defaut.

-Y <int >
(DP_MatchScore)

Specify the score for the matched base when performing the Smith-
Waterman dynamic programming. 2 by defaut.

D

Output base-space reads instead of color-space reads in the SAM
output. This option is only applicable for color-space read mapping.

14

4.5 Mapping quality scores

Both Subread and Subjunc aligners output a mapping quality score for each mapped read,
defined by

MQS = 100—1—1[00{2(1—]%) - Z (1—pi)}
i1€bm 1€bmm

where [is the read length, p; is the base-calling p-value for the ith base in the read, b,, is the
set of locations of matched bases, and b,,,, is the set of locations of mismatched bases.

Base-calling p values can be readily computed from the base quality scores available in
the FASTQ file (raw read data file). High quality bases have low base-calling p values. Read
bases which were found to be insertions are treated as matched bases in the MQS calculation.
The MQS is a read-length normalized value, which is in the range of 0 to 200. If a read can
be best mapped to more than one location, its MQS will be divided by the number of such
locations.

15

Chapter 5

Mapping reads generated by RNA
sequencing technologies

5.1 A quick start for SourceForge Subread

An index must be built for the reference first and then the read mapping and/or junction
detection can be carried out.

Step 1: Building an index

The following command can be used to build a base-space index. You can provide a list of
FASTA files or a single FASTA file including all the reference sequences.

subread-buildindex -o my_index chrl.fa chr2.fa ...
For more details about index building, see Section 4.3.
Step 2: Aligning the reads
For the purpose of differential expression analysis (ie. discovering differentially expressed
genes), we recommend you to use the Subread aligner. Subread carries out local alignments
for RNA-seq reads. The commands used by Subread to align RNA-seq reads are the same as
those used to align gDNA-seq reads. Below is an example of using Subread to map single-end
RNA-seq reads.

subread-align -i my_index -r rnaseq-reads.txt -o subread_results.sam
Another RNA-seq aligner included in this package is the Subjunc aligner. Subjunc not only
performs read alignments but also detects exon-exon junctions. The main difference between

Subread and Subjunc is that Subread does not attempt to detect exon-exon junctions in the
RNA-seq reads. For the alignments of the exon-spanning reads, Subread just uses the largest

16

mappable regions in the reads to find their mapping locations. This makes Subread be more
computationally efficient. The largest mappable regions can then be used to reliably assign
the reads to their target genes by using a read summarization program (eg. featureCounts,
see Section 6.5), and differential expression analysis can be readily performed using the read
summarization results (they include the summarization results from summarizing reads falling
within exons as well). Therefore, Subread is sufficient for the read alignments when the purpose
of the RNA-seq analysis is to perform a differential expression analysis. Also, Subread could
report more mapped reads than Subjunc because, for example, exon-spanning reads may not
be accepted by Subjunc if they contain non-canonical splicing signals (donor/receptor sites),
but they will be reported by Subread as long as they have a good match with the target region.

For other purposes of the RNA-seq data anlayses such as exon-exon junction detection
and genomic mutation detection, in which the reads need to be fully aligned, the Subjunc
aligner should be used. Below is an example of using Subjunc to perform global alignments
for paired-end RNA-seq reads. Note that there are two files included in the alignment output:
one file including the discovered exon-exon junctions and the other including the alignment
results for the reads (a SAM file).

subjunc -i my_index -r rnaseq-readsl.txt -R rnaseq-reads2.txt -o subjunc_result

5.2 A quick start for Bioconductor Rsubread

An index must be built for the reference first and then the read mapping can be performed.
Step 1: Building an index
To build the index, you must provide a single FASTA file (eg. “genome.fa”) which includes

all the reference sequences.

library (Rsubread)
buildindex(basename="my_index" ,reference="genome.fa")

Step 2: Aligning the reads

Please refer to Section 5.1 for an explanation of which aligner should be used for mapping
your RNA-seq data. To use the Subread aligner to map your data, you can use the following
R command (mapping a single-end RNA-seq dataset). Options of the align function can be
found in its help page in the Rsubread package.

align(index="my_index",readfilel="rnaseq-reads.txt",output_file="subread_results.sam")

To use the Subjunc aligner to map your data, you can use the following R commands
(mapping a paired-end RNA-seq dataset). Note that you have to run align first before you
can run subjunc. Options of the subjunc function can be found in its help page in the Rsubread
package.

17

align(index="my_index",readfilel="rnaseq-readsl.txt",readfile2="rnaseq-reads2.txt",
output_file="subread_results.sam")
subjunc(index="my_index",samfile="subread_results.sam",output_file="subjunc_results.sam",
paired_end=TRUE)

5.3 Local read alignment

The Subread and Subjunc can both be used to map RNA-seq reads to the reference genome.
If the goal of the RNA-seq data is to perform expression analysis, eg. finding genes expressing
differentially between different conditions, then Subread is recommended. Subread performs
fast local alignments for exon-spanning reads and reports the mapping locations that have
the largest overlap with such reads. These reads can then be readily assigned to genes for
the expression analysis. For gene expression analysis, global alignments for the exon-spanning
reads are not required because the local aligments are sufficient to get reads accurately assigned
to genes.

However, global alignments are required when the purpose of the RNA-seq data analysis
is to discover exon-exon junctions, to detect genomic mutations in the RNA-seq data or to
perform allele-specific gene expression analysis. The next section describes the Subjunc aligner,
which performs global aligments for RNA-seq reads.

5.4 Global read alignment

Subjunc aligns each exon-spanning read by firstly using a large number of subreads extracted
from the read to find the reference regions matching the segments within the read, and then
using the splicing signals (donor and receptor sites) to precisely determine the mapping loca-
tions of the read bases.

This program takes as input either a raw read data file (FASTQ/FASTA format) or a
SAM file (e.g. SAM output from Subread aligner). Note that the subjunc function included in
the Rsubread package only accepts SAM input. The output of Subjunc aligner includes a list
of discovered exon-exon junction locations and also the complete alignment results for reads.
Table 3 describes the arguments used by the Subjunc program.

18

Table 3: Arguments used by the subjunc program included in the SourceForge Sub-
read package and the subjunc function in the Rsubread package. Arguments used by the
subjunc function in Rsubread are included in parathesis in the first column.

Arguments Description

-i < index > Specify the base name of the index.

(index)

-r < input > Give the name of an input file(FASTQ/FASTA format). Both base-
space and color-space read data are supported. For paired-end read
data, this gives the first read file and the other read file should be
provided via the -R option. Note that the subjunc function in the
Rsubread package does not use this parameter.)

-0 < output > Give the name of the output file.

(output_file)

-n < int > Give the number of subreads extracted from each read. 14 by de-

(nsubreads) fault.

—singleSAM Use as input a SAM file that includes mapping results for single-end

< input > reads (eg. output of the Subread aligner).

(samfile)

—pairedSAM Use as input a SAM file that includes mapping results for paired-

< input > end reads (eg. output of the Subread aligner). Note that for the

(samfile, subjunc function in the Rsubread package, its parameter paired_end

paired_end=TRUE) needs to be set to TRUE when paired-end SAM file is provided.

-T <int > Specify the number of threads/CPUs used for mapping. 1 by de-

(nthreads) fault.

-I <iint > Specify the number of INDEL bases allowed in the mapping. 5 by

(indels) default.

-P<3:6> Specify the format of Phred scores used in the input data, '3’ for

(nsubreads) phred+33 and 6" for phred+64. '3’ by default. Note that the
subjunc function in the Rsubread package does not need this pa-
rameter because the Phred score offset used in the SAM file is
always 33.

-R < input > Provide the name of the second input file in paired-end data. The
program will then be switched to paired-end read mapping mode.
Note that the subjunc function in the Rsubread package does not
use this parameter.

-d < int > Specify the minimum fragment/template length, 50 by default.

(minFraglength) Note that if the two reads from the same pair do not satisfy the
fragment length criteria, they will be mapped individually as if they
were single-end reads.

-D <int > Specify the maximum fragment/template length, 600 by default.

(maxFraglength)

19

S<ff:fr.orf>

(PE,orientat ion)

Specify the orientation of two reads from the same pair, 'fr’ by
default (first read is located on forward strand and second read on
reverse strand).

20

Chapter 6

Read summarization

6.1 A quick start for SourceForge Subread

You need to provide read mapping results (in either SAM or BAM format) and an annotation
file for the read summarization. The example commands below assume your annotation file
is in GTF format.

Summarizing single-end reads using 5 threads:

featureCounts -T 5 -a annotation.gtf -t exon -g gene_id -i mapping results_SE.sam
-0 counts.txt

Summarizing BAM format single-end read data:

featureCounts -b -a annotation.gtf -t exon -g gene_id -i mapping results_SE.bam
-0 counts.txt

Summarizing paired-end reads and counting fragments (instead of reads):

featureCounts —-p —a annotation.gtf -t exon —-g gene_id -i mapping results_PE.sam
-0 counts.txt

Counting fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:

featureCounts -p -P -d 50 -D 600 -a annotation.gtf -t exon -g gene_id
-1 mapping_results_PE.sam -o counts.txt

Counting fragments which have both ends successfully aligned without considering the frag-
ment length constraint:

featureCounts -p -B -a annotation.gtf -t exon -g gene_id -i mapping results_PE.sam

21

-0 counts.txt
Excluding chimeric fragments from the fragment counting:

featureCounts -p -C -a annotation.gtf -t exon -g gene_id -i mapping results_PE.sam
-o counts.txt

6.2 A quick start for Bioconductor Rsubread

You need to provide read mapping results (in either SAM or BAM format) and an annotation
file for the read summarization. The example commands below assume your annotation file
is in GTF format.

Load Rsubread library from you R session:
library (Rsubread)
Summarizing single-end reads using 5 threads:

featureCounts(files="mapping_results_SE.sam",nthreads=5,annot="annotation.gtf",
isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Summarizing BAM format single-end read data:

featureCounts(files="mapping_results_SE.bam",file.type="BAM",annot="annotation.gtf",
isGTFAnnotationFile=TRUE,GTF.featureType="exon",GIF.attrType="gene_id")

Summarizing paired-end reads and counting fragments (instead of reads):

featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE,annot="annotation.gtf",
isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Counting fragments satisfying the fragment length criteria, eg. [50bp, 600bp]:
featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE, checkFraglength=TRUE,

minFraglength=50,maxFraglength=600,annot="annotation.gtf",
isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Counting fragments which have both ends successfully aligned without considering the frag-
ment length constraint:

featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE,requireBothEndsMapped=TRUE,
annot="annotation.gtf",isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

Excluding chimeric fragments from the fragment counting:

featureCounts(files="mapping_results_PE.sam",isPairedEnd=TRUE, countChimericFragments=FALSE,
annot="annotation.gtf",isGTFAnnotationFile=TRUE,GTF.featureType="exon",GTF.attrType="gene_id")

22

6.3 Introduction

Sequencing reads often need to be assigned to genomic features of interest after they are
mapped to the reference genome. This process is often called read summarization or read
quantification. Read summarization is required by a number of downstream analyses such as
gene expression analysis and histone modification analysis. The output of read summarization
is a count table, in which the number of reads assigned to each feature in each library is
recorded.

A particular challenge to the read summarization is how to deal with those reads that
overlap more than one feature. Care must be taken to ensure that such reads are not over-
counted. Here we describe the featureCounts program, which is an efficient and accurate read
quantifier. featureCounts has the following features:

It carries out precise and accurate read assignments by taking care of indels, junctions
and fusions in the reads.

It takes less than 4 minutes to summarize 20 million pairs of reads to 26k RefSeq genes
using one thread, and only uses 40MB of memory (you can run it on a Mac laptop).

It supports multi-threaded running, making it extremely fast for summarizing large
datasets.

It supports GTF format annotation and SAM/BAM read data.
It supports strand-specific read summarization.

It can perform read summarization at both feature level (eg. exons) and meta-feature
level (eg. genes).

It allows users to specify whether reads overlapping with more than one feature should
be counted or not.

It gives users full control on the summarization of paired-end reads, including allowing
them to check if both ends are mapped and/or if the fragment length falls within the
specified range.

It discriminates the features, which were overlapped by both ends from the same frag-
ment, from those which were overlapped by only one end so as to get more fragments
counted.

It allows users to specify whether chimeric fragments should be counted.

6.4 Annotation format

A popular annotation format is the GTF annotation format (http://genome.ucsc.edu/FAQ/
FAQformat.html#format4). featureCounts supports the use of this annotation format.

23

In addition to the GTF format, the featureCounts program also supports a simplified
annotation format (SAF) which includes the following five columns (tab-delimited):

GeneID Chr Start End Strand
497097 chrl 3204563 3207049 -
497097 chrl 3411783 3411982 -
497097 chrl 3660633 3661579 -
100503874 chrl 3637390 3640590 -
100503874 chrl 3648928 3648985 -
100038431 chrl 3670236 3671869 -

The GeneID column includes the gene identifiers, which can be numbers or character strings.
The chromosomal names included in the Chr column must match the chromosomal names of
the reference sequences to which the reads were mapped.

6.5 featureCounts

featureCounts is a general-purpose read summarization function, which assigns to the genomic
features (or meta-features) the mapped reads that were generated from genomic DNA and
RNA sequencing.

This function takes as input a set of files containing read mapping results output from a
read aligner, and then assigns the mapped reads to genomic features. The acceptable formats
of the input files are SAM and BAM.

It can perform read summarization at the feature level or at the meta-feature level (when
-m is specified). Every entry in the annotation file is a feature. Features are grouped into meta-
features by the gene_id attribute in a GTF format annotation file, or by the first column of
the SAF format annotation file.

A read is said to overlap with a feature when the read and the feature share at least one
base. The option allowMultiOverlap specifies whether a read is allowed to be assigned to
multiple features (counted multiple times) if it overlaps more than 1 feature.

A read is said to overlap with a meta-feature if it overlaps with at least one of the features
included in this meta-feature. When summarizing reads at the meta-feature level, a read
will only be counted once if it overlaps with a meta-feature even it overlaps with two or more
features belonging to that meta-feature. This is useful for summarizing RNA-seq reads for the
purpose of expression analysis, because reads should not be counted more than once if they
overlap more than exon belonging to the same gene. For the meta-feature level summarization,
the option allowMultiOverlap controls if a read should be assigned to multiple overlapping
meta-features, rather than features.

Table 4 describes the parameters used by the featureCounts program.

24

Table 4: arguments used by the featureCounts program included in the SourceForge
Subread package and the featureCounts function in the Rsubread package. Arguments
used by the featureCounts function in Rsubread are included in parathesis in the first

column.

Arguments Description

-a < input > Give the name of the annotation file. The program assumes

(annot) that the provided annotation file is in GTF format. Use -F
option to specify other annotation formats.

-F Specify the format of the annotation file. Acceptable formats

(isGTFAnnotationFile)

include ‘GTF’ and ‘SAF’ (see Section 6.4 for details). ‘GTF”
by default. The featureCounts function in Rsubread uses pa-
rameter isGTFAnnotationFile to specify whether the provided
annotation is in GTF format or not.

-t <input >
(GTF.featureType)

Specify the feature type. Only rows which have the matched
feature type in the provided GTF annotation file will be in-
cluded for read counting. ‘exon’ by default.

-g < input >
(GTF.attrType)

Specify the attribute type used to group features (eg. exons)
into meta-features (eg. genes), when GTF annotation is pro-
vided. ‘gene_id’ by default. This attribute type is usually the
gene identifier. This argument is useful for the meta-feature
level summarization.

-1 < input >
(files)

Give the name of an input file including the read mapping
results. The file should have a SAM or BAM format. -b
option needs to be specified if the file is in BAM format. Note
that featureCounts function in Rsubread accepts more than
one input file.

-b
(file.type)

Indicate the input file is in BAM format. The parameter
file.type, used by the featureCounts function in Rsubread,
has two possible values including SAM and BAM (the default
value is SAM).

-0 < input >

Give the name of the output file. The output file contains the
number of reads assigned to each meta-feature (or each feature
if -f is specified). Note that the featureCounts function in
Rsubread does not use this parameter. It returns a 1ist object
including read summarization results and other data.

-f

(useMetaFeatures)

If specified, read summarization will be performed at the fea-
ture level. By default (-f is not specified), the read summa-
rization is performed at the meta-feature level.

25

-0
(allowMultiOverlap)

If specified, reads (or fragments if -p is specified) will be al-
lowed to be assigned to more than one matched meta-feature
(or matched feature if -f is specified). In this case, reads
(or fragments) will be counted more than once if they overlap
multiple meta-features (or features).

-s <int >
(isStrandSpecific)

Indicate if strand-specific read counting should be performed.
It has three possible values: 0 (unstranded), 1 (stranded) and
2 (reversely stranded). 0 by default. For paired-end reads,
the strand of the first read is taken as the strand of the whole
fragment. The FLAG field in the SAM/BAM file is used to
tell if a read is the first read in the fragment.

If specified, multi-mapping reads/fragments will be counted
(ie. a multi-mapping read will be counted up to N times if
it has N reported mapping locations). The program uses the
‘NH’ tag to find multi-mapping reads.

-Q < int >
(minMQs)

The minimum mapping quality score a read must have so as
to be counted. For paired-end reads, at least one end should
satisfy this criteria. 0 by default.

-T <nt >
(nthreads)

Number of the threads. 1 by default.

-R

Output the read summarization results for each read. Note
that this option is not supported by featureCounts function
in Rsubread.

b
(isPairedEnd)

If specified, fragments (or templates) will be counted instead
of reads. This option is only applicable for paired-end reads.

The two reads from the same fragment must be adjacent to
each other in the provided SAM/BAM file.

-P
checkFraglLength
g g

If specified, the fragment length will be checked when as-
signing fragments to meta-features or features. This option
should be used together with -p (or isPairedEnd in Rsubread
featureCounts). The fragment length thresholds should be
specified using -d and -D options.

-d <int >
(minFraglength)

Minimum fragment/template length, 50 by default.

-D <int >
(maxFraglength)

Maximum fragment/template length, 600 by default.

-B
(requireBothEndsMapped)

If specified, only fragments that have both ends successfully
aligned will be considered for summarization. This option
should be used together with -p (or isPairedEnd in Rsubread
featureCounts).

26

-C

(countChimericFragments)

If specified, the chimeric fragments (those fragments that have
their two ends aligned to different chromosomes) will NOT
be counted. This option should be used together with -p (or
isPairedEnd in Rsubread featureCounts).

27

Chapter 7

Case studies

7.1 A Bioconductor R pipeline for analyzing RNA-seq
data

Here we illustrate how to use two Bioconductor packages - Rsubread and limma - to perform a
complete RNA-seq analysis, including Subread read mapping, featureCounts read summariza-
tion, voom normalization and limma differential expresssion analysis.

Data and software. The RNA-seq data used in this case study include four libraries: A_1,
A2 B.1 and B.2. A_1 and A_2 are both Universal Human Reference RNA (UHRR) samples
but they underwent separate sample preparation. B_1 and B_2 are both Human Brain Ref-
erence RNA (HBRR) samples and they also underwent separate sample preparation. Note
that these libraries only included reads originating from human chromosome 1 (according to
Subread aligner). These read data were generated by the SEQC Consortium. We have put
into a tar ball these read data and the reference sequence data of chromosome 1 from human
genome build GRCh37/hg19, and it can be downloaded from
http://bioinf.wehi.edu.au/RNAseqCaseStudy/data.tar.gz (283MB).

After downloading the dataset, uncompress it and save them to your current working
directory. Launch R and load Rsubread and limma libraries using the following commands.

library(Rsubread)
library(limma)

If these libraries have not been installed in your R, check Bioconductor website for instruc-
tions on the package installation. It will be best to use the latest version of R. This case study
was tested on R version 3.0.0. Note that Rsubread can only be installed on Linux/Unix and
Mac OS X computers.

Index building. Build an index for human chromosome 1. This will take ~3 minutes. Index
files with basename ‘chrl’ will be generated in your current working directory.

28

buildindex(basename="chrl" ,reference="hgl9_chrl.fa")

Alignment. Perform read alignment for all four libraries and report uniquely mapped reads
only. This will take ~4 minutes. SAM files which include the mapping results will be generated
in your current working directory.

fOI‘(i in C("A_l" s "A_2" s IlB_lll s IIB_2II))
align(index="chrl",readfilel=paste(i,"txt",sep=".") ,output_file=paste(i,"sam",sep="."),
unique=TRUE, indels=5)

Read summarization. Summarize mapped reads to RefSeq genes. This will take less than
half a minute. Note that the featureCounts function has built-in annotation for Refseq genes.
featureCounts returns an R ‘List” object which can be directly fed into limma for normalization
and differential expresssion analysis. This object includes raw read count for each gene in
each library and also annotation information.

counts <- featureCounts(files=c("A_1.sam","A_2.sam","B_1.sam","B_2.sam"),genome="hg")

Filtering. Calculate RPKM (reads per kilobases of exon per million reads mapped) values
for genes and use these values to filter out those genes which failed to achieve a 0.5 RPKM in
at least two libraries.

counts_rpkm <- apply(counts$counts,2,function(x) x*(1000/counts$annotation$Length)*(1le6/sum(x)))

isexpr <- rowSums(counts_rpkm >= 0.5) >= 2
x <- counts$counts[isexpr,]

Design matrix. The following analyses are very similar to the analyses performed for mi-
croarray expression data. Firstly, we create a design matrix:

celltype <- factor(c("A","A","B","B"))
design <- model.matrix(~O+celltype)
colnames(design) <- levels(celltype)

Normalization. Then we perform voom normalization:

y <- voom(x,design,plot=TRUE)

The figure below shows the mean-variance relationship estimated by voom for the data.

29

voom: Mean-variance trend

Sqrt(standard deviation)
0.4 0.6 0.8 1.0 1.2 1.4
1

0.2

T T T T
0 5 10 15

log2(count size + 0.5)

Sample clustering. The following multi-dimensional scaling plot shows that sample A
libraries are clearly separated from sample B libraries.

plotMDS(y,xlim=c(-2.5,2.5))

| A_1.sam

06

0.4

0.2

B_1.sam

Dimension 2
0.0

B_2.sam

-0.2
1

-0.4

-0.6

Dimension 1

Linear model fitting and differential expression analysis. Fit linear models to genes
and assess differential expression using the eBayes moderated t statistic. Here we compare A
vs B. 560 and 994 genes were found down- and up-regulated in sample A compared to sample
B, respectively.

fit <- 1lmFit(y,design)
contr <- makeContrasts(AvsB=A-B,levels=design)

30

fit.contr <- eBayes(contrasts.fit(fit,contr),trend=TRUE)
dt <- decideTests(fit.contr)
summary (dt)

AvsB
-1 560
497
1 994

List top 10 differentially expressed genes:

options(digits=3)
topTable(fit.contr)
ID logFC AveExpr
1905 100131754

200
319
144
415
418
770
792
563
414

2752
4904
2023
6135
6202
22883
23154
8682
6125

-1
-2

N

.62
.38
3.
.72
.24
.40
.24
.73
.58
.01

00

16.
12.
11.
13.
12.
12.
12.
11.
11.
11.

0N O - D OO O

-77.
-59.
54.
53.
51.
50.
-50.
-48.
-41.
40.

O, NO OO WwWwOou W
W WP WNDNDE = DN

P.Value
.02e-17
.45e-16
.31e-15
.64e-15
.40e-15
.82e-15
.5le-15
.84e-15
.53e-14
.73e-14

adj.P.Val

4,
.56e-13
.41e-13
.41e-13
.64e-13
.64e-13
.03e-12
.24e-12
.95e-12
.95e-12

DO O W 0 D

31

14e-14

28.
27.
26.
25.
25.
25.
25.
24.
23.
23.

O O OO OO W

Bibliography

[1] Y. Liao, G. K. Smyth, and W. Shi. The subread aligner: fast, accurate and scalable read
mapping by seed-and-vote. Nucleic Acids Res, 41:€108, 2013.

2] J. Z. Tang, C. L. Carmichael, W. Shi, D. Metcalf, A. P. Ng, C. D. Hyland, N. A. Jenk-
ins, N. G. Copeland, V. M. Howell, Z. J. Zhao, G. K. Smyth, B. T. Kile, and W. S.
Alexander. Transposon mutagenesis reveals cooperation of ETS family transcription fac-

tors with signaling pathways in erythro-megakaryocytic leukemia. Proc Natl Acad Sci U
S A, 110:6091-6, 2013.

[3] B. Pal, T. Bouras, W Shi, F. Vaillant, J. M. Sheridan, N. Fu, K. Breslin, K. Jiang, M. E.
Ritchie, M. Young, G. J. Lindeman, G. K. Smyth, and J. E. Visvader. Global changes in
the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell
Rep, 3:411-26, 2013.

[4] Y. Liao, G. K. Smyth, and W. Shi. featureCounts: an efficient general-purpose read
summarization program. arXiv:1305.3347, 2013.

32

