
An Introduction to QuasR
Anita Lerch, Dimos Gaidatzis and Michael Stadler

Modified: February 13, 2013. Compiled: September 27, 2013

Contents

1 Introduction 3

2 Preliminaries 3
2.1 Citing QuasR . 3
2.2 Installation . 4
2.3 Loading of QuasR and other required libraries 4
2.4 How to get help . 4

3 Quick Start 6
3.1 A brief introduction to R . 6
3.2 Sample QuasR session . 7

4 QuasR Overview 9

5 Example tasks 11
5.1 Create a sample file . 11
5.2 Create an auxiliary file (optional) 12
5.3 Select the reference genome . 13
5.4 Sequence data pre-processing . 14

6 Example workflows 16
6.1 ChIP-seq: Measuring protein-DNA binding and chromatin mod-

ifications . 16
6.1.1 Align reads using the qAlign function 16
6.1.2 Create a quality control report 18
6.1.3 Alignment statistics . 18
6.1.4 Export genome wig file from alignments 18
6.1.5 Count alignments using qCount 19
6.1.6 Create a genomic profile for a set of regions using qProfile 21

1

6.1.7 Using a BSgenome package as reference genome 23
6.2 RNA-seq: Gene expression profiling 24
6.3 Bis-seq: Measuring DNA methylation 27
6.4 Allele-specific analysis . 31

7 Description of Individual QuasR Functions 35
7.1 preprocessReads . 35
7.2 qAlign . 35
7.3 qProject class . 36
7.4 qQCReport . 37
7.5 alignmentStats . 40
7.6 qExportWig . 41
7.7 qCount . 41

7.7.1 Determination of overlap 41
7.7.2 Running modes of qCount 42

7.8 qProfile . 43
7.9 qMeth . 43

8 Session information 44

2

1 Introduction

The QuasR package (short for Quantify and annotate short reads in R) inte-
grates the functionality of several R packages (such as IRanges and Rsamtools)
and external software (e.g. bowtie, through the Rbowtie package). The package
aims to cover the whole analysis workflow of typical ultra-high throughput se-
quencing experiments, starting from the raw sequence reads, over pre-processing
and alignment, up to quantification. A single R script can contain all steps of a
complete analysis, making it simple to document, reproduce or share the work-
flow containing all relevant details.

The current QuasR release supports the analysis of single read and paired-
end ChIP-seq (chromatin immuno-precipitation combined with sequencing), RNA-
seq (gene expression profiling by sequencing of RNA) and Bis-seq (measurement
of DNA methylation by sequencing of bisulfite-converted genomic DNA) exper-
iments.

2 Preliminaries

2.1 Citing QuasR

If you use QuasR [1] in your work, you can cite it as follows:

> citation("QuasR")

Please use the QuasR reference below to cite the software

itself. If you were using qAlign with Rbowtie as aligner,

it can be cited as Langmead et al. (2009) (unspliced

alignments) or Au et al. (2010) (spliced alignments).

Anita Lerch, Dimos Gaiditzis and Michael Stadler

(2012). QuasR: Quantify and Annotate Short Reads in R.

R package version 1.0.9 (unpublished)

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast

and memory-efficient alignment of short DNA sequences

to the human genome. Genome Biology 10(3):R25 (2009).

Au KF, Jiang H, Lin L, Xing Y, Wong WH. Detection of

splice junctions from paired-end RNA-seq data by

SpliceMap. Nucleic Acids Research, 38(14):4570-8

(2010).

This free open-source software implements academic

research by the authors and co-workers. If you use it,

please support the project by citing the appropriate

journal articles.

3

2.2 Installation

QuasR is a package for the R computing environment and it is assumed that you
have already installed R. See the R project at http://www.r-project.org. To
install the latest version of QuasR, you will need to be using the latest version of
R. QuasR is part of the Bioconductor project at http://www.bioconductor.

org. To get QuasR together with its dependencies you can use

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("QuasR")

Bioconductor works on a 6-monthly official release cycle. As with other Bio-
conductor packages, there are always two versions of QuasR. Most users will
use the current official release version, which will be installed by biocLite if
you are using the current version of R. There is also a developmental version
of QuasR that includes new features due for the next official release. The de-
velopmental version will be installed if you are using the developmental version
of R. The official release version always has an even second number (for exam-
ple 0.2.1), whereas the developmental version has an odd second number (for
example 0.3.6).

2.3 Loading of QuasR and other required libraries

In order to run the code examples in this vignette, the QuasR library and a few
additional libraries need to be loaded:

> library(QuasR)

> library(BSgenome)

> library(Rsamtools)

> library(rtracklayer)

> library(GenomicFeatures)

> library(Gviz)

2.4 How to get help

Most questions about QuasR will hopefully be answered by the documentation
or references. If you’ve run into a question which isn’t addressed by the docu-
mentation, or you’ve found a conflict between the documentation and software
itself, then there is an active support community which can offer help. The au-
thors of the package (maintainer: Michael Stadler <michael.stadler@fmi.ch>)
always appreciate receiving reports of bugs in the package functions or in the
documentation. The same goes for well-considered suggestions for improve-
ments. Any other questions or problems concerning QuasR should be sent to the
Bioconductor mailing list bioconductor@stat.math.ethz.ch. To subscribe to
the mailing list, see https://stat.ethz.ch/mailman/listinfo/bioconductor.
Please send requests for general assistance and advice to the mailing list rather
than to the individual authors. Users posting to the mailing list for the first

4

http://www.r-project.org
http://www.bioconductor.org
http://www.bioconductor.org
bioconductor@stat.math.ethz.ch
https://stat.ethz.ch/mailman/listinfo/bioconductor

time should read the helpful posting guide at http://www.bioconductor.org/
doc/postingGuide.html. Note that each function in QuasR has it’s own help
page, as described in the section 3.1. Mailing list etiquette requires that you
read the relevant help page carefully before posting a problem to the list.

5

http://www.bioconductor.org/doc/postingGuide.html
http://www.bioconductor.org/doc/postingGuide.html

3 Quick Start

3.1 A brief introduction to R

If you already use R and know about its command line interface, just skip this
section and continue with section 3.2 on page 7.

The structure of this vignette and in particular this section is based on
the excellent user guide of the limma package, which we would like to hereby
acknowledge. R is a program for statistical computing. It is a command-driven
language meaning that you have to type commands into it rather than pointing
and clicking using a mouse. In this guide it will be assumed that you have
successfully downloaded and installed R from http://www.r-project.org as
well as QuasR (see section 2.2). A good way to get started is to type

> help.start()

at the R prompt or, if you’re using R for Windows, to follow the drop-down
menu items Help � Html help. Following the links Packages � QuasR from the
html help page will lead you to the contents page of help topics for functions in
QuasR. Before you can use any QuasR commands you have to load the package
by typing

> library(QuasR)

at the R prompt. You can get help on any function in any loaded package by
typing ? and the function name at the R prompt, for example

> ?preprocessReads

or equivalently

> help("preprocessReads")

for detailed help on the preprocessReads function. The individual function
help pages are especially important for listing all the arguments which a function
will accept and what values the arguments can take.

A key to understanding R is to appreciate that anything that you create in
R is an object. Objects might include data sets, variables, functions, anything
at all. For example

> x <- 2

will create a variable x and will assign it the value 2. At any stage of your R
session you can type

> ls()

to get a list of all the objects you have created. You can see the contents of any
object by typing the name of the object at the prompt. The following command
will print out the contents of x:

6

http://www.r-project.org

> x

We hope that you can use QuasR without having to spend a lot of time learning
about the R language itself but a little knowledge in this direction will be very
helpful, especially when you want to do something not explicitly provided for
in QuasR or in the other Bioconductor packages. For more details about the R
language see An Introduction to R which is available from the online help. For
more background on using R for statistical analysis see [2].

3.2 Sample QuasR session

This is a quick overview of what an analysis could look like for users preferring
to jump right into an analysis. The example uses data that is provided with
the QuasR package, which is first copied to the current working directory, into
a subfolder called "extdata":

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

The sequence files to be analyzed are listed in sampleFile (see section 5.1
on page 11 for details). The sequence reads will be aligned using bowtie [3]
(from the Rbowtie package [4]) to a small reference genome (consisting of three
short segments from the hg19 human genome assembly, available in full for
example in the BSgenome.Hsapiens.UCSC.hg19 package). Make sure that you
have sufficient disk space, both in your R temporary directory (tempdir) as well
as to store the resulting alignments (see section 7.2).

> sampleFile <- "extdata/samples_chip_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj <- qAlign(sampleFile, genomeFile)

nodeNames

george2

1

> proj

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : no

snpFile : none

Aligner : Rbowtie v1.0.3 (parameters: -m 1 --best --strata)

Genome : /tmp/Rtmp3ckjsv/Rbuild484015dfa.../hg19sub.fa (file)

Reads : 2 files, 2 samples (fastq format):

1. chip_1_1.fq.bz2 Sample1 (phred33)

2. chip_2_1.fq.bz2 Sample2 (phred33)

7

Genome alignments: directory: same as reads

1. chip_1_1_6cdf5473cc09.bam

2. chip_2_1_6cdf7f640d43.bam

Aux. alignments: none

The proj object keeps track of all the information of a sequencing experiment,
for example where sequence and alignment files are stored, and what aligner
and reference genome was used to generate the alignments.

Now that the alignments have been generated, further analyses can be per-
formed. A quality control report is saved to the "extdata/qc_report.pdf" file
using the qQCReport function.

> qQCReport(proj, "extdata/qc_report.pdf")

The number of alignments per promoter region is quantified using qCount.
Genomic coordinates for promoter regions are imported from a gtf file (annotFile)
into the GRanges-object with the name promReg:

> library(rtracklayer)

> library(GenomicFeatures)

> annotFile <- "extdata/hg19sub_annotation.gtf"

> txStart <- import.gff(annotFile, format="gtf", asRangedData=FALSE,

+ feature.type="start_codon")

> promReg <- promoters(txStart, upstream=500, downstream=500)

> names(promReg) <- mcols(promReg)$transcript_name

> promCounts <- qCount(proj, query=promReg)

> promCounts

width Sample1 Sample2

TNFRSF18-003 1000 20 4

TNFRSF18-002 1000 20 4

TNFRSF18-001 1000 20 4

TNFRSF4-001 1000 5 2

SDF4-007 1000 8 2

SDF4-001 1000 8 2

SDF4-002 1000 8 2

SDF4-201 1000 8 2

B3GALT6-001 1000 25 274

RPS7-001 1000 121 731

RPS7-008 1000 121 731

RPS7-009 1000 121 731

RPS7-005 1000 121 731

C3orf10-201 1000 176 496

C3orf10-001 1000 176 496

AC034193.1-201 1000 5 2

VHL-001 1000 61 336

VHL-002 1000 61 336

VHL-201 1000 61 336

8

4 QuasR Overview

The following scheme shows the major components of QuasR and their relation-
ships:

Figure 1: QuasR package overview

QuasR works with data (sequences and alignments, reference genome, etc.)
that are stored as files on your storage (the gray cylinder on the lower left of
Figure 1). QuasR does not need a database management system, or these files
to be named and organized according to a specific scheme.

In order to keep track of directory paths during an analysis, QuasR makes
use of a qProject object that is returned by the qAlign function, which at the
minimum requires two inputs: the name of a samples text file (see section 5.1
for details), and the reference genome for the alignments (see section 5.3).

The qProject object is the main argument passed to subsequent functions
such as qQCReport and qCount. The qProject object contains all necessary
information on the current project and eliminates the need to repeatedly enter
the same information. All functions that work on qProject objects can be
recognized by their names starting with the letter q.

Read quantification (apart from quantification of methylation which has its
own function qMeth) is done using the qCount function: It counts the alignments
in regions of interest (e.g. promoters, genes, exons, etc.) and produces a count
table (regions in rows, samples in columns) for further visualization and analysis.
The count table can also be used as input to a statistical analysis using packages
such as edgeR [5] or DESeq [6].

In summary, a typical QuasR analysis consists of the following steps (some

9

of them are optional):

� preprocessReads (optional): Remove adapters from start or
end of reads, filter out reads of low quality, short length or low
complexity (section 5.4 on page 14).

� Prepare samples file: List sequence files or alignments, provide
sample names (section 5.1 on page 11).

� Prepare auxiliary file (optional): List additional reference se-
quences for alignment of reads not matching the reference genome
(section 5.2 on page 12).

� qAlign: Create qProject object and specify project parame-
ters. Also download BSgenome package, create aligner indices
and align reads if not already existing (7.2 on page 35).

� qQCReport (optional): Create quality control report with plots
on sequence qualities and alignment statistics (section 7.4 on
page 37).

� qExportWig (optional): Export genomic alignments as wiggle
tracks for genome browser visualization (section 7.6 on page
41).

� qCount: Quantify alignments in regions of interest (section 7.7
on page 41).

Recurrent example tasks that may be part of any typical analysis are de-
scribed in section 5 starting on page 11. Example workflows for specific experi-
ment types (ChIP-seq, RNA-seq and Bis-seq) are described in section 6 starting
on page 16.

10

5 Example tasks

5.1 Create a sample file

The sample file is a tab-delimited text file with two or three columns. The first
row contains the column names: For a single read experiment, these are ’File-
Name’ and ’SampleName’; for a paired-end experiment, these are ’FileName1’,
’FileName2’ and ’SampleName’. If the first row does not contain the correctly
spelled column names, QuasR will not accept the samples file. Subsequent rows
contain the input sequence files.

Here are examples of such sample files for a single read experiment:

FileName SampleName

chip_1_1.fq.bz2 Sample1

chip_2_1.fq.bz2 Sample2

and for a paired-end experiment:

FileName1 FileName2 SampleName

rna_1_1.fq.bz2 rna_1_2.fq.bz2 Sample1

rna_2_1.fq.bz2 rna_2_2.fq.bz2 Sample2

These example files are also contained in the QuasR package and may be
used as templates. The path of the files can be determined using:

> sampleFile1 <- system.file(package="QuasR", "extdata",

+ "samples_chip_single.txt")

> sampleFile2 <- system.file(package="QuasR", "extdata",

+ "samples_rna_paired.txt")

The columns FileName for single-read, or FileName1 and FileName2 for
paired-end experiments contain paths and names to files containing the sequence
data. The paths can be absolute or relative to the location of the sample file.
This allows combining files from different directories in a single analysis. For
each input sequence file, qAlign will create one alignment file and by default
store it in the same directory as the sequence file. Already existing alignment
files with identical parameters will not be re-created, so that it is easy to reuse
the same sequence files in multiple projects without unnecessarily copying se-
quence files or recreating alignments.

The SampleName column contains sample names for each sequence file. The
same name can be used on several lines to indicate multiple sequence files that
belong to the same sample (qCount can use this information to automatically
combine counts for one sample from multiple files).

Three file formats are supported for input files (but cannot be mixed within
a single sample file):

� FASTA files have names that end with ’.fa’, ’.fna’ or ’.fasta’. They contain
only sequences (and no base qualities) and will thus by default be aligned

11

on the basis of mismatches (the best alignment is the one with fewest
mismatches).

� FASTQ files have names that end with ’.fq’ or ’.fastq’. They contain se-
quences and corresponding base qualities and will be aligned by default
using these qualities.

� BAM files have names that end with ’.bam’. They can be used if the se-
quence reads have already been aligned outside of QuasR, and QuasR will
only be used for downstream analysis based on the alignments contained
in the BAM files. This makes it possible to use alignment tools that are
not available within QuasR, but making use of this option comes with a
risk and should only be used by experienced users. For example, it cannot
be guaranteed any more that certain assumptions made by qCount are
fulfilled by the external aligner. In addition, since the data provided to
QuasR has already been processed, quality control plots that are based on
unprocessed raw data will be missing from the output of qQCReport.

FASTA and FASTQ files can be compressed with gzip, bzip2 or xz (file extensions
’.gz’, ’.bz2’ or ’xz’, respectively) and will automatically decompressed when
necessary.

Consistency of samples within a project

The sample file implicitly defines the type of samples contained in the project:
single read or paired-end read, sequences with or without qualities. This type will
have a profound impact on the downstream analysis. For example, it controls
whether alignments will be performed in single or paired-end mode, either with
or without base qualities. That will also determine availability of certain options
for quality control and quantification in qQCReport and qCount. For consistency,
it is therefore required that all samples within a project have the same type; it
is not possible to mix both single and paired-end read samples, or FASTA and
FASTQ files in a single project (sample file). If necessary, it may be possible
to analyse different types of files in separate QuasR projects and combine the
derived results at the end.

5.2 Create an auxiliary file (optional)

By default QuasR aligns reads only to the reference genome. However, it may be
interesting to align non-matching reads to further targets, for example to identify
contamination from vectors or a different species, or in order to quantify spike-in
material not contained in the reference genome. In QuasR, such supplementary
reference files are called auxiliary references and can be specified to qAlign

using the auxiliaryFile argument (see section 7.2 on page 35 for details).
The format of the auxiliary file is similar to the one of the sample file described
in section 5.1: It contains two columns with column names ’FileName’ and

12

’AuxName’ in the first row. Additional rows contain names and files of one or
several auxiliary references in FASTA format.

An example auxiliary file looks like this:

FileName AuxName

NC_001422.1.fa phiX174

and is available from your QuasR installation at

> auxFile <- system.file(package="QuasR", "extdata", "auxiliaries.txt")

5.3 Select the reference genome

Sequence reads are primarily aligned against the reference genome. If necessary,
QuasR will create an aligner index for the genome. The reference genome can
be provided in one of two different formats:

� a string, referring to the name of a BSgenome package:

> available.genomes()

[1] "BSgenome.Alyrata.JGI.v1"

[2] "BSgenome.Amellifera.BeeBase.assembly4"

[3] "BSgenome.Amellifera.UCSC.apiMel2"

[4] "BSgenome.Athaliana.TAIR.04232008"

[5] "BSgenome.Athaliana.TAIR.TAIR9"

[6] "BSgenome.Btaurus.UCSC.bosTau3"

[7] "BSgenome.Btaurus.UCSC.bosTau4"

[8] "BSgenome.Btaurus.UCSC.bosTau6"

[9] "BSgenome.Celegans.UCSC.ce10"

[10] "BSgenome.Celegans.UCSC.ce2"

[11] "BSgenome.Celegans.UCSC.ce6"

[12] "BSgenome.Cfamiliaris.UCSC.canFam2"

[13] "BSgenome.Cfamiliaris.UCSC.canFam3"

[14] "BSgenome.Dmelanogaster.UCSC.dm2"

[15] "BSgenome.Dmelanogaster.UCSC.dm3"

[16] "BSgenome.Drerio.UCSC.danRer5"

[17] "BSgenome.Drerio.UCSC.danRer6"

[18] "BSgenome.Drerio.UCSC.danRer7"

[19] "BSgenome.Ecoli.NCBI.20080805"

[20] "BSgenome.Gaculeatus.UCSC.gasAcu1"

[21] "BSgenome.Ggallus.UCSC.galGal3"

[22] "BSgenome.Ggallus.UCSC.galGal4"

[23] "BSgenome.Hsapiens.UCSC.hg17"

[24] "BSgenome.Hsapiens.UCSC.hg18"

[25] "BSgenome.Hsapiens.UCSC.hg19"

[26] "BSgenome.Mmulatta.UCSC.rheMac2"

13

[27] "BSgenome.Mmusculus.UCSC.mm10"

[28] "BSgenome.Mmusculus.UCSC.mm8"

[29] "BSgenome.Mmusculus.UCSC.mm9"

[30] "BSgenome.Ptroglodytes.UCSC.panTro2"

[31] "BSgenome.Ptroglodytes.UCSC.panTro3"

[32] "BSgenome.Rnorvegicus.UCSC.rn4"

[33] "BSgenome.Rnorvegicus.UCSC.rn5"

[34] "BSgenome.Scerevisiae.UCSC.sacCer1"

[35] "BSgenome.Scerevisiae.UCSC.sacCer2"

[36] "BSgenome.Scerevisiae.UCSC.sacCer3"

[37] "BSgenome.Tgondii.ToxoDB.7.0"

> genomeName <- "BSgenome.Hsapiens.UCSC.hg19"

� a file name, referring to a sequence file containing one or several reference
sequences (e.g. chromosomes) in FASTA format:

> genomeFile <- system.file(package="QuasR", "extdata", "hg19sub.fa")

5.4 Sequence data pre-processing

The preprocessReads function can be used to prepare the input sequence files
prior to alignment. The function takes one or several sequence files (or pairs
of files for a paired-end experiment) in FASTA or FASTQ format as input and
produces the same number of output files with the processed reads.

In the following example, we truncate the reads by removing the three bases
from the 3’-end (the right side), remove the adapter sequence AAAAAAAAAA from
the 5’-end (the left side) and filter out reads that, after truncation and adapter
removal, are shorter than 14 bases or contain more than 2 N bases:

> td <- tempdir()

> infiles <- system.file(package="QuasR", "extdata",

+ c("rna_1_1.fq.bz2","rna_2_1.fq.bz2"))

> outfiles <- file.path(td, basename(infiles))

> res <- preprocessReads(filename = infiles,

+ outputFilename = outfiles,

+ truncateEndBases = 3,

+ Lpattern = "AAAAAAAAAA",

+ minLength = 14,

+ nBases = 2)

> res

rna_1_1.fq.bz2 rna_2_1.fq.bz2

totalSequences 3002 3000

matchTo5pAdapter 466 463

matchTo3pAdapter 0 0

tooShort 107 91

14

tooManyN 0 0

lowComplexity 0 0

totalPassed 2895 2909

> unlink(outfiles)

preprocessReads returns a matrix with a summary of the pre-processing.
The matrix contains one column per (pair of) input sequence files, and con-
tains the total number of reads (totalSequences), the number of reads that
matched to the five prime or three prime adapters (matchTo5pAdapter and
matchTo3pAdapter), the number of reads that were too short (tooShort), con-
tained too many non-base characters (tooManyN) or were of low sequence com-
plexity (lowComplexity, deactivated by default). Finally, the number of reads
that passed the filtering steps is reported in the last row (totalPassed).

In the example below we process paired-end reads, removing all pairs with
one or several N bases. Even if only one sequence in a pair fulfills the filtering
criteria, both reads in the pair are removed, thereby preserving the matching
order of the sequences in the two files:

> td <- tempdir()

> infiles1 <- system.file(package="QuasR", "extdata", "rna_1_1.fq.bz2")

> infiles2 <- system.file(package="QuasR", "extdata", "rna_1_2.fq.bz2")

> outfiles1 <- file.path(td, basename(infiles1))

> outfiles2 <- file.path(td, basename(infiles2))

> res <- preprocessReads(filename=infiles1,

+ filenameMate=infiles2,

+ outputFilename=outfiles1,

+ outputFilenameMate=outfiles2,

+ nBases=0)

> res

rna_1_1.fq.bz2:rna_1_2.fq.bz2

totalSequences 3002

matchTo5pAdapter NA

matchTo3pAdapter NA

tooShort 0

tooManyN 3

lowComplexity 0

totalPassed 2999

> unlink(c(outfiles1,outfiles2))

More details on the preprocessReads function can be found in the function
documentation (see ?preprocessReads) or in the section 7.1 on page 35.

15

6 Example workflows

6.1 ChIP-seq: Measuring protein-DNA binding and chro-
matin modifications

Here we show an exemplary single-end ChIP-seq workflow using a small number
of reads from a histone 3 lysine 4 trimethyl (H3K4me3) ChIP-seq experiment.
This histone modification is known to locate to genomic regions with a high
density of CpG dinucleotides (so called CpG islands); about 60% of mammalian
genes have such a CpG island close to their transcript start site. All necessary
files are included in the QuasR package, and we start the example workflow
by copying those files into the current working directly, into a subfolder called
"extdata":

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

6.1.1 Align reads using the qAlign function

We assume that the sequence reads have already been pre-processed as described
in section 5.4. Also, a sample file (section 5.1) that lists all sequence files to be
analyzed has been prepared. A FASTA file with the reference genome sequence(s)
is also available (section 5.3), as well as a auxiliary file for alignment of reads
that failed to match the reference genome (section 5.2).

By default, newly generated BAM files will be stored at the location of the
input sequence files, which should be writable and have sufficient capacity (an
alternative location can be specified using the alignmentsDir argument). Make
also sure that you have sufficient temporary disk space for intermediate files in
tempdir() (see section 7.2). We start by aligning the reads using qAlign:

> sampleFile <- "extdata/samples_chip_single.txt"

> auxFile <- "extdata/auxiliaries.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj1 <- qAlign(sampleFile, genome=genomeFile, auxiliaryFile=auxFile)

nodeNames

george2

1

> proj1

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : no

snpFile : none

Aligner : Rbowtie v1.0.3 (parameters: -m 1 --best --strata)

Genome : /tmp/Rtmp3ckjsv/Rbuild484015dfa.../hg19sub.fa (file)

16

Reads : 2 files, 2 samples (fastq format):

1. chip_1_1.fq.bz2 Sample1 (phred33)

2. chip_2_1.fq.bz2 Sample2 (phred33)

Genome alignments: directory: same as reads

1. chip_1_1_6cdf5473cc09.bam

2. chip_2_1_6cdf7f640d43.bam

Aux. alignments: 1 file, directory: same as reads

a. /tmp/Rtmp3ckjsv/Rbuild484015dfa3.../NC_001422.1.fa phiX174

1. chip_1_1_6cdf25e3b15b.bam

2. chip_2_1_6cdf77cbad04.bam

qAlign will build alignment indices if they do not yet exist (by default, if the
genome and auxiliary sequences are given in the form of FASTA files, they will be
stored in the same folder). The qProject object (proj1) returned by qAlign

now contains all information about the ChIP-seq experiment: the (optional)
project name, the project options, aligner package, reference genome, and at
the bottom the sequence and alignment files. For each input sequence file, there
will be one BAM file with alignments against the reference genome, and one for
each auxiliary target sequence with alignments of reads without genome hits.
Our auxFile contains a single auxiliary target sequence, so we expect two BAM

files per input sequence file:

> list.files("extdata", pattern=".bam$")

[1] "chip_1_1_6cdf25e3b15b.bam" "chip_1_1_6cdf5473cc09.bam"

[3] "chip_2_1_6cdf77cbad04.bam" "chip_2_1_6cdf7f640d43.bam"

The BAM file names consist of the base name of the sequence file with an added
random string. The random suffix makes sure that newly generated alignment
files do not overwrite existing ones, for example of the same reads aligned against
an alternative reference genome. Each alignment file is accompanied by two
additional files with suffixes “.bai” and “.txt”:

> list.files("extdata", pattern="^chip_1_1_")[1:3]

[1] "chip_1_1_6cdf25e3b15b.bam"

[2] "chip_1_1_6cdf25e3b15b.bam.bai"

[3] "chip_1_1_6cdf25e3b15b.bam.txt"

The “.bai” file is the BAM index used for fast access by genomic coordinate. The
“.txt” file contains all the parameters used to generate the corresponding BAM

file. Before new alignments are generated, qAlign will look for available “.txt”
files in default locations (the directory containing the input sequence file, or the
value of alignmentsDir), and read their contents to determine if a compatible
BAM file already exists. A compatible BAM file is one with the same reads and
genome, aligned using the same aligner and identical alignment parameters. If a

17

compatible BAM file is not found, or the“.txt”file is missing, qAlign will generate
a new BAM file. It is therefore recommended not to delete the “.txt” file - without
it, the corresponding BAM file will become unusable for QuasR.

6.1.2 Create a quality control report

QuasR can produce a quality control report in the form of a series of diagnostic
plots with details on sequences and alignments (see Figure 1 on page 9). The
plots are generated by calling the qQCReport function with the qProject ob-
ject as argument. qQCReport uses ShortRead [7] internally to obtain some of
the quality metrics, and some of the plots are inspired by the FastQC quality
control tool by Simon Andrews (http://www.bioinformatics.bbsrc.ac.uk/
projects/fastqc/). The plots will be stored into a multipage PDF document
defined by the pdfFilename argument, or else shown as individual plot windows
on the current graphics device. In order to keep the running time reasonably
short, some quality metrics are obtained from a random sub-sample of the se-
quences or alignments.

> qQCReport(proj1, pdfFilename="extdata/qc_report.pdf")

Currently available plots are described in section 7.4 on page 37 and follow-
ing.

6.1.3 Alignment statistics

The alignmentStats gets the number of (un-)mapped reads for each sequence
file in a qProject object, by reading the BAM file indices, and returns them as
a data.frame. The function also works for arguments of type character with
one or several BAM file names (for details see section 7.5 on page 40).

> alignmentStats(proj1)

seqlength mapped unmapped

Sample1:genome 95000 2339 258

Sample2:genome 95000 3609 505

Sample1:phiX174 5386 251 7

Sample2:phiX174 5386 493 12

6.1.4 Export genome wig file from alignments

For visualization in a genome browser, alignment coverage along the genome
can be exported to a (compressed) wig file using the qExportWig function. The
created fixedStep wig file (see http://genome.ucsc.edu/goldenPath/help/

wiggle.html for details on the wig format) will contain one track per sample
in the qProject object. The resolution is defined using the binsize argument,
and if scaling is set to TRUE, read counts per bin are scaled by the total number
of aligned reads in each sample to improve comparability:

> qExportWig(proj1, binsize=100L, scaling=TRUE, collapseBySample=TRUE)

18

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html

6.1.5 Count alignments using qCount

Alignments are quantified using qCount, for example using a GRanges object as a
query. In our H3K4me3 ChIP-seq example, we expect the reads to occur around
the transcript start site of genes. We can therefore construct suitable query
regions using genomic intervals around the start sites of known genes. In the
code below, this is achieved with help from the GenomicFeatures package: We
first create a TranscriptDb object from a “.gtf” file with gene annotation. With
the promoters function, we can then create the GRanges object with regions
to be quantified. Finally, because most genes consist of multiple overlapping
transcripts, we select the first transcript for each gene:

> library(GenomicFeatures)

> annotFile <- "extdata/hg19sub_annotation.gtf"

> chrLen <- scanFaIndex(genomeFile)

> chrominfo <- data.frame(chrom=as.character(seqnames(chrLen)),

+ length=width(chrLen),

+ is_circular=rep(FALSE, length(chrLen)))

> txdb <- makeTranscriptDbFromGFF(file=annotFile, format="gtf",

+ exonRankAttributeName="exon_number",

+ gffGeneIdAttributeName="gene_name",

+ chrominfo=chrominfo,

+ dataSource="Ensembl",

+ species="Homo sapiens")

> promReg <- promoters(txdb, upstream=1000, downstream=500,

+ columns=c("gene_id","tx_id"))

> gnId <- sapply(mcols(promReg)$gene_id, paste, collapse=",")

> promRegSel <- promReg[match(unique(gnId), gnId)]

> names(promRegSel) <- unique(gnId)

> head(promRegSel)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand |

<Rle> <IRanges> <Rle> |

ENSG00000176022 chr1 [31629, 33128] + |

ENSG00000186891 chr1 [6452, 7951] - |

ENSG00000186827 chr1 [14013, 15512] - |

ENSG00000078808 chr1 [31882, 33381] - |

ENSG00000171863 chr2 [1795, 3294] + |

ENSG00000252531 chr2 [7160, 8659] + |

gene_id tx_id

<CharacterList> <integer>

ENSG00000176022 ENSG00000176022 1

ENSG00000186891 ENSG00000186891 2

ENSG00000186827 ENSG00000186827 6

ENSG00000078808 ENSG00000078808 9

ENSG00000171863 ENSG00000171863 17

ENSG00000252531 ENSG00000252531 26

19

seqlengths:

chr1 chr2 chr3

40000 10000 45000

Using promRegSel object as query, we can now count the alignment per
sample in each of the promoter windows.

> cnt <- qCount(proj1, promRegSel)

> cnt

width Sample1 Sample2

ENSG00000176022 1500 157 701

ENSG00000186891 1500 22 5

ENSG00000186827 1500 10 3

ENSG00000078808 1500 73 558

ENSG00000171863 1500 94 339

ENSG00000252531 1500 59 9

ENSG00000247886 1500 172 971

ENSG00000254999 1500 137 389

ENSG00000238642 1500 8 3

ENSG00000134086 1500 9 18

ENSG00000238345 1500 13 25

ENSG00000134075 1500 7 3

The counts returned by qCount are the raw number of alignments per sample
and region, without any normalization for the query region length, or the total
number of aligned reads in a sample. As expected, we can find H3K4me3 signal
at promoters of a subset of the genes with CpG island promoters, which we can
visualize with help of the Gviz package:

> gr1 <- import("Sample1.wig.gz", asRangedData=FALSE)

> gr2 <- import("Sample2.wig.gz", asRangedData=FALSE)

> library(Gviz)

> axisTrack <- GenomeAxisTrack()

> dTrack1 <- DataTrack(range=gr1, name="Sample 1", type="h")

> dTrack2 <- DataTrack(range=gr2, name="Sample 2", type="h")

> txTrack <- GeneRegionTrack(txdb, name="Transcripts", showId=TRUE)

> plotTracks(list(axisTrack, dTrack1, dTrack2, txTrack),

+ chromosome="chr3", extend.left=1000)

20

10 kb

20 kb

30 kb

40 kb

0

10

20

30

40

50

S
am

pl
e

1

0

20

40

60

80

S
am

pl
e

2
Tr

an
sc

rip
ts ENST00000256463

ENST00000256474

ENST00000345392

ENST00000450183

ENST00000458986

ENST00000459242 ENST00000477538

ENST00000530758

ENST00000543461

6.1.6 Create a genomic profile for a set of regions using qProfile

Given a set of anchor positions in the genome, qProfile calculates the number
of nearby alignments relative to the anchor position, for example to generate
a average profile. The neighborhood around anchor positions can be specified
by the upstream and downstream argument. Alignments that are upstream
of an anchor position will have a negative relative position, and downstream
alignments a positive. The anchor positions are all aligned at position zero in
the return value.

Anchor positions will be provided to qProfile using the query argument,
which takes a GRanges object. The anchor positions correspond to start()

for regions on ”+” or ”*” strands, and to end() for regions on the ”-” strand.
As mentioned above, we expect H3K4me3 ChIP-seq alignments to be enriched
around the transcript start site of genes. We can therefore construct a suitable
query object from the start sites of known genes. In the code below, start sites
(’start codon’) are imported from a ”.gtf” file with the help of the rtracklayer
package. In addition, ’strand’ and ’gene name’ are also selected for import.
Duplicated start sites, e.g. from genes with multiple transcripts, are removed.
Finally, all regions are given the name ”TSS”, because qProfile combines re-
gions with identical names into a single profile.

> library(rtracklayer)

> annotationFile <- "extdata/hg19sub_annotation.gtf"

> tssRegions <- import.gff(annotationFile, format="gtf",

+ asRangedData=FALSE,

+ feature.type="start_codon",

+ colnames=c("strand", "gene_name"))

> tssRegions <- tssRegions[!duplicated(tssRegions)]

> names(tssRegions) <- rep("TSS", length(tssRegions))

> head(tssRegions)

GRanges with 6 ranges and 1 metadata column:

seqnames ranges strand | gene_name

21

<Rle> <IRanges> <Rle> | <character>

TSS chr1 [6949, 6951] - | TNFRSF18

TSS chr1 [14505, 14507] - | TNFRSF4

TSS chr1 [29171, 29173] - | SDF4

TSS chr1 [32659, 32661] + | B3GALT6

TSS chr2 [3200, 3202] + | RPS7

TSS chr3 [2386, 2388] + | C3orf10

seqlengths:

chr1 chr2 chr3

NA NA NA

Alignments around the tssRegions coordinates are counted in a window
defined by the upstream and downstream arguments, which specify the number
of bases to include around each anchor position. For query regions on ”+”
or ”*” strands, upstream refers to the left side of the anchor position (lower
coordinates), while for regions on the ”-” strand, upstream refers to the right
side (higher coordinates). The following example creates separate profiles for
alignments on the same and on the opposite strand of the regions in query.

> prS <- qProfile(proj1, tssRegions, upstream=3000, downstream=3000,

+ orientation="same")

> prO <- qProfile(proj1, tssRegions, upstream=3000, downstream=3000,

+ orientation="opposite")

> lapply(prS, "[", , 1:10)

$coverage

-3000 -2999 -2998 -2997 -2996 -2995 -2994 -2993 -2992 -2991

8 8 8 8 8 8 8 8 8 8

$Sample1

-3000 -2999 -2998 -2997 -2996 -2995 -2994 -2993 -2992 -2991

1 0 0 0 0 0 0 0 0 0

$Sample2

-3000 -2999 -2998 -2997 -2996 -2995 -2994 -2993 -2992 -2991

0 0 0 2 0 0 1 1 1 0

The counts returned by qProfile are the raw number of alignments per
sample and position, without any normalization for the number of query regions
or the total number of alignments in a sample per position. To obtain the average
number of alignments, we divide the alignment counts by the number of query
regions that covered a given relative position around the anchor sites. This
coverage is available as the first element in the return value. The shift between
same and opposite strand alignments is indicative for the average length of the
sequenced ChIP fragments.

22

> prCombS <- do.call("+", prS[-1]) /prS[[1]]

> prCombO <- do.call("+", prO[-1]) /prO[[1]]

> plot(as.numeric(colnames(prCombS)), filter(prCombS[1,], rep(1/100,100)),

+ type='l', xlab="Position relative to TSS", ylab="Mean no. of alignments")

> lines(as.numeric(colnames(prCombO)), filter(prCombO[1,], rep(1/100,100)),

+ type='l', col="red")

> legend(title="strand", legend=c("same as query","opposite of query"),

+ x="topleft", col=c("black","red"), lwd=1.5, bty="n", title.adj=0.1)

−3000 −2000 −1000 0 1000 2000 3000

0.
00

0.
10

0.
20

0.
30

Position relative to TSS

M
ea

n
no

. o
f a

lig
nm

en
ts

strand

same as query
opposite of query

6.1.7 Using a BSgenome package as reference genome

QuasR also allows using of BSgenome packages instead of a FASTA file as ref-
erence genome (see section 5.3). To use a BSgenome, the genome argument of
qAlign is set to a string matching the name of a BSgenome package, for exam-
ple "BSgenome.Hsapiens.UCSC.hg19". If that package is not already installed,
qAlign will check if it is available from bioconductor.org and download it au-
tomatically. The corresponding alignment index will be saved as a new package,
named after the original BSgenome package and the aligner used to build the
index, for example BSgenome.Hsapiens.UCSC.hg19.Rbowtie.

The code example below illustrates the use of a BSgenome reference genome
for the same example data as above. Running it for the first time will take
several hours in order to build the aligner index:

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

> sampleFile <- "extdata/samples_chip_single.txt"

> auxFile <- "extdata/auxiliaries.txt"

> available.genomes() # list available genomes

> genomeName <- "BSgenome.Hsapiens.UCSC.hg19"

> proj1 <- qAlign(sampleFile, genome=genomeName, auxiliaryFile=auxFile)

> proj1

23

bioconductor.org

6.2 RNA-seq: Gene expression profiling

In QuasR, an analysis workflow for an RNA-seq dataset is very similar to the
one described above for a ChIP-seq experiment. The major difference is that
here reads are aligned using splicedAlignment=TRUE, which will cause qAlign

to align reads with SpliceMap[8], rather than bowtie[3] (both are contained in
the Rbowtie package). SpliceMap and QuasR also support spliced paired-end
alignments; the splicedAlignment argument can be freely combined with the
paired argument.

We start the example workflow by copying the example data files into the
current working directly, into a subfolder called "extdata", and then create
spliced alignments using qAlign:

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

> sampleFile <- "extdata/samples_rna_paired.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj2 <- qAlign(sampleFile, genome=genomeFile, splicedAlignment=TRUE)

nodeNames

george2

1

> proj2

Project: qProject

Options : maxHits : 1

paired : fr

splicedAlignment: TRUE

bisulfite : no

snpFile : none

Aligner : Rbowtie v1.0.3 (parameters: -max_intron 400000 -min_intron 20000 -max_multi_hit 10 -selectSingleHit TRUE -seed_mismatch 1 -read_mismatch 2 -try_hard yes)

Genome : /tmp/Rtmp3ckjsv/Rbuild484015dfa.../hg19sub.fa (file)

Reads : 2 pairs of files, 2 samples (fastq format):

1. rna_1_1.fq.bz2 rna_1_2.fq.bz2 Sample1 (phred33)

2. rna_2_1.fq.bz2 rna_2_2.fq.bz2 Sample2 (phred33)

Genome alignments: directory: same as reads

1. rna_1_1_6cdf603fc991.bam

2. rna_2_1_6cdf6991d795.bam

Aux. alignments: none

Aligning the reads with splicedAlignment=TRUE is much slower than the
default, but will allow to also align reads that cross one or two exon junctions,
and thus have a large deletion (the intron) relative to the reference genome.

> proj2unspl <- qAlign(sampleFile, genome=genomeFile,

+ splicedAlignment=FALSE)

24

nodeNames

george2

1

> alignmentStats(proj2)

seqlength mapped unmapped

Sample1:genome 95000 6002 2

Sample2:genome 95000 6000 0

> alignmentStats(proj2unspl)

seqlength mapped unmapped

Sample1:genome 95000 2258 3746

Sample2:genome 95000 2652 3348

As with ChIP-seq experiments, qCount is used to quantify alignments. For
quantification of gene or exon expression levels, qCount can be called with a
query of type TranscriptDB, such as the one we constructed in the ChIP-
seq workflow above from a “.gtf” file. The argument reportLevel can be
used to control if annotated exonic regions should be quantified independently
(reportLevel="exon") or non-redundantly combined per gene (reportLevel="gene"):

> geneLevels <- qCount(proj2, txdb, reportLevel="gene")

> exonLevels <- qCount(proj2, txdb, reportLevel="exon")

> head(geneLevels)

width Sample1 Sample2

ENSG00000078808 4697 708 1076

ENSG00000134075 589 1201 1322

ENSG00000134086 4213 282 295

ENSG00000171863 5583 2922 2224

ENSG00000176022 2793 62 344

ENSG00000186827 1721 37 8

> head(exonLevels)

width Sample1 Sample2

1 2793 62 344

10 187 1 0

11 307 1 0

12 300 9 2

13 493 18 2

14 129 5 0

The values returned by qCount are the number of alignments. Sometimes
it is required to normalize for the length of query regions, or the size of the
libraries. For example, gene expression levels in the form of RPKM values
(reads per kilobase of transcript and million mapped reads) can be obtained as
follows:

25

> geneRPKM <- t(t(geneLevels[,-1] /geneLevels[,1] *1000)

+ /colSums(geneLevels[,-1]) *1e6)

> geneRPKM

Sample1 Sample2

ENSG00000078808 21281.168 31628.1089

ENSG00000134075 287879.322 309882.9454

ENSG00000134086 9450.187 9667.4531

ENSG00000171863 73891.646 54998.2246

ENSG00000176022 3134.033 17004.7018

ENSG00000186827 3035.314 641.7866

ENSG00000186891 2679.388 201.5538

ENSG00000238345 0.000 0.0000

ENSG00000238642 0.000 0.0000

ENSG00000247886 0.000 0.0000

ENSG00000252531 5196.924 1694.0410

ENSG00000254999 210572.382 220589.4127

Please note the RPKM values in our example are higher than what you would
usually get for a real RNA-seq dataset. The values here are artificially scaled
up because our example data contains reads only for a small number of genes.

Exon-exon junctions can be quantified by setting reportLevel="junction".
In this case, qCount will ignore the query argument and scan all alignments for
any detected splices, which are returned as a GRanges object: The region start
and end coordinates correspond to the first and last bases of the intron, and the
counts are returned in the mcols() of the GRanges object. Alignments that are
identically spliced but reside on opposite strands will be quantified separately.
In an unstranded RNA-seq experiment, this may give rise to two counts for the
same intron, one each for the supporting alignments on plus and minus strands.

> exonJunctions <- qCount(proj2, NULL, reportLevel="junction")

> exonJunctions

GRanges with 52 ranges and 2 metadata columns:

seqnames ranges strand | Sample1 Sample2

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [12213, 12321] + | 1 0

[2] chr1 [12213, 12321] - | 2 0

[3] chr1 [13085, 13371] - | 1 0

[4] chr1 [18069, 18837] + | 8 7

[5] chr1 [18069, 18837] - | 6 12

...

[48] chr1 [14166, 14362] - | 0 1

[49] chr1 [19009, 19148] - | 0 2

[50] chr1 [29327, 32271] - | 0 2

[51] chr1 [4617, 4778] - | 0 1

[52] chr3 [2504, 5589] + | 0 2

26

seqlengths:

chr1 chr2 chr3

NA NA NA

About half of the exon-exon junctions detected in this sample datset corre-
spond to known introns; they tend to be the ones with higher coverage:

> knownIntrons <- unlist(intronsByTranscript(txdb))

> isKnown <- overlapsAny(exonJunctions, knownIntrons, type="equal")

> table(isKnown)

isKnown

FALSE TRUE

28 24

> tapply(rowSums(as.matrix(mcols(exonJunctions))),

+ isKnown, summary)

$`FALSE`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 2.00 5.00 32.18 47.75 177.00

$`TRUE`

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 1.00 10.50 42.71 60.00 209.00

6.3 Bis-seq: Measuring DNA methylation

Sequencing of bisulfite-converted genomic DNA allows detection of methylated
cytosines, which in mammalian genomes typically occur un the context of CpG
dinucleotides. The treatment of DNA with bisulfite induces deamination of non-
methylated cytosines, converting them to uracils. Sequencing and aligning of
such bisulfite-converted DNA results in C-to-T mismatches. Both alignment of
converted reads, as well as the interpretation of the alignments for calculation
of methylation levels require specific approaches and are supported in QuasR by
qAlign (bisulfite argument, section 7.2) and qMeth (section 7.9), respectively.

We start the analysis by copying the example data files into the current
working directly, into a subfolder called "extdata". Then, bisulfite-specific
alignment is selected in qAlign by setting bisulfite to "dir" for a directional
experiment, or to "undir" for an undirectional Bis-seq experiment:

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

> sampleFile <- "extdata/samples_bis_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj3 <- qAlign(sampleFile, genomeFile, bisulfite="dir")

27

nodeNames

george2

1

> proj3

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : dir

snpFile : none

Aligner : Rbowtie v1.0.3 (parameters: -k 2 --best --strata -v 2)

Genome : /tmp/Rtmp3ckjsv/Rbuild484015dfa.../hg19sub.fa (file)

Reads : 1 file, 1 sample (fasta format):

1. bis_1_1.fa.bz2 Sample1

Genome alignments: directory: same as reads

1. bis_1_1_6cdf3e49cb47.bam

Aux. alignments: none

The resulting alignments are not different from those of non-Bis-seq experi-
ments, apart from the fact that they may contain many C-to-T (or A-to-G) mis-
matches that are not counted as mismatches when aligning the reads. The num-
ber of alignments in specific genomic regions could be quantified using qCount

as with ChIP-seq or RNA-seq experiments. For quantification of methylation
the qMeth function is used:

> meth <- qMeth(proj3, mode="CpGcomb", collapseBySample=TRUE)

> meth

GRanges with 3110 ranges and 2 metadata columns:

seqnames ranges strand | Sample1_T Sample1_M

<Rle> <IRanges> <Rle> | <integer> <integer>

[1] chr1 [19, 20] * | 1 1

[2] chr1 [21, 22] * | 1 1

[3] chr1 [54, 55] * | 3 1

[4] chr1 [57, 58] * | 3 0

[5] chr1 [80, 81] * | 6 5

...

[3106] chr3 [44957, 44958] * | 8 7

[3107] chr3 [44977, 44978] * | 5 3

[3108] chr3 [44981, 44982] * | 4 3

[3109] chr3 [44989, 44990] * | 1 1

[3110] chr3 [44993, 44994] * | 1 1

seqlengths:

28

chr1 chr2 chr3

40000 10000 45000

By default, qMeth quantifies methylation for all cytosines in CpG contexts,
combining the data from plus and minus strands (mode="CpGcomb"). The re-
sults are returned as a GRanges object with coordinates of each CpG, and two
metadata columns for each input sequence file in the qProject object. These
two columns contain the total number of aligned reads that overlap a given
CpG (C-to-C matches or C-to-T mismatches, suffix _T in the column name),
and the number of read alignments that had a C-to-C match at that position
(methylated events, suffix _M).

Independent of the number of alignments, the returned object will list all
CpGs in the target genome including the ones that have zero coverage, unless
you set keepZero=FALSE:

> chrs <- readDNAStringSet(genomeFile)

> sum(vcountPattern("CG",chrs))

[1] 3110

> length(qMeth(proj3))

[1] 3110

> length(qMeth(proj3, keepZero=FALSE))

[1] 2929

The fraction methylation can easily be obtained as the ratio between _M and
_T columns:

> percMeth <- mcols(meth)[,2] *100 /mcols(meth)[,1]

> summary(percMeth)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.00 75.00 90.91 75.45 100.00 100.00 181

> axisTrack <- GenomeAxisTrack()

> dTrack1 <- DataTrack(range=gr1, name="H3K4me3", type="h")

> dTrack2 <- DataTrack(range=meth, data=percMeth,

+ name="Methylation", type="p")

> txTrack <- GeneRegionTrack(txdb, name="Transcripts", showId=TRUE)

> plotTracks(list(axisTrack, dTrack1, dTrack2, txTrack),

+ chromosome="chr3", extend.left=1000)

29

10 kb

20 kb

30 kb

40 kb

0

10

20

30

40

50

H
3K

4m
e3

0

20

40

60

80

100

M
et

hy
la

tio
n

●

●

●

●●

●●

●

●

●

●●

●

●

●●●●
●

●
●●

●

●

●

●

●

●

●●

●●●●

●●

●

●

●

●

●●●

●

●●●●
●
●
●
●●●●

●●

●
●

●
●
●

●

●

●

●

●
●
●

●
●
●●

●
●

●

●

●

●
●

●

●
●
●

●●●

●●

●●

●

●

●

●

●
●
●

●●

●

●●

●
●
●●

●

●

●
●

●

●●●
●

●

●

●●
●

●

●●●
●●●●●●

●

●●●

●

●

●

●

●

●●

●

●●●

●●

●●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●
●
●●

●

●

●

●

●

●

●●
●
●●

●●●

●

●

●●●●

●

●●
●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●●

●

●

●●●●

●

●

●

●

●●

●●
●

●●●●
●●●

●

●

●

●

●
●

●
●

●
●

●

●
●
●●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●
●

●

●

●
●

●●●●

●

●

●
●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●
●
●

●
●
●

●●●
●●

●

●
●

●

●●●●

●

●●●

●

●●●●●●●●●

●

●

●

●

●

●●●●●

●

●
●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●●

●

●
●
●●●

●

●

●
●
●

●●●●

●

●●
●

●●
●
●

●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●
●

●
●●
●
●●

●

●

●

●

●
●

●

●
●
●

●

●●
●

●
●
●

●
●●

●●●

●●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●●●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●●

●
●●●●

●

●●

●

●●●

●

●

●●

●●

●●●
●●
●●
●
●

●

●

●
●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●

●●

●

●

●●●●●

●
●

●

●

●
●

●
●

●
●

●

●●●

●
●●●
●●

●

●

●
●

●
●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●●
●

●

●

●
●
●
●●

●

●
●
●

●

●

●●

●
●
●

●

●

●

●

●●●

●
●●

●

●●●●
●●●

●

●
●

●
●●
●●

●●●●

●

●

●

●
●

●
●
●

●●
●

●

●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●●●
●●

●

●

●

●

●

●
●

●
●●●

●
●

●

●
●

●●
●●

●

●

●●

●●●

●●
●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

Tr
an

sc
rip

ts ENST00000256463

ENST00000256474

ENST00000345392

ENST00000450183

ENST00000458986

ENST00000459242 ENST00000477538

ENST00000530758

ENST00000543461

If qMeth is called without a query argument, it will by default return methy-
lation states for each C or CpG in the genome. Using a query argument it is
possible to restrict the analysis to specific genomic regions, and if using in ad-
dition collapseByQueryRegion=TRUE, the single base methylation states will
further be combined for all C’s that are contained in the same query region:

> qMeth(proj3, query=GRanges("chr1",IRanges(start=31633,width=2)),

+ collapseBySample=TRUE)

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | Sample1_T Sample1_M

<Rle> <IRanges> <Rle> | <integer> <integer>

[1] chr1 [31633, 31634] * | 10 2

seqlengths:

chr1 chr2 chr3

40000 10000 45000

> qMeth(proj3, query=promRegSel, collapseByQueryRegion=TRUE,

+ collapseBySample=TRUE)

GRanges with 12 ranges and 2 metadata columns:

seqnames ranges strand | Sample1_T Sample1_M

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [31629, 33128] + | 426 74

[2] chr1 [6452, 7951] - | 388 244

[3] chr1 [14013, 15512] - | 627 560

[4] chr1 [31882, 33381] - | 522 232

[5] chr2 [1795, 3294] + | 997 539

...

[8] chr3 [1276, 2775] + | 715 253

[9] chr3 [19069, 20568] + | 253 204

[10] chr3 [26692, 28191] + | 934 818

[11] chr3 [26834, 28333] + | 934 777

[12] chr3 [13102, 14601] - | 307 287

30

seqlengths:

chr1 chr2 chr3

40000 10000 45000

6.4 Allele-specific analysis

All experiment types supported by QuasR (ChIP-seq, RNA-seq and Bis-seq;
only alignments to the genome, but not to auxiliaries) can also be analyzed in
an allele-specific manner. For this, a file containing genomic location and the
two alleles of known sequence polymorphisms has to be provided to the snpFile
argument of qAlign. The file is in tab-delimited text format without a header
and contains four columns with chromosome name, position, reference allele and
alternative allele.

Below is an example of a SNP file, also available from system.file(package="QuasR",

"extdata", "hg19sub_snp.txt"):

chr1 8596 G A

chr1 18443 G A

chr1 18981 C T

chr1 19341 G A

...

For a given locus, either reference or alternative allele may but does not have
to be identical to the sequence of the reference genome (genomeFile in this case).
To avoid an alignment bias, all reads are aligned separately to each of the two
new genomes, which QuasR generates by injecting the SNPs listed in snpFile

into the reference genome. Finally, the two alignment files are combined, only
retaining the best alignment for each read. While this procedure takes more
than twice as long as aligning against a single genome, it has the advantage to
correctly align reads even in regions of high SNP density and has been shown
to produce more accurate results.

While combining alignments, each read is classified into one of three groups
(stored in the BAM files under the XV tag):

� R: the read aligned better to the reference genome

� U: the read aligned equally well to both genomes (unknown origin)

� A: the read aligned better to the alternative genome

Using these alignment classifications, the qCount and qMeth functions will pro-
duce three counts instead of a single count; one for each class. The column
names will be suffixed by _R, _U and _A.

The examples below use data provided with the QuasR package, which is
first copied to the current working directory, into a subfolder called "extdata":

31

> file.copy(system.file(package="QuasR", "extdata"), ".", recursive=TRUE)

[1] TRUE

The example below aligns the same reads that were also used in the ChIP-seq
workflow (section 6.1), but this time using a snpFile:

> sampleFile <- "extdata/samples_chip_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> snpFile <- "extdata/hg19sub_snp.txt"

> proj1SNP <- qAlign(sampleFile, genome=genomeFile, snpFile=snpFile)

nodeNames

george2

1

> proj1SNP

Project: qProject

Options : maxHits : 1

paired : no

splicedAlignment: FALSE

bisulfite : no

snpFile : /tmp/Rtmp3ckjs.../hg19sub_snp.txt

Aligner : Rbowtie v1.0.3 (parameters: -k 2 --best --strata -v 2)

Genome : /tmp/Rtmp3ckjsv/Rbuild484015dfa.../hg19sub.fa (file)

Reads : 2 files, 2 samples (fastq format):

1. chip_1_1.fq.bz2 Sample1 (phred33)

2. chip_2_1.fq.bz2 Sample2 (phred33)

Genome alignments: directory: same as reads

1. chip_1_1_6cdf24e2072b.bam

2. chip_2_1_6cdfcaf54e1.bam

Aux. alignments: none

Instead of one count per promoter region and sample, qCount now returns
three (promRegSel was generated in the ChIP-seq example workflow on page
19):

> head(qCount(proj1, promRegSel))

width Sample1 Sample2

ENSG00000176022 1500 157 701

ENSG00000186891 1500 22 5

ENSG00000186827 1500 10 3

ENSG00000078808 1500 73 558

ENSG00000171863 1500 94 339

ENSG00000252531 1500 59 9

> head(qCount(proj1SNP, promRegSel))

32

width Sample1_R Sample1_U Sample1_A Sample2_R

ENSG00000176022 1500 0 133 0 0

ENSG00000186891 1500 4 16 0 0

ENSG00000186827 1500 2 8 0 0

ENSG00000078808 1500 0 59 0 0

ENSG00000171863 1500 4 78 0 8

ENSG00000252531 1500 3 50 2 0

Sample2_U Sample2_A

ENSG00000176022 559 0

ENSG00000186891 5 0

ENSG00000186827 2 0

ENSG00000078808 432 0

ENSG00000171863 263 0

ENSG00000252531 6 0

The example below illustrates use of a snpFile for Bis-seq experiments.
Similarly as for qCount, the count types are labeled by R, U and A. These labels
are added to the total and methylated column suffixes _T and _M, resulting in a
total of six instead of two counts per feature and sample:

> sampleFile <- "extdata/samples_bis_single.txt"

> genomeFile <- "extdata/hg19sub.fa"

> proj3SNP <- qAlign(sampleFile, genomeFile,

+ snpFile=snpFile, bisulfite="dir")

nodeNames

george2

1

> head(qMeth(proj3SNP, mode="CpGcomb", collapseBySample=TRUE))

GRanges with 6 ranges and 6 metadata columns:

seqnames ranges strand | Sample1_TR Sample1_MR

<Rle> <IRanges> <Rle> | <integer> <integer>

[1] chr1 [19, 20] * | 0 0

[2] chr1 [21, 22] * | 0 0

[3] chr1 [54, 55] * | 0 0

[4] chr1 [57, 58] * | 0 0

[5] chr1 [80, 81] * | 0 0

[6] chr1 [103, 104] * | 0 0

Sample1_TU Sample1_MU Sample1_TA Sample1_MA

<integer> <integer> <integer> <integer>

[1] 1 1 0 0

[2] 1 1 0 0

[3] 3 1 0 0

[4] 3 0 0 0

[5] 6 5 0 0

[6] 6 5 0 0

33

seqlengths:

chr1 chr2 chr3

40000 10000 45000

34

7 Description of Individual QuasR Functions

Please refer to the QuasR reference manual or the function documentation (e.g.
using ?qAlign) for a complete description of QuasR functions. The descriptions
provided below are meant to give and overview over all functions and summarize
the purpose of each one.

7.1 preprocessReads

The preprocessReads function can be used to prepare the input sequences
before alignment to the reference genome, for example to filter out low quality
reads unlikely to produce informative alignments. When working with paired-
end experiments, the paired reads are expected to be contained in identical order
in two separate files. For this reason, both reads of a pair are filtered out if any
of the two reads fulfills the filtering criteria. The following types of filtering
tasks can be performed (in the order as listed):

1. Truncate reads: remove nucleotides from the start and/or
end of each read.

2. Trim adapters: remove nucleotides at the beginning and/or
end of each read that match to a defined (adapter) sequence.
The adapter trimming is done by calling trimLRPatterns from
the Biostrings package [9].

3. Filter out low quality reads: Filter out reads that fulfill
any of the filtering criteria (contain more than nBases N bases,
are shorter than minLength or have a dinucleotide complexity
of less than complexity-times the average complexity of the
human genome sequence).

The dinucleotide complexity is calculated in bits as Shannon entropy using
the following formula −

∑
i fi · log2 fi, where fi is the frequency of dinucleotide

i (i = 1, 2, ..., 16).

7.2 qAlign

qAlign is the function that generates alignment files in BAM format, for all
input sequence files listed in sampleFile (see section 5.1), against the reference
genome (genome argument), and for reads that to not match to the reference
genome, against one or several auxiliary target sequences (auxiliaryFile, see
section 5.2).

The reference genome can be provided either as a FASTA sequence file or as a
BSgenome package name (see section 5.3). If a BSgenome package is not found in
the installed packages but available from Bioconductor, it will be automatically
downloaded.

The alignment program is set by aligner, and parameters by maxHits,
paired, splicedAlignment and alignmentParameter. Currently, aligner can

35

only be set to "Rbowtie", which is a wrapper for bowtie [3] and SpliceMap [8].
SpliceMap will be used if splicedAlignment=TRUE. The alignment strategy is
affected by the parameters snpFile (alignments to variant genomes contain-
ing sequence polymorphisms) and bisulfite (alignment of bisulfite-converted
reads). Finally, clObj can be used to enable parallelized alignment, sorting and
conversion to BAM format.

For each input sequence file listed in sampleFile, one BAM file with align-
ments to the reference genome will be generated, and an additional one for
each auxiliary sequence file listed in auxiliaryFile. By default, these BAM

files are stored at the same location as the sequence files, unless a different
location is specified under alignmentsDir. If compatible alignment files are
found at this location, they will not be regenerated, which allows re-use of the
same sequencing samples in multiple analysis projects by listing them in several
project-specific sampleFiles.

The alignment process produces temporary files, such as decompressed input
sequence files or raw alignment files before conversion to BAM format, which can
be several times the size of the input sequence files. These temporary files are
stored in the directory specified by cacheDir, which defaults to the R process
temporary directory returned by tempdir(). The location of tempdir() can
be set using environment variables (see ?tempdir).

qAlign returns a qProject object that contains all file names and paths, as
well as all alignment parameters necessary for further analysis (see section 7.3
for methods to access the information contained in a qProject object).

7.3 qProject class

The qProject objects are returned by qAlign and contain all information about
a sequencing experiment needed for further analysis. It is the main argument
passed to the functions that start with a q letter, such as qCount, qQCReport
and qExportWig. Some information inside of a qProject object can be accessed
by specific methods (in the examples below, x is a qProject object):

� length(x) gets the number of input files.

� genome(x) gets the reference genome as a character(1). The type of
genome is stored as an attribute in attr(genome(x),"genomeFormat"):
"BSgenome" indicates that genome(x) refers to the name of a BSgenome
package, "file" indicates that it contains the path and file name of a
genome in FASTA format.

� auxiliaries(x) gets a data.frame with auxiliary target sequences. The
data.frame has one row per auxiliary target file, and two columns ”File-
Name” and ”AuxName”.

� alignments(x) gets a list with two elements "genome" and "aux". "genome"
contains a data.frame with length(x) rows and two columns "FileName"
(containing the path to bam files with genomic alignments) and "Sample-

Name". "aux" contains a data.frame with one row per auxiliary target

36

file (with auxiliary names as row names), and length(x) columns (one
per input sequence file).

� x[i] returns a qProject object instance with i input files, where i can
be an NA-free logical, numeric, or character vector.

7.4 qQCReport

The qQCReport function samples a random subset of sequences and alignments
from each sample or input file and generates a series of diagnostic plots for
estimating data quality. The plots below show the currently available plots as
produced by the ChIP-seq example in section 6.1 (except for the fragment size
distributions which are based on an unspliced alignment of paired-end RNA seq
reads):

� Quality score boxplot shows the distribution of base quality values
as a box plot for each position in the input sequence. The background
color (green, orange or red) indicates ranges of high, intermediate and
low qualities. The plot is available for fastq only (BAM files may contain
base quality information, which is however not used here because reads
contained in the BAM file, e.g. aligned reads, may not be a representative
sub-sample of all sequenced reads).

5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

Position in read (bp)

Q
ua

lit
y

sc
or

e

1. chip_1_1.fq.bz2

5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

Position in read (bp)

Q
ua

lit
y

sc
or

e

2. chip_2_1.fq.bz2

� Nucleotide frequency plot shows the frequency of A, C, G, T and N
bases by position in the read. The plot is always available.

●

●
●

●

●

●

●
● ●

●

● ●
●

●
●

●

●

●

●
● ● ● ●

●

●

●

●

● ● ● ● ●

●
●

●
●

5 10 15 20 25 30 35

0
10

20
30

40
50

Position in read (bp)

N
uc

le
ot

id
e

fr
eq

ue
nc

y
(%

)

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

● ●
●

●
● ●

●

●

●

●

●

●
● ●

● ● ●

●
● ●

●
●

● ●
●

● ●

●

●

● ●
● ● ●

● ●

●

●

●

●

●
● ●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●
● ●

●

●

● ●
●

●
●

●

●

●

●

●
●

●

● ●

1. chip_1_1.fq.bz2 ACGTN

●

● ●

●

●

●

●

●

●

●
●

●

●
●

● ●

●
● ●

●

●
●

●

●

●

●
● ●

●
● ●

●
●

● ● ●

5 10 15 20 25 30 35

0
10

20
30

40
50

Position in read (bp)

N
uc

le
ot

id
e

fr
eq

ue
nc

y
(%

)

●
●

●

●

●

● ●

●

●

● ●

●
● ●

● ●

●

●

● ●

●
●

●
● ● ●

●

● ●

●

●
● ●

●

● ●

●

●

●

●

●
● ●

● ●
●

● ●

● ● ●

●

●

●

●
● ●

●

●

● ●
●

●
●

●

●
●

● ●
●

●
●

●

●

●

● ●

●

●
●

●

● ●

●
●

● ●

●

● ● ● ● ●

●

●
●

● ●
●

●
●

● ● ● ● ●
●

●

● ●

● ● ●

2. chip_2_1.fq.bz2 ACGTN

37

� Duplication level plot shows for each sample the fraction of reads ob-
served at different duplication levels (e.g. once, two-times, three-times,
etc.). In addition, the most frequent sequences are listed. The plot is
available for fasta or fastq files, but not for bam files, again because con-
tained reads may not be representative for the experiment.

●

●
● ● ● ● ● ● ● ● ●

Sequence duplication level

P
er

ce
nt

 o
f u

ni
qu

e
se

qu
en

ce
s

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10

0
1. chip_1_1.fq.bz2
frequent sequences (per Mio.):
AAAATCACCTTTTAAGCATCCTCT.. (770)
AATAAAGCTAGTTCTTGATTCTAC.. (770)
ACACTGTGTTCTAGTGGTTTTCAG.. (770)
AGAGAGGACTTCCAAGGTCCTACA.. (770)
AGATCTTTTGGTATTTTGTTAGTC.. (770)
AGCAGCTCAGTTCCCAGCAAGGAA.. (770)
ATCCCTGGGCTTCAGCTCTGGTGG.. (770)
ATTTTTCAAGTGGTCTATCCTGTA.. (770)
CAAAATGAAAAAAGACTTTAAATT.. (770)
CATCTGTAAATGGATCTGTTGTGA.. (770)
CATTGTCTGAGAAAATTTGGAAAA.. (770)
CCAAAGTACACTAGTCCCTATATC.. (770)
CCCAAAAACTATCAATTTCAGCAT.. (770)
CCCAATCCTACCATGCTGACACTG.. (770)
CCCCGCCTCCCCTTGCTGGCCCGC.. (770)
CCTTTTTCGAGACAGGGTCTTATC.. (770)
CGCCAACATGACCCTGGCTTGTTC.. (770)

●

●

● ● ● ● ● ● ● ● ●

Sequence duplication level

P
er

ce
nt

 o
f u

ni
qu

e
se

qu
en

ce
s

1 2 3 4 5 6 7 8 9 10

0
20

40
60

80
10

0

2. chip_2_1.fq.bz2
frequent sequences (per Mio.):
ACTGTTGACCGTTCCCCATCTTCA.. (1215)
GCCGTGTTGTTTGGGAGTGATACC.. (1215)
ACAGTCTCTGTAGGGTTATCCTGC.. (729)
ATGCTCTGACGCTTACGAGCAGCG.. (729)
CGAAGGCTGCGGGAGTCCTCTCAA.. (729)
CGTGTGTGTTGTTAACTGCCAGAA.. (729)
CGTGTTGTTTGGGAGTGATACCGC.. (729)
CTCCGGTCCTCGGATCCCGAGCGC.. (729)
GCCGAGCGGACGGACGATGCCCCA.. (729)
GCCGGACTCTTCCGGGCCGGACTC.. (729)
GCCGTATCTATAACTAAGTAAGGG.. (729)
GTACTCTGCATCCATTCCGGTCCC.. (729)
GTTCGGCCGTGTTGTTTGGGAGTG.. (729)
TCACATTTCCTTATTCCAGGAAGG.. (729)
AAAAAAAGAATGCTCTGACGCTTA.. (486)
AAAAGAATGCTCTGACGCTTACGA.. (486)

� Mapping statistics shows fractions of reads that were (un)mappable to
the reference genome. This plot is available for bam input, i.e. if input

is a vector of BAM files, or a qProject with alignment files as returned by
qAlign.

mapped unmapped

Percent of sequences

0 20 40 60 80 100

87.7%

90.1%

total=4.11e+03

total=2.6e+03

12.3%

9.9%

2. chip_2_1.fq.bz2

1. chip_1_1.fq.bz2

� Library complexity shows fractions of unique read(-pair) alignment po-
sitions. Please note that this measure is not independent from the total
number of reads in a library, and is best compared between libraries of
similar sizes. This plot is available for bam input.

38

unique non−unique

Percent of unique alignment positions

0 20 40 60 80 100

71.0%

91.6%

total=3.61e+03

total=2.34e+03

29.0%

8.4%

2. chip_2_1.fq.bz2

1. chip_1_1.fq.bz2

� Mismatch frequency shows the frequency and position (relative to the
read sequence) of mismatches in the alignments against the reference
genome. The plot is available for bam input.

5 10 15 20 25 30 35

0
1

2
3

4
5

6
7

Position in read (bp)

M
is

m
at

ch
e

ba
se

s
(%

)

1. chip_1_1.fq.bz2

5 10 15 20 25 30 35

0
2

4
6

8
10

12

Position in read (bp)

M
is

m
at

ch
e

ba
se

s
(%

)

2. chip_2_1.fq.bz2

� Mismatch types shows the frequency of read bases that caused mis-
matches in the alignments to the reference genome, separately for each
genome base. This plot is available for bam input.

A C G T

Genome

%
 o

f a
lig

ne
d

ba
se

s

0.
0

0.
2

0.
4

0.
6

0.
8

ACGTNRead:1. chip_1_1.fq.bz2

A C G T

Genome

%
 o

f a
lig

ne
d

ba
se

s

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ACGTNRead:2. chip_2_1.fq.bz2

� Fragment size shows the distribution of fragment sizes inferred from
aligned read pairs. This plot is available for paired-end bam input.

39

100 200 300

0.
00

0.
01

0.
02

0.
03

0.
04

Fragment size (nt)

D
en

si
ty

1. rna_1_1.fq.bz2
median = 175

100 200 300

0.
00

0.
01

0.
02

0.
03

0.
04

Fragment size (nt)

D
en

si
ty

2. rna_2_1.fq.bz2
median = 181

7.5 alignmentStats

alignmentStats is comparable to the “idxstats” function from Samtools; it
returns the size of the target sequence, as well as the number of mapped and
unmapped reads that are contained in an indexed BAM file. The function works
for arguments of type qProject, as well as on a string with one or several BAM
file names. There is however a small difference in the two that is illustrated
in the following example, which uses the qProject object from the ChIP-seq
workflow created on page 23:

> # using bam files

> alignmentStats(alignments(proj1)$genome$FileName)

seqlength mapped unmapped

chip_1_1_6cdf5473cc09.bam 95000 2339 258

chip_2_1_6cdf7f640d43.bam 95000 3609 505

> alignmentStats(unlist(alignments(proj1)$aux))

seqlength mapped unmapped

chip_1_1_6cdf25e3b15b.bam 5386 251 0

chip_2_1_6cdf77cbad04.bam 5386 493 0

> # using a qProject object

> alignmentStats(proj1)

seqlength mapped unmapped

Sample1:genome 95000 2339 258

Sample2:genome 95000 3609 505

Sample1:phiX174 5386 251 7

Sample2:phiX174 5386 493 12

If calling alignmentStats on the bam files directly as in the first two expressions
of the above example, the returned numbers correspond exactly to what you
would obtain by the “idxstats” function from Samtools, only that the latter
would report them separately for each target sequence, while alignmentStats

sums them for each BAM file. These numbers correctly state that there are zero
unmapped reads in the auxiliary BAM files. However, if calling alignmentStats

on a qProject object, it will report 7 and 12 unmapped reads in the auxiliary
BAM files. This is because alignmentStats is aware that unmapped reads are

40

removed from auxiliary BAM files by QuasR, but can be calculated from the total
number of reads to be aligned to the auxiliary target, which equals the number
of unmapped reads in the corresponding genomic BAM file.

7.6 qExportWig

qExportWig creates fixed-step wig files (see http://genome.ucsc.edu/goldenPath/
help/wiggle.html for format definition) from the genomic alignments con-
tained in a qProject object. The combine argument controls if several input
files are combined into a single multi-track wig file, or if they are exported as in-
dividual wig files. Alignments of single read experiments can be shifted towards
there 3’-end using shift; paired-end alignments are automatically shifted by
half the insert size. The resolution of the created wig file is defines by the bin-

size argument, and if scaling=TRUE, multiple alignment files in the qProject

object are scaled by their total number of reads.

7.7 qCount

qCount is the workhorse for counting alignments that overlap query regions.
Usage and details on parameters can be obtained from the qCount function
documentation. Two aspects that are of special importance are also discussed
here:

7.7.1 Determination of overlap

How an alignment overlap with a query region is defined can be controlled by
the following four arguments of qCount:

� selectReadPosition specifies the read base that serves as a reference
for overlaps with query regions. The alignment position of that base,
eventually after shifting (see below), needs to be contained in the query
region for an overlap. selectReadPosition can be set to "start" (the
default) or "end", which refer to the biological start (5́-end) and end
(3́-end) of the read. For example, the "start" of a read aligned to the
plus strand is the leftmost base in the alignment (the one with the lowest
coordinate), and the "end" of a read aligned to the minus strand is also
its leftmost base in the alignment.

� shift allows shifting of alignments towards their 3́-end prior to over-
lap determination and counting. This can be helpful to increase resolu-
tion of ChIP-seq experiments by moving alignments by half the immuno-
precipitated fragment size towards the middle of fragments. shift can
either contain "integer" values that specify the shift size, or for paired-
end experiments, it can be set to the keyword "halfInsert", which will
estimate the true fragment size from the distance between aligned read
pairs and shift the alignments accordingly.

41

http://genome.ucsc.edu/goldenPath/help/wiggle.html
http://genome.ucsc.edu/goldenPath/help/wiggle.html

� orientation controls the interpretation of alignment strand relative to
the strand of the query region. The default value "any" will count all
overlapping alignments, irrespective of the strand. This setting is for ex-
ample used in an unstranded RNA-seq experiment where both sense and
antisense reads are generated from an mRNA. A value of "same" will
only count the alignments on the same strand as the query region (e.g.
in a stranded RNA-seq experiment), and "opposite" will only count the
alignments on the opposite strand from the query region (e.g. to quantify
anti-sense transcription in a stranded RNA-seq experiment).

� useRead only applies to paired-end experiments and allows to quantify ei-
ther all alignments (useRead="any"), or only the first (useRead="first")
or last (useRead="last") read from each read pair or read group. Note
that for useRead="any" (the default), an alignment pair that is fully con-
tained within a query region will contribute two counts to the value of
that region.

7.7.2 Running modes of qCount

The features to be quantified are specified by the query argument. At the same
time, the type of query selects the mode of quantification. qCount supports
three different types of query arguments and implements three corresponding
quantification types, which primarily differ in the way they deal with redun-
dancy, such as query bases that are contained in more than one query region. A
fourth quantification mode allows counting of alignments supporting exon-exon
juctions:

� GRanges query: Overlapping alignments are counted separately for each
coordinate region in the query object. If multiple regions have identical
names, their counts will be summed, counting each alignment only once
even if it overlaps more than one of these regions. Alignments may however
be counted more than once if they overlap multiple regions with different
names. This mode is for example used to quantify ChIP-seq alignments
in promoter regions (see section 6.1 on page 20), or gene expression levels
in an RNA-seq experiment (using a ’query’ with exon regions named by
gene).

� GRangesList query: Alignments are counted and summed for each list el-
ement in the query object if they overlap with any of the regions contained
in the list element. The order of the list elements defines a hierarchy for
quantification: Alignment will only be counted for the first element (the
one with the lowest index in the query) that they overlap, but not for any
potential further list elements containing overlapping regions. This mode
can be used to hierarchically and uniquely count (assign) each alignment
to a one of several groups of regions (the elements in the query), for ex-
ample to estimate the fractions of different classes of RNA in an RNA-seq
experiment (rRNA, tRNA, snRNA, snoRNA, mRNA, etc.)

42

� TranscriptDb query: Used to extract regions from annotation and report
alignment counts depending on the value of the reportLevel argument.
If reportLevel="exon", alignments overlapping each exon in the query
are counted. If reportLevel="gene", alignment counts for all exons of a
gene will be summed, counting each alignment only once even if it overlaps
multiple annotated exons of a gene. These are useful to calculate exon or
gene expression levels in RNA-seq experiments based on the annotation
in a TranscriptDB object. If reportLevel="promoter", the promoters

function from package GenomicFeatures is used with default arguments
to extract promoter regions around transcript start sites, e.g. to quantify
alignments inf a ChIP-seq experiment.

� any of the above or NULL for reportLevel="junction": The query ar-
gument is ignored if reportLevel is set to "junction", and qCount will
count the number of alignments supporting each exon-exon junction de-
tected in any of the samples in proj. The arguments selectReadPosi-

tion, shift, orientation, useRead and mask will have no effect in this
quantification mode.

7.8 qProfile

The qProfile function differs from qCount in that it returns alignments counts
relative to their position in the query region. Except for upstream and down-

stream, the arguments of qProfile and qCount are the same. This section will
describe these two additional arguments; more details on the other arguments
are available in section 7.7 and from the qProfile function documentation.

The regions to be profiled are anchored by the biological start position, which
are aligned at position zero in the return value. The biological start position
is defined as start(query) for regions on the plus strand and end(query) for
regions on the minus strand. The anchor positions are extended to the left and
right sides by the number of bases indicated in the upstream and downstream

arguments.

� upstream indicates the number of bases upstream of the anchor position,
which is on the left side of the anchor point for regions on the plus strand
and on the right side for regions on the minus strand.

� downstream indicates the number of bases downstream of the anchor po-
sition, which is on the left side of the anchor point for regions on the plus
strand and on the left side for regions on the minus strand.

Be aware that query regions with a ”*” strand are handled the same way as
regions on the plus strand.

7.9 qMeth

qMeth is used exclusively for Bis-seq experiments. In contrast to qCount, which
counts the number of read alignments per query region, qMeth quantifies the

43

number of C and T bases per cytosine in query regions, in order to determine
methylation status.

qMeth can be run in one of four modes, controlled by the mode argument:

� CpGcomb: Only C’s in CpG context are considered. It is assumed that
methylation status of the CpG base-pair on both strands is identical.
Therefore, the total and methylated counts obtained for the C at posi-
tion i and the C on the opposite strand at position i + 1 are summed.

� CpG: As with CpGcomb, only C’s in CpG context are quantified. However,
counts from opposite strand are not summed, resulting in separate output
values for C’s on both strands.

� allC: All C’s contained in query regions are quantified, keeping C’s from
either strand separate. While this mode allows quantification of non-CpG
methylation, it should be used with care, as the large result could use up
available memory. In that case, a possible work-around is to divide the
region of interest (e.g. the genome) into several regions (e.g. chromosomes)
and call qMeth separately for each region.

� var: In this mode, only alignments on the opposite strand from C’s are
analysed in order to collect evidence for sequence polymorphisms. Methy-
lated C’s are hot-spots for C-to-T transitions, which in a Bis-seq exper-
iment cannot be discriminated from completely unmethylated C’s. The
information is however contained in alignments to the G from the oppo-
site strand: Reads containing a G are consistent with a non-mutated C,
and reads with an A support the presence of a sequence polymorphism.
qMeth(..., mode="var") returns counts for total and matching bases for
all C’s on both strands. A low fraction of matching bases is an indication
of a mutation and can be used as a basis to identify mutated positions
in the studied genome relative to the reference genome. Such positions
should not be included in the quantification of methylation.

When using qMeth in a allele-specific quantification (see also section 6.4),
cytosines (or CpGs) that overlap a sequence polymorphism will not be quanti-
fied.

8 Session information

The output in this vignette was produced under:

> sessionInfo()

R version 3.0.1 (2013-05-16)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

44

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] grid parallel stats graphics grDevices utils

[7] datasets methods base

other attached packages:

[1] BiocInstaller_1.10.3 Gviz_1.4.5

[3] GenomicFeatures_1.12.4 AnnotationDbi_1.22.6

[5] Biobase_2.20.1 rtracklayer_1.20.4

[7] Rsamtools_1.12.4 BSgenome_1.28.0

[9] Biostrings_2.28.0 QuasR_1.0.9

[11] Rbowtie_1.0.3 GenomicRanges_1.12.5

[13] IRanges_1.18.4 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] DBI_0.2-7 Hmisc_3.12-2 RColorBrewer_1.0-5

[4] RCurl_1.95-4.1 RSQLite_0.11.4 ShortRead_1.18.0

[7] XML_3.98-1.1 biomaRt_2.16.0 biovizBase_1.8.1

[10] bitops_1.0-6 cluster_1.14.4 colorspace_1.2-3

[13] dichromat_2.0-0 hwriter_1.3 labeling_0.2

[16] lattice_0.20-23 munsell_0.4.2 plyr_1.8

[19] rpart_4.1-3 scales_0.2.3 stats4_3.0.1

[22] stringr_0.6.2 tools_3.0.1 zlibbioc_1.6.0

References

[1] A. Lerch, D. Gaidatzis, F. Hahne, and M.B. Stadler. Quasr: Quantify and
annotate short reads in r. unpublished, 2012.

[2] P. Dalgaard. Introductory Statistics with R. Springer, 2002.

[3] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and
memory-efficient alignment of short dna sequences to the human genome.
Genome Biology, 10(3):R25, 2009.

[4] F. Hahne, A. Lerch, and M.B. Stadler. Rbowtie: A r wrapper for bowtie
and splicemap short read aligners. unpublished, 2012.

[5] Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edger: a
bioconductor package for differential expression analysis of digital gene ex-
pression data. Bioinformatics, 26:–1, 2010.

45

[6] Simon Anders and Wolfgang Huber. Differential expression analysis for se-
quence count data. Genome Biology, 11:R106, 2010.

[7] Martin Morgan, Simon Anders, Michael Lawrence, Patrick Aboyoun, Hervé
Pagès, and Robert Gentleman. Shortread: a bioconductor package for in-
put, quality assessment and exploration of high-throughput sequence data.
Bioinformatics, 25:2607–2608, 2009.

[8] K.F. Au, H. Jiang, L. Lin, Y. Xing, and W.H. Wong. Detection of splice junc-
tions from paired-end rna-seq data by splicemap. Nucleic Acids Research,
38(14):4570–4578, 2010.

[9] H. Pages, P. Aboyoun, R. Gentleman, and S. DebRoy. Biostrings: String ob-
jects representing biological sequences, and matching algorithms. R package
version 2.22.0.

46

	Introduction
	Preliminaries
	Citing QuasR
	Installation
	Loading of QuasR and other required libraries
	How to get help

	Quick Start
	A brief introduction to R
	Sample QuasR session

	QuasR Overview
	Example tasks
	Create a sample file
	Create an auxiliary file (optional)
	Select the reference genome
	Sequence data pre-processing

	Example workflows
	ChIP-seq: Measuring protein-DNA binding and chromatin modifications
	Align reads using the qAlign function
	Create a quality control report
	Alignment statistics
	Export genome wig file from alignments
	Count alignments using qCount
	Create a genomic profile for a set of regions using qProfile
	Using a BSgenome package as reference genome

	RNA-seq: Gene expression profiling
	Bis-seq: Measuring DNA methylation
	Allele-specific analysis

	Description of Individual QuasR Functions
	preprocessReads
	qAlign
	qProject class
	qQCReport
	alignmentStats
	qExportWig
	qCount
	Determination of overlap
	Running modes of qCount

	qProfile
	qMeth

	Session information

