QUALIFIER: Quality Assessment of Gated Flow Cytometry
Data

Mike Jiang, Greg Finak

July 19, 2012

Abstract

Background The current flowQ package does the quality assessment on the ungated FCM
data. However, there is a need to identify deviant samples by monitoring the consistencies of
the underlying statistical properties of different gated cell populations (such as white blood
cells, lymphacytes, monocytes etc). The flowQ package was also not designed for dealing
with large datasets. To meet these needs, We developed QUALIFIER package using the
gating template created in flowJo and performing QA checks on different gated populations.
It divides the data preprocessing from the actual outlier detection process so that the
statistics are calcuated all at once and the outlier detection and visualization can be done
more efficiently and interactively. ncdfFlow is used to solve the memory limit issue for large
datasets.

keywords Flow cytometry, Quality Assessment, high throughput, svg, flowWorkspace,
ncdfFlowSet

1 Parsing the QA gating template

parseWorkspace function from flowWorkspace package is used to parse the flowJo workspace.
Since we are only interested in the gating strategy (gates defined in the template),execute
can be set as FALSE to skip the actual gating process. useInternal is set as TRUE to use
internal structure (c++) for faster parsing. Please see the documentation of flowWorkspace
package for more details regarding how to use parseWorkspace function.

> ws<-openWorkspace ("./data/QA_MFI_RBC_bounary_eventsV3.xml")##should replace with your own x
> GT<-parselWorkspace (ws, execute=FALSE,useInternal=TRUE)

2 Apply the gating template to the data

Then gating hierarchy gh_template containing the actual template gates is extracted from the
result GatingSet "GT”.

> gh_template<-GT[[1]]

The GatingSet method here is the contructor that takes a gatingHierarchy object as the
template and a list of FCS file names (filenames) that need the quality assurance. The result
”G” is the GatingSet that contains the gated data and some of the cell population statistics
that can be viewed by getPopStats method.

> ##datapath is the path where FCS files stores
> G<-GatingSet (gh_template,filenames,path="./data")
> getPopStats(G[[1]])

Optionally, isNcdf can be set to TRUE to support netCDF storage of large flow datasets when
memory resource is limited.

3 Calculating the statistics

After flow data is gated, the statistics of the gated data need to be extracted and saved before
the QA checks. db is an environment that serves as a container storing all the QA data
and results. Firsly, initDB function initializes and creates the data structures for QA. Then
qaPreprocess is a convenient wrapper that calls underlining routines (getQAStats,saveToDB)
to calculates/extracts statistics of gated cell populations and save them along with the gating
set and the FCS meta data. metaFile is a csv file that contains the extra annoations about
each FCS file.It should at least have one column speficifying FCS file names.

> db<-new.env()

> initDB(db)

> qgaPreprocess (db=db,gs=G

+ ,metaFile="./data/FCS_File_mapping.csv" #should replace with your o
,fcs.colname="FCS_Files"

,date.colname=c ("RecdDt", "AnalysisDt")

+ + +

)

fcs.colname and date.colname are the arguments to identify the columns in the meta data
(the flat table stored as a csv file) that specifies the FCS filenames and the dates (to be
formatted as to "%m/%d/%y”). Once the preprocessing steps are finished, the data are ready
for quality assessments.

4 Defining qaTasks

read.qaTask reads external csv spreadsheet that contains the descriptions of each QA task
and creates a list of gaTask objects.

> checkListFile<-file.path(system.file("data",package="QUALIFIER"), "qgaCheckList.csv.gz")
> qaTask.list<-read.qaTask(db, checkListFile=checkListFile)

[1] "7 gaTask created ahd saved in db!"
> qaTask.list[1:2]

$MFIOverTime

gaTask: MFIOverTime

Level : Assay

Description : Fluorescence stability over time

population: MFI

Default formula :MFI ~ RecdDt | channel * stain
<environment: 0x49309df0>

Plot type: xyplot

$horiz

[1] FALSE

$scales
$scales$format

(1] "%m/%d/hy"

$NumberOfEvents

gaTask: NumberOfEvents

Level : Tube

Description : Number of Events Collected
population: root

Default formula :count ~ RecdDt | Tube
<environment: 0x494db5c0>

Plot type: xyplot

$horiz

[1] FALSE

$scales
$scales$format

(1] "%m/%d/%y"

The qaTask can also be created individually by the contructor makeQaTask.

5 Quality assessment and visualiztion

gaCheck and plot are the two main methods to perform the quality assessment and visualize
the QA results. They both use the information stored in qaTask object and the formula, which
is given either explicitly by the argument or implicitly by the qaTask object. It is generally of
the form y ~ x| gl * g2 * ... | where y is the statistics to be checked in this QA and must be
one of the four types:

"MFI”: Median Fluorescence Intensity of the cell population specified by gaTask,

“proportion”: the percentage of the cell population specified by qaTask in the parent pop-
ulation,

“count”: the number of events of the cell population specified by gaTask,

“spike”: the variance of intensity over time of each channel, which indicates the stability of
the fluorescence intensity.

x specifies the variable plotted on x-axis (such as date) in the plot method.

gl, g2, ... are the conditioning variables, which divide the data into subgroups and apply
the outlier detection whitin each individual group or plot the subgroups in different panels.
They may also be omitted, in which case the outlier detection is peformed in the entire dataset.

For example, RBC Lysis efficiency (percentage of WBC population) check is defined by
qgaTask .

> qaTask.list[["RBCLysis"]]

gaTask: RBCLysis

Level : Tube

Description : Sufficient RBC lysis
population: WBC_perct

Default formula :proportion ~ RecdDt | Tube
<environment: 0x48dfc958>

Plot type: xyplot

$horiz

[1] FALSE

$scales
$scales$format

(11 "%m/%d/hy"

According to the formula stored in gaTuask, it uses the statistical property “proportion”
and groups the data by "Tube” (or staining panel). "RecdDt” is only for the plotting purpose
(specifing the x-axis). Cell population is defined as "WBC_perct”

> qaCheck(qaTask.list[["RBCLysis"]],outlierfunc=outlier.cutoff,1Bound=0.8)

gaCheck reads all the necessary information about the gated data from gaTask object.
Users only needs to specificy how the outliers are called. This is done by providing an outlier
detection function outlierfunc that takes a numeric vector as input and returns a logical
vector as the output. Here outlier.cutoff provided by the package is used and threshold
"IBound” is specified ("less than”, use uBound for "larger than”).

After the outliers are called, the results can be plotted by plot method.

> plot(qgaTask.list[["RBCLysis"]],xlab="Record Date",ylab="percent")

Sufficient RBC lysis

/VD2/GD/BLK/
1 1.00
— .. 095
— & 0.90
— — 0.85
— ~ 0.80
100 EMA/EMA/EMACD80/CD27/CDIgG1/IgG1/IgG1D/LD/LD/LD/LI
. _o.o. o“ o |8 ° ° B
0.95 "*"e o e L Py e oy LA Vet ol
0.90 - . N :.g“o“: ° e, ‘:.J. ;: “ .
0.85 — . : A R
= 0.80 . . . F
% IgD/CD27/CD1CD56/CD8/CD3D25/CD4/CD3/D69/CD4/CD3/l
o _‘0.‘. . o (%t . * %8, o° .n: . &0 L
170 AL Doy AEag|"0 Peldel
] o :. 0." ° LY .'.‘ L
100 VVa24/CD8/BLKAuto/Auto/Auto)80/DUMP/HLA86/DUMP/HLA
' _.00‘. ° 0.. .Oo.. ° ° ° ..o ° 0. 00‘. [o. :
LN R TN M A H R L
0.85 ‘e .« % . “¥ F
080 4 ° . . -
N B s s s s s s s s s s s B
ool A oA/l
PP PO 0P PP 0P
AP A SIS
SO PFS SO P RS
Record Date
By default all the data are plotted, argument “subset” can be
subset.

> plot(qaTask.list[["RBCLysis"]],subset=Tube=='CD8/CD25/CD4/CD3/CD62L"',xlab="Record Date",yla

1.00
0.95
0.90
0.85
0.80

used to visualize a small

Sufficient RBC lysis

| | |
CD8/CD25/CD4/CD3/CD62L
0.95 - . =
S 0.90 . . B
o
) .
Q_ []
0.85 B
0.80 . =
| | | | | |
© © Q Q Q Q
N > N > e N
N S N N N S

Record Date

clearCheck is the method to removes the outlier results detected by the previous gaCheck
call for the specific qaTask.

> clearCheck(qaTask.1list[["RBCLysis"]])

With scatterPlot flag set as true and subset properly specified plot method can generate
scatter plots for the selected FCS files,

> plot(qaTask.list[["RBCLysis"]],subset=name=='06087181_F01_1010.fcs',scatterPlot=TRUE)

1
0E087181_F01_1010.fcs

1000 =

B00 o

FSC-A

400 =

200 —

o 200 400 B0 800 1000
SS8C-A

x term in the formula is normally ignored in qaCheck. However, when "plotType” of the
gaTask is "bwplot”, it is used as the conditioning variable that divides the data into subgroups,
within which the outlierfunc is applied.

> qaTask.list[["MNC"]]

gaTask: MNC

Level : Assay

Description : Consistency of Lymphocyte/MNC Gate
population: MNC

Default formula :proportion = coresampleid
<environment: 0x4964f148>

Plot type: Dbwplot

$horiz

[1] FALSE

$scales
$scales$format

(1] "%m/%d/hy"

This qaTask detects the significant variance of MNC cell population percentage among
aliquots, which have the same "coresampleid”. Plot type of this object tells the method to
group data by ”coresampleid”.

> qaCheck(qaTask.list[["MNC"]],z.cutoff=1.5)

Interquartile Range based outlier detection function is used to detect outliers

> plot(qaTask.list[["MNC"]],proportion~factor(coresampleid),xlab="Sample ID",ylab="percent")

Consistency of Lymphocyte/MNC Gate

0.6

F - -

E} 4
1

[-
T

ot @}
'{g oo

I__.E_I
-d
--Ep- -

-d
=7

L.
o'!{§ o
o - S
T
LE._I

percent
o f] ©
=
-

(]
[
g

oo

0.2 H

L--

L |

Lo

S O RO DAL AU RO DD D
R I SR G R RO AR
B A AN R R RIRI NI 55

Sample ID

The red circles in the boxplot indicate the possible outlier samples and the box of red color
indicates the entire sample group has significant variance and is marked as the group outlier.
By default gaCheck uses normal-distribution-based outlier function to detect group outliers.
User-defined function can also supplied through gOutlierfunc argument.Again the function
should take a numeric vector as input and returns a logical vector as the output. The formula
supplied here in the plot method overwrites the one stored in the qaTask object, thus change
the way of viewing the data.

With scatterPlot and subset arguments, scatter plots can be generated for the selected
FCS files or sample groups,

> plot(qaTask.list[["MNC"]]

+ ,scatterPlot=TRUE
+ ,Subset=coresampleid==11730)
0200 600 1000 0200 600 1000
| | | 1 [1 1 [| | | | | 1 | | | | | | | | | 1
07121_F0O1_l01007121_Fo2 01407121 _Fo3_lo2107121_Fo4 _|022

07121 _FO7_lo9q

FEC-A

07122 F11 003
fik,
s
2

B

w8

0200 600 1000
SSC-A

We can also apply simple aggregation to the statisics through the formula.

> gaTask.list[["BoundaryEvents"]]

qaTask: BoundaryEvents

Level : Channel

Description : Off-scale Boundary Events
population: margin

Default formula :proportion ~ RecdDt | channel
<environment: 0x488154b0>

Plot type: xyplot

$horiz

[1] FALSE

$scales

$scales$format

(1] "%m/%d/hy"

Here the default formula only extracts the “proportion” from each individual channel. In
order to check the total percentage of boundary events of all channels for each fcs file, we can
write a new formula by applying aggregation function “sum” to ”proportion” and group the
data by fcs file ("name” in this case).

> gaCheck(qaTask.list[["BoundaryEvents"]]

+ ,sum(proportion) ~ RecdDt | name
+ ,outlierfunc=outlier.cutoff

+ ,uBound=0.0003

+)

And we still can visualize the results chanel by chanel.

> plot(qaTask.list[["BoundaryEvents"]],proportion ~ RecdDt | channel,xlab="Record Date",ylab=

Off-scale Boundary Events

© O A& A Q&
'\\Q '\\Q '\\Q \\0 '\\Q '\\Q
IO G
NENENAI AN
| | | | | | | | | | | |
PE-A PE-Cy7-A
L]
. — 0.0015
7] ~ 0.0010
[]
° °
T . . - 0.0005
° L]
oo ~.’.
) ° °o°
|5 1175 @bl |2 FetSeet | g0000
[}
o APC-A FITC-A FL3-A
g
0.0015 - , B
o .
L]
0.0010 % -
° L]
.0
0.0005 —{® * .. . B
®e » ..‘0.‘0" .S o o
.‘: °g° 0, " °] ..g‘.! o [
0.0000 - *#** SH9R L [Shter oo Be¥F (e YiPmie |
[

L I

© PP &G

P P S \ P PP P PP

EREEEEN PP
AR A RORARES AR A HOUARES
NSRS SENNENGENENS

Record Date

Another three examples: QA check of Fluorescence stability overtime using t-distribution
based outlier detection function.

10

> gaCheck(qaTask.1list[["MFIOverTime"]]
+ ,rFunc=rlm
+ ,Z.cutoff=3
+)
> plot(qaTask.list[["MFIOverTime"]]
+ ,y=MFI~RecdDt [stain
+ ,subset=channeljinj),c('FITC-A")
+ ,rFunc=rlm
+ ,scales=1ist (y=c(relation="free"))
+ ,xlab="Record Date"
+)
Fluorescence stability over time
\b\b\/\\/\\/\\/\
P ANV
«\%\%«%&«\%\Q
N T I N T T T B N N T B
1gG1 LD VD1
L] o L] \ L]
0 _| s=0.095 © s=-0.5 g — s=-4 \
“® p=0.077 o p=0" p=028
o o o. g] "
@ g i KK o | © o“\
g = ° .o °l o ‘3*’.' e ™ 7 ‘\
. _
et A IO 2 :
° CD57 CD8 EMA HLADR
o _Je ° ° °
=] 250 8 | s=-55 o s=00aa _-°| 8 =18
_ 1 e p=0.0g6] ° p= 0§ a T e p=t2- < =034 o
L § S~. ° S 8—0‘3!‘ 3:"‘.3 0 ,'o'/ §_o' .
. B S S . S le-f--Tpatw
o . LRy _] (] a0 . N
IS S . = . ?.. o 2| Q o’ °®
o - ° %0 oo e ® 8 ® a T ee o
6B11 Auto CDl11c < CDl1c
o _| e | 0O _] ° _ [} [o
T _ s=0.074 o s=0.068 Q| sos S - s=go29
g p=0.11 g — p=0.07f ﬁ p=0.15 @ o O p= %1y
g] < o] Ce 8] ° ©
™ N T ° — () — °
S] § 14 __:_°$o:-o,! Rl e
0 _| e N . * ‘_/-:— o _’.‘ ‘.6 .g : < o‘ .
8_4‘“—-&'&-&# o a8t /B | S RN e s
N I B e e S T 1 11 T T T T 1 T T T T 1
‘o S ’\ ’\ ’\ ’\ o AL
SRR ORI
FROKORS SSRGS

Record Date

Note that the robust linear regression is applied in each group in order to capture the
significant MFI change (highlighted in red color,if pvalues<0.05) over time. The individual
outliers within each group are detected based on the residue. All the lattice options (like
scales here in this example) can be passed to control the appearance of trellis plot,see the
documentation of lattice for more details.

> qaCheck(qaTask.list[["spike"]]
+ ,outlierfunc=outlier.t

11

+ ,alpha=0.00001)
> plot(qaTask.list[["spike"]],y=spike~RecdDt|channel
+ ,subset=Tube=='CD8/CD25/CD4/CD3/CD62L '&channel},inj,c ('FITC-A")
+ ,xlab="Record Date"
+)
>
Measurement spikes/drifts during acquisition
! ! | ! ! !
FITC-A
15 -
o 10 L
Y4
k=1
[%2]
5 ° o
0 - o ° ... *e '.oﬁ.' o J o.:o.. %o L
T T T T T T
o o QA QA QA QA
© 3 S © X S
& S ¢ S & S
N S N N N S

Record Date

When monitoring the total number of events for each tube, a pre-determined events number
can be provided as the threshold to the qaCheck method. tubesEvents pass to the argument
of gqaCheck could be a one-column data frame or a named list/vector. Threshold values are
stored in the column or list/vecor and conditioning values stored in rownames or names of the
list /vector.

> tubesEvents

events
CD8/CD25/CD4/CD3/CD62L 50000
CD1c/IgD/CD27/CD19/IgM 150000
HLADR/CD80/CD27/CD19/CD86 150000
CD57/CD56/CD8/CD3/CD14 20000

12

6B11/Va24/CD8/BLK/CD4 50000

CD8/CD69/CD4/CD3/HLADR 20000
IgG1/1gG1/IgG1/IgG1/IgG1 20000
Auto/Auto/Auto/Auto/Auto 20000

CD11¢/CD80/DUMP/HLADr/CD123 400000
CD11c/CD86/DUMP/HLADr/CD123 400000

LD/LD/LD/LD/LD 20000
VD1/VD2/GD/BLK/CD3 250000

> gaCheck(qaTask.list[["NumberOfEvents"]]

+ ,formula=count ~ RecdDt | Tube
+ ,outlierfunc=outlier.cutoff

+ ,1Bound=0.8*tubesEvents

+)

[1] "done!"

> plot(qaTask.list[["NumberOfEvents"]]
+ ,subset=Tube=='CD8/CD25/CD4/CD3/CD62L "'
+ ,xlab="Record Date"
+ ,ylab="Cell counts"
+

13

Cell counts

50000

40000

30000

20000

10000

Number of Events Collected

| | |
CD8/CD25/CD4/CD3/CD62L

[) [] —
°
[[[[[[
& & & & $ $
/\\Q'\, 0\0\, & B\Q\, /\\Q'\, Q\Qx
N N ¥ Q N N

Record Date

> qaCheck(qaTask.list[["RedundantStain"]],z.cutoff=1)
> plot(qaTask.list[["RedundantStain"]]

+

+ + + + +

,y=proportion~factor (coresampleid) |channel:stain
,subset=stain/in/),c('CD8"')
,scales=1list(x=list(cex=0.5))

,xlab="Sample ID"

,ylab="percent"

14

Consistency of redundant Staining Across sample aliquots

FITC-A:CDS8 FL3-A:CD8

0.40 =

o
0.35 L

0.30 | —
] f H

percent

0.25

0.20 B

0.15 o -

A N R ey

Sample ID

6 Creating quality assessment report

Besides the interactive visualization provided by plot method,we also provide one routine to
generate all plots in one report.This function reads the QA results calculated by gaCheck and
the meta information of each QA task provided in spreadsheet qaCheckList and generate the
summary tables and svg plots. Svg plots provide tooltips containing the detail information
about each sample as and hyperlinks of densityplot for each individual FCS file.

> qaReport(qaTask.list

+ ,outDir=""/temp"

+ ,plotA11=FALSE

+ ,subset=as.P0SIX1t (RecdDt) $year==(2007-1900)
+)

>

plotAll is the argument to control the plotting of the individual scatter plot for each FCS
file. If TRUE, scatter plots for all the FCS files are generated. If FALSE, only the FCS files

marked as outliers will be plotted. When it is set to "none”, no scatter plot will be generated,

15

which is helpful to provide a quick preview of the html report. subset is the filter to only
generate the report on a subset of flow data.

Note that if there is need to adjust the QA plot for each indivdiual qaTask in the report,
the arguments must be stored in qaTask before qaReport method is called. If there is no outlier
is detected, the qaTask is not plotted by default. In order to change this setting, htmlReport
can be set as TRUE to plot the qaTask regardlessly. This is particually useful for the task that
tracks the longitudinal trend instead of the individual outliers. Besides the lattice arguments
that can be configured by gpar (for the summary xyplot and bwplot) and scatterPar (for the
individual FCS xyplot). xlog,ylog flag can be set for scatter plot to transform the flow data
to log scale for the proper display of the stained channels.

htmlReport (qaTask.1list[["MFIOverTime"]])<-TRUE
rFunc(qaTask.list[["MFIOverTime"]])<-rlm
scatterPar(qaTask.1list[["MFIOverTime"]])<-1ist (x10g=TRUE)
scatterPar(qaTask.1list[["BoundaryEvents"]])<-1ist (x1og=TRUE)
scatterPar(qaTask.1list[["RedundantStain"]])<-1ist (x1og=TRUE)
gpar(qaTask.list[["RedundantStain"]])<-1list (scales=1list(x=1ist(relation="free")))

vV V.V Vv VvV

Here is the lexample| of the QA report.

7 Conclusion

By the formula-based gqaCheck and plot methods, different QA tasks can be defined and
performed in a generic way. And plot only reads the outlier detection results pre-calculated
by gqaCheck, which reduces the cost of interactive visualization.

Two kinds of lattice plots are currently supported:xyplot and bwplot(boxplot), depending
on the plotType in gqaTask object. When the output path is provided by dest, the svg plot
is generated. In svg plot, each dot or box (or only the one marked as outliers) is annotated
by the tooltip or hyperlink, which further points to the individual density plot of the gated
population.

16

http://mikejiang.github.com/QUALIFIER/qaReport/new/index.html

	Parsing the QA gating template
	Apply the gating template to the data
	Calculating the statistics
	Defining qaTasks
	Quality assessment and visualiztion
	Creating quality assessment report
	Conclusion

