
EDASeq : Exploratory Data Analysis and

Normalization for RNA-Seq

Davide Risso

Modified: May 22, 2012. Compiled: April 4, 2013

1 Introduction

In this document, we show how to conduct Exploratory Data Analysis (EDA)
and normalization for a typical RNA-Seq experiment using the package EDASeq .

One can think of EDA for RNA-Seq as a two-step process: “read-level”
EDA helps in discovering lanes with low sequencing depths, quality issues, and
unusual nucleotide frequencies, while “gene-level” EDA can capture mislabeled
lanes, issues with distributional assumptions (e.g., over-dispersion), and GC-
content bias.

The package also implements both “within-lane” and “between-lane” normal-
ization procedures, to account, respectively, for within-lane gene-specific (and
possibly lane-specific) effects on read counts (e.g., related to gene length or
GC-content) and for between-lane distributional differences in read counts (e.g.,
sequencing depths).

To illustrate the functionality of the EDASeq package, we make use of the
Saccharomyces cerevisiae RNA-Seq data from Lee et al. [1]. Briefly, a wild-type
strain and three mutant strains were sequenced using the Solexa 1G Genome
Analyzer. For each strain, there are four technical replicate lanes from the
same library preparation. The reads were aligned using Bowtie [2], with unique
mapping and allowing up to two mismatches.

The leeBamViews package provides a subset of the aligned reads in BAM
format. In particular, only the reads mapped between bases 800,000 and 900,000
of chromosome XIII are considered. We use these reads to illustrate read-level
EDA.

The yeastRNASeq package contains gene-level read counts for four lanes:
two replicates of the wild-type strain (“wt”) and two replicates of one of the
mutant strains (“mut”). We use these data to illustrate gene-level EDA.

> require(EDASeq)

> require(yeastRNASeq)

> require(leeBamViews)

1

2 Reading in unaligned and aligned read data

Unaligned reads. Unaligned (unmapped) reads stored in FASTQ format
may be managed via the class FastqFileList imported from ShortRead . In-
formation related to the libraries sequenced in each lane can be stored in the
elementMetadata slot of the FastqFileList object.

> files <- list.files(file.path(system.file(package = "yeastRNASeq"),

+ "reads"), pattern = "fastq", full.names = TRUE)

> names(files) <- gsub("\\.fastq.*", "", basename(files))

> met <- DataFrame(conditions=c(rep("mut",2),rep("wt",2)),

+ row.names=names(files))

> fastq <- FastqFileList(files)

> elementMetadata(fastq) <- met

> fastq

FastqFileList of length 4

names(4): mut_1_f mut_2_f wt_1_f wt_2_f

Aligned reads. The package can deal with aligned (mapped) reads in BAM
format, using the class BamFileList from Rsamtools. Again, the elementMeta-

data slot can be used to store lane-level sample information.

> files <- list.files(file.path(system.file(package = "leeBamViews"),

+ "bam"), pattern = "bam$", full.names = TRUE)

> names(files) <- gsub("\\.bam", "", basename(files))

> gt <- gsub(".*/", "", files)

> gt <- gsub("_.*", "", gt)

> lane <- gsub(".*(.)$", "\\1", gt)

> geno <- gsub(".$", "", gt)

> pd <- DataFrame(geno=geno, lane=lane, row.names=paste(geno,lane,sep="."))

> bfs <- BamFileList(files)

> elementMetadata(bfs) <- pd

> bfs

BamFileList of length 8

names(8): isowt5_13e isowt6_13e ... xrn1_13e xrn2_13e

3 Read-level EDA

Numbers of unaligned and aligned reads. One important check for qual-
ity control is to look at the total number of reads produced in each lane, the
number and the percentage of reads mapped to a reference genome. A low
total number of reads might be a symptom of low quality of the input RNA,
while a low mapping percentage might indicate poor quality of the reads (low
complexity), problems with the reference genome, or mislabeled lanes.

2

(a) Number of mapped reads (b) Mean per-base quality of mapped reads

Figure 1: Per-lane number of mapped reads and quality scores.

> colors <- c(rep(rgb(1,0,0,alpha=0.7),2),rep(rgb(0,0,1,alpha=0.7),2),

+ rep(rgb(0,1,0,alpha=0.7),2),rep(rgb(0,1,1,alpha=0.7),2))

> barplot(bfs,las=2,col=colors)

Figure 1(a), produced using the barplot method for the BamFileList class,
displays the number of mapped reads for the subset of the yeast dataset in-
cluded in the package leeBamViews. Unfortunately, leeBamViews does not
provide unaligned reads, but barplots of the total number of reads can be ob-
tained using the barplot method for the FastqFileList class. Analogously, one
can plot the percentage of mapped reads with the plot method with signature
c(x="BamFileList", y="FastqFileList"). See the manual pages for details.

Read quality scores. As an additional quality check, one can plot the mean
per-base (i.e., per-cycle) quality of the unmapped or mapped reads in every lane
(Figure 1(b)).

> plotQuality(bfs,col=colors,lty=1)

> legend("topright",unique(elementMetadata(bfs)[,1]),

+ fill=unique(colors))

Individual lane summaries. If one is interested in looking more thoroughly
at one lane, it is possible to display the per-base distribution of quality scores
for each lane (Figure 2(a)) and the number of mapped reads stratified by chro-
mosome (Figure 2(b)) or strand. As expected, all the reads are mapped to
chromosome XIII.

> plotQuality(bfs[[1]],cex.axis=.8)

> barplot(bfs[[1]],las=2)

3

(a) Per-base quality of mapped reads (b) Number of mapped reads per-
chromosome

Figure 2: Quality scores and number of mapped reads for lane “isowt5 13e”.

Read nucleotide distributions. A potential source of bias is related to the
sequence composition of the reads. The function plotNtFrequency plots the
per-base nucleotide frequencies for all the reads in a given lane (Figure 3).

> plotNtFrequency(bfs[[1]])

4 Gene-level EDA

Examining statistics and quality metrics at a read level can help in discovering
problematic libraries or systematic biases in one or more lanes. Nevertheless,
some biases can be difficult to detect at this scale and gene-level EDA is equally
important.

Classes and methods for gene-level counts. There are several Bioconduc-
tor packages for aggregating reads over genes (or other genomic regions, such
as, transcripts and exons) given a particular genome annotation, e.g., IRanges,
ShortRead , Genominator , Rsubread . See their respective vignettes for details.

Here, we consider this step done and load the object geneLevelData from
yeastRNASeq , which provides gene-level counts for 2 wild-type and 2 mutant
lanes from the yeast dataset of Lee et al. [1] (see the Genominator vignette for
an example on the same dataset).

> data(geneLevelData)

> head(geneLevelData)

4

Figure 3: Per-base nucleotide frequencies of mapped reads for lane “isowt5 13e”.

mut_1 mut_2 wt_1 wt_2

YHR055C 0 0 0 0

YPR161C 38 39 35 34

YOL138C 31 33 40 26

YDR395W 55 52 47 47

YGR129W 29 26 5 5

YPR165W 189 180 151 180

Since it is useful to explore biases related to length and GC-content, the
EDASeq package provides, for illustration purposes, length and GC-content for
S. cerevisiae genes (based on SGD annotation, version r64 [3]).

> data(yeastGC)

> head(yeastGC)

YAL001C YAL002W YAL003W YAL004W YAL005C YAL007C

0.3712317 0.3717647 0.4460548 0.4490741 0.4406428 0.3703704

> data(yeastLength)

> head(yeastLength)

YAL001C YAL002W YAL003W YAL004W YAL005C YAL007C

3483 3825 621 648 1929 648

First, we filter the non-expressed genes, i.e., we consider only the genes with
an average read count greater than 10 across the four lanes and for which we
have length and GC-content information.

5

> filter <- apply(geneLevelData,1,function(x) mean(x)>10)

> table(filter)

filter

FALSE TRUE

1988 5077

> common <- intersect(names(yeastGC),rownames(geneLevelData[filter,]))

> length(common)

[1] 4994

This leaves us with 4994 genes.
The EDASeq package provides the SeqExpressionSet class to store gene

counts, (lane-level) information on the sequenced libraries, and (gene-level)
feature information. We use the data frame met created in Section 2 for the
lane-level data. As for the feature data, we use gene length and GC-content.

> feature <- data.frame(gc=yeastGC,length=yeastLength)

> data <- newSeqExpressionSet(exprs=as.matrix(geneLevelData[common,]),

+ featureData=feature[common,],

+ phenoData=data.frame(

+ conditions=c(rep("mut",2),rep("wt",2)),

+ row.names=colnames(geneLevelData)))

> data

SeqExpressionSet (storageMode: lockedEnvironment)

assayData: 4994 features, 4 samples

element names: exprs, offset

protocolData: none

phenoData

sampleNames: mut_1 mut_2 wt_1 wt_2

varLabels: conditions

varMetadata: labelDescription

featureData

featureNames: YAL001C YAL002W ... YPR201W (4994

total)

fvarLabels: gc length

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'

Annotation:

Note that the row names of exprs and featureData must be the same;
likewise for the row names of phenoData and the column names of exprs. As
in the ExpressionSet class, the expression values can be accessed with exprs,
the lane information with pData, and the feature information with fData.

> head(exprs(data))

6

mut_1 mut_2 wt_1 wt_2

YAL001C 80 83 27 40

YAL002W 33 38 53 66

YAL003W 1887 1912 270 270

YAL004W 90 110 276 295

YAL005C 325 316 874 935

YAL007C 27 30 19 24

> pData(data)

conditions

mut_1 mut

mut_2 mut

wt_1 wt

wt_2 wt

> head(fData(data))

gc length

YAL001C 0.3712317 3483

YAL002W 0.3717647 3825

YAL003W 0.4460548 621

YAL004W 0.4490741 648

YAL005C 0.4406428 1929

YAL007C 0.3703704 648

The SeqExpressionSet class has an additional slot called offset (matrix of
the same dimension as exprs), which may be used to store a normalization offset
to be supplied to a model for read counts in differential expression analysis (see
Section 5 and the vignette for edgeR for details on the role offsets). If not
specified, the offset is initialized as a matrix of zeros.

> head(offst(data))

mut_1 mut_2 wt_1 wt_2

YAL001C 0 0 0 0

YAL002W 0 0 0 0

YAL003W 0 0 0 0

YAL004W 0 0 0 0

YAL005C 0 0 0 0

YAL007C 0 0 0 0

Between-lane distribution of gene-level counts. One of the main con-
siderations when dealing with gene-level counts is the difference in count distri-
butions between lanes. The boxplot method provides an easy way to produce
boxplots of the logarithms of the gene counts in each lane (Figure 4).

> boxplot(data,col=colors[1:4])

7

Figure 4: Between-lane distribution of gene-level counts (log).

The MDPlot method produces a mean-difference plot (MD-plot) of read
counts for two lanes (Figure 5).

> MDPlot(data,c(1,3))

Over-dispersion. Although the Poisson distribution is a natural and simple
way to model count data, it has the limitation of assuming equality of the
mean and variance. For this reason, the negative binomial distribution has been
proposed as an alternative when the data show over-dispersion. The function
meanVarPlot can be used to check whether the count data are over-dispersed
(for the Poisson distribution, one would expect the points in Figures 6(a) and
6(b) to be evenly scattered around the black line).

> meanVarPlot(data[,1:2],log=T, ylim=c(0,16))

> meanVarPlot(data,log=T, ylim=c(0,16))

Note that the mean-variance relationship should be examined within repli-
cate lanes only (i.e., conditional on variables expected to contribute to differ-
ential expression). For the yeast dataset, it is not surprising to see no evidence
of over-dispersion for the two mutant technical replicate lanes (Figure 6(a));
likewise for the two wild-type lanes. However, one expects over-dispersion in
the presence of biological variability, as seen in Figure 6(b) when considering at
once all four mutant and wild-type lanes [4–6].

Gene-specific effects on read counts. Several authors have reported selec-
tion biases related to sequence features such as gene length, GC-content, and
mappability [4, 7–9].

In Figure 7, obtained using biasPlot, one can see the dependence of gene-
level counts on GC-content. The same plot could be created for gene length or
mappability instead of GC-content.

8

Figure 5: Mean-difference plot of the gene-level counts (log) of lanes “mut 1”
and “wt 1”.

(a) Mutant lanes (b) All four lanes

Figure 6: Mean-variance relationship for the two mutant lanes and all four
lanes: the black line corresponds to the Poisson distribution (variance equal to
the mean), while the red curve is a lowess fit.

9

Figure 7: Lowess regression of the gene-level counts (log) on GC-content for
each lane, color-coded by experimental condition.

> biasPlot(data,"gc",log=T,ylim=c(1,5))

To show that GC-content dependence can bias differential expression anal-
ysis, one can produce stratified boxplots of the log-fold-change of read counts
from two lanes using the biasBoxplot method (Figure 8). Again, the same type
of plots can be created for gene length or mappability.

> lfc <- log(exprs(data)[,3]+0.5)-log(exprs(data)[,1]+0.5)

> biasBoxplot(lfc,fData(data)$gc)

5 Normalization

Following Risso et al. [8], we consider two main types of effects on gene-level
counts: (1) within-lane gene-specific (and possibly lane-specific) effects, e.g.,
related to gene length or GC-content, and (2) effects related to between-lane
distributional differences, e.g., sequencing depth. Accordingly, withinLaneNor-
malization and betweenLaneNormalization adjust for the first and second
type of effects, respectively. We recommend to normalize for within-lane effects
prior to between-lane normalization.

We implemented four within-lane normalization methods, namely: loess ro-
bust local regression of read counts (log) on a gene feature such as GC-content
(loess), global-scaling between feature strata using the median (median), global-
scaling between feature strata using the upper-quartile (upper), and full-quantile
normalization between feature strata (full). For a discussion of these methods
in context of GC-content normalization see Risso et al. [8].

10

Figure 8: Boxplots of the log-fold-change between “mut 1” and “wt 1” lanes
stratified by GC-content.

> dataWithin <- withinLaneNormalization(data,"gc",which="full")

> dataNorm <- betweenLaneNormalization(dataWithin,which="full")

Regarding between-lane normalization, the package implements three of the
methods introduced in Bullard et al. [4]: global-scaling using the median (median),
global-scaling using the upper-quartile (upper), and full-quantile normalization
(full).

Figure 9 shows how after full-quantile within- and between-lane normaliza-
tion, the GC-content bias is reduced and the distribution of the counts is the
same in each lane.

> biasPlot(dataNorm,"gc",log=T,ylim=c(1,5))

> boxplot(dataNorm,col=colors)

Offset. Some authors have argued that it is better to leave the count data
unchanged to preserve their sampling properties and instead use an offset for
normalization purposes in the statistical model for read counts [5, 6, 9]. This can
be achieved easily using the argument offset in both normalization functions.

> dataOffset <- withinLaneNormalization(data,"gc",

+ which="full",offset=TRUE)

> dataOffset <- betweenLaneNormalization(dataOffset,

+ which="full",offset=TRUE)

11

(a) GC-content (b) Count distribution

Figure 9: Full-quantile within- and between-lane normalization. (a) Lowess
regression of normalized gene-level counts (log) on GC-content for each lane.
(b) Between-lane distribution of normalized gene-level counts (log).

6 Differential expression analysis

One of the main applications of RNA-Seq is differential expression analysis.
The normalized counts (or the original counts and the offset) obtained using
the EDASeq package can be supplied to packages such as edgeR [5] or DESeq
[6] to find differentially expressed genes. This section should be considered only
as an illustration of the compatibility of the results of EDASeq with two of the
most widely used packages for differential expression; our aim is not to compare
differential expression strategies (e.g., normalized counts vs. offset).

6.1 edgeR

We can perform a differential expression analysis with edgeR based on the orig-
inal counts by passing an offset to the generalized linear model. For simplicity,
we estimate a common dispersion parameter for all genes. See the edgeR vi-
gnette for details about how to perform a differential expression analysis using
a gene-specific dispersion or more complex designs.

> library(edgeR)

> design <- model.matrix(~conditions, data=pData(dataOffset))

> disp <- estimateGLMCommonDisp(exprs(dataOffset),

+ design, offset=-offst(dataOffset))

> fit <- glmFit(exprs(dataOffset), design, disp, offset=-offst(dataOffset))

> lrt <- glmLRT(fit, coef=2)

> topTags(lrt)

12

Coefficient: conditionswt

logFC logCPM LR PValue

YGL088W -5.541132 27.38006 919.3684 6.045107e-202

YPL198W -7.436949 26.38569 905.1057 7.619148e-199

YMR013W-A -6.247095 25.88460 778.9779 2.007750e-171

YHR156C -8.145014 24.48476 650.5319 1.711742e-143

YLR106C -4.163007 24.98644 612.8331 2.707420e-135

YGL076C -4.193696 25.95170 581.4861 1.781615e-128

YOR040W -5.010017 25.16148 577.0522 1.641694e-127

YBL004W -5.228381 24.38169 548.0179 3.397627e-121

YAL003W -2.993496 27.60488 518.0542 1.121689e-114

YJL047C-A -4.348550 24.54185 417.1703 1.007785e-92

FDR

YGL088W 3.018926e-198

YPL198W 1.902501e-195

YMR013W-A 3.342235e-168

YHR156C 2.137110e-140

YLR106C 2.704171e-132

YGL076C 1.482897e-125

YOR040W 1.171231e-124

YBL004W 2.120968e-118

YAL003W 6.224129e-112

YJL047C-A 5.032877e-90

6.2 DESeq

We can perform a differential expression analysis with DESeq based on the
normalized counts by using the coerce method from the SeqExpressionSet class
to the CountDataSet class of DESeq . When working with data that have been
normalized for both within- and between-lane effects, we force the size factors to
be one, since differences in lane sequencing depths have already been accounted
for in our between-lane normalization. One could also consider only within-lane
normalization and account for differences in sequencing depth by estimating the
size factors using DESeq .

> library(DESeq)

> counts <- as(dataNorm,"CountDataSet")

> sizeFactors(counts) <- rep(1,4)

> counts <- estimateDispersions(counts)

> res <- nbinomTest(counts, "wt", "mut")

> head(res)

id baseMean baseMeanA baseMeanB foldChange

1 YAL001C 92.00 58.0 126.0 2.1724138

2 YAL002W 73.75 111.0 36.5 0.3288288

3 YAL003W 565.00 126.0 1004.0 7.9682540

13

4 YAL004W 100.00 133.0 67.0 0.5037594

5 YAL005C 259.25 330.5 188.0 0.5688351

6 YAL007C 32.25 37.0 27.5 0.7432432

log2FoldChange pval padj

1 1.1192989 3.415271e-04 3.732136e-03

2 -1.6045913 2.106666e-06 4.826006e-05

3 2.9942636 3.882861e-31 1.615917e-28

4 -0.9891932 1.181444e-03 1.022553e-02

5 -0.8139176 1.418425e-03 1.178638e-02

6 -0.4280937 3.346353e-01 5.776740e-01

7 Definitions and conventions

7.1 Rounding

After either within-lane or between-lane normalization, the expression values
are not counts anymore. However, their distribution still shows some typical
features of counts distribution (e.g., the variance depends on the mean). Hence,
for most applications, it is useful to round the normalized values to recover
count-like values, which we refer to as “pseudo-counts”.

By default, both withinLaneNormalization and betweenLaneNormaliza-

tion round the normalized values to the closest integer. This behavior can be
changed by specifying round=FALSE. This gives the user more flexibility and
assures that rounding approximations do not affect subsequent computations
(e.g., recovering the offset from the normalized counts).

7.2 Zero counts

To avoid problems in the computation of logarithms (e.g. in log-fold-changes),
we add a small positive constant (namely 0.1) to the counts. For instance, the
log-fold-change between y1 and y2 is defined as

log(y1 + 0.1)

log(y2 + 0.1)
.

7.3 Offset

We define an offset in the normalization as

o = log(ynorm + 0.1) − log(yraw + 0.1),

where ynorm and yraw are the normalized and raw counts, respectively.
One can easily recover the normalized data from the raw counts and offset,

as shown here:

> dataNorm <- betweenLaneNormalization(data, round=FALSE)

> dataOffset <- betweenLaneNormalization(data, offset=TRUE)

14

> norm1 <- exprs(dataNorm)

> norm2 <- exp(log(exprs(dataOffset) + 0.1) + offst(dataOffset)) - 0.1

> head(norm1 - norm2)

mut_1 mut_2 wt_1

YAL001C -1.421085e-14 -1.421085e-14 0.000000e+00

YAL002W 3.552714e-15 -7.105427e-15 -2.131628e-14

YAL003W 4.547474e-13 -2.273737e-13 1.136868e-13

YAL004W -2.842171e-14 -1.421085e-14 5.684342e-14

YAL005C -1.136868e-13 5.684342e-14 -3.410605e-13

YAL007C 3.552714e-15 3.552714e-15 -3.552714e-15

wt_2

YAL001C 0.000000e+00

YAL002W 0.000000e+00

YAL003W -5.684342e-14

YAL004W -5.684342e-14

YAL005C -1.136868e-13

YAL007C 3.552714e-15

Note that the small constant added in the definition of offset does not matter
when pseudo-counts are considered, i.e.,

> head(round(exprs(dataNorm)) - round(exprs(dataOffset) * exp(offst(dataOffset))))

mut_1 mut_2 wt_1 wt_2

YAL001C 0 0 0 0

YAL002W 0 0 0 0

YAL003W 0 0 0 0

YAL004W 0 0 0 0

YAL005C 0 0 0 0

YAL007C 0 0 0 0

We defined the offset as the log-ratio between normalized and raw counts.
However, the edgeR functions expect as offset argument the log-ratio between
raw and normalized counts. One must use -offst(offsetData) as the offset
argument of edgeR (see Section 6.1).

8 SessionInfo

> toLatex(sessionInfo())

� R version 3.0.0 (2013-04-03), x86_64-unknown-linux-gnu

� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

15

� Base packages: base, datasets, grDevices, graphics, methods, parallel,
stats, utils

� Other packages: BSgenome 1.28.0, Biobase 2.20.0, BiocGenerics 0.6.0,
Biostrings 2.28.0, DESeq 1.12.0, EDASeq 1.6.0, GenomicRanges 1.12.0,
IRanges 1.18.0, R.methodsS3 1.4.2, R.oo 1.13.0, RColorBrewer 1.0-5,
Rsamtools 1.12.0, ShortRead 1.18.0, aroma.light 1.30.0, edgeR 3.2.0,
lattice 0.20-15, latticeExtra 0.6-24, leeBamViews 0.99.21, limma 3.16.0,
locfit 1.5-9, matrixStats 0.6.2, yeastRNASeq 0.0.7

� Loaded via a namespace (and not attached): AnnotationDbi 1.22.0,
DBI 0.2-5, KernSmooth 2.23-10, RSQLite 0.11.2, XML 3.96-1.1,
annotate 1.38.0, bitops 1.0-5, genefilter 1.42.0, geneplotter 1.38.0,
grid 3.0.0, hwriter 1.3, splines 3.0.0, stats4 3.0.0, survival 2.37-4,
tools 3.0.0, xtable 1.7-1, zlibbioc 1.6.0

References

[1] A. Lee, K.D. Hansen, J. Bullard, S. Dudoit, and G. Sherlock. Novel low
abundance and transient RNAs in yeast revealed by tiling microarrays and
ultra high-throughput sequencing are not conserved across closely related
yeast species. PLoS Genet, 4(12):e1000299, 2008.

[2] B. Langmead, C. Trapnell, M. Pop, and S.L. Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol, 10(3):R25, 2009.

[3] Saccharomyces Genome Database. http://www.yeastgenome.org, r64.

[4] J.H. Bullard, E. Purdom, K.D. Hansen, and S. Dudoit. Evaluation of sta-
tistical methods for normalization and differential expression in mRNA-Seq
experiments. BMC bioinformatics, 11(1):94, 2010.

[5] M.D. Robinson, D.J. McCarthy, and G.K. Smyth. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics, 26(1):139, 2010.

[6] S. Anders and W. Huber. Differential expression analysis for sequence count
data. Genome Biology, 11(10):R106, 2010.

[7] A. Oshlack and M.J. Wakefield. Transcript length bias in RNA-seq data
confounds systems biology. Biology Direct, 4(1):14, 2009.

[8] D. Risso, K. Schwartz, G. Sherlock, and S. Dudoit. GC-Content Normal-
ization for RNA-Seq Data. Technical report #291, University of Califor-
nia, Berkeley, Division of Biostatistics, 2011. http://www.bepress.com/

ucbbiostat/paper291/.

16

http://www.yeastgenome.org
http://www.bepress.com/ucbbiostat/paper291/
http://www.bepress.com/ucbbiostat/paper291/

[9] K.D. Hansen, R.A. Irizarry, and Z. Wu. Removing technical variability in
RNA-Seq data using conditional quantile normalization. Technical report
#227, Johns Hopkins University, Dept. of Biostatistics Working Papers,
2011. http://www.bepress.com/jhubiostat/paper227/.

17

http://www.bepress.com/jhubiostat/paper227/

	Introduction
	Reading in unaligned and aligned read data
	Read-level EDA
	Gene-level EDA
	Normalization
	Differential expression analysis
	edgeR
	DESeq

	Definitions and conventions
	Rounding
	Zero counts
	Offset

	SessionInfo

