
CGHcall: Calling aberrations for array

CGH tumor profiles.

Sjoerd Vosse and Mark van de Wiel

April 23, 2012

Department of Epidemiology & Biostatistics
VU University Medical Center

mark.vdwiel@vumc.nl

Contents

1 Overview 1

2 Example 1

1 Overview

CGHcall allows users to make an objective and effective classification of their
aCGH data into copy number states (loss, normal, gain or amplification).
This document provides an overview on the usage of the CGHcall package.
For more detailed information on the algorithm and assumptions we refer
to the article (van de Wiel et al., 2007) and its supplementary material.
As example data we attached the first five samples of the Wilting dataset
(Wilting et al., 2006). After filtering and selecting only the autosomal 4709
datapoints remained.

2 Example

In this section we will use CGHcall to call and visualize the aberrations in
the dataset described above. First, we load the package and the data:

1



> library(CGHcall)

> data(Wilting)

> Wilting <- make_cghRaw(Wilting)

Next, we apply the preprocess function which:

• removes data with unknown or invalid position information.

• shrinks the data to nchrom chromosomes.

• removes data with more than maxmiss % missing values.

• imputes missing values using impute.knn from the package impute

(Troyanskaya et al., 2001).

> cghdata <- preprocess(Wilting, maxmiss = 30, nchrom = 22)

Changing impute.knn parameter k from 10 to 4 due to small sample size.

To be able to compare profiles they need to be normalized. In this
package we first provide very basic global median or mode normalization.
This function also contains smoothing of outliers as implemented in the
DNAcopy package (Venkatraman and Olshen, 2007). Furthermore, when
the proportion of tumor cells is not 100% the ratios can be corrected. See the
article and the supplementary material for more information on cellularity
correction (van de Wiel et al., 2007).

> norm.cghdata <- normalize(cghdata, method = "median", smoothOutliers = TRUE)

Applying median normalization ...

Smoothing outliers ...

The next step is segmentation of the data. This package only provides
a wrapper function that applies the DNAcopy algorithm (Venkatraman and
Olshen, 2007). It provides extra functionality by allowing to undo splits
differently for long and short segments, respectively. In the example below
short segments are smaller than clen=10 probes, and for such segments
undo.splits is effective when segments are less than undo.SD=3 (sd) apart.
For long segments a less stringent criterion holds: undo when less than
undo.SD/relSDlong = 3/5 (sd) apart. If, for two consecutive segements,
one is short and one is long, splits are undone in the same way as for two
consecutive short segments. To save time we will limit our analysis to the
first two samples from here on.

2



> norm.cghdata <- norm.cghdata[, 1:2]

> seg.cghdata <- segmentData(norm.cghdata, method = "DNAcopy",

+ undo.splits = "sdundo", undo.SD = 3, clen = 10, relSDlong = 5)

Start data segmentation ..

Analyzing: Sample.1

Analyzing: Sample.2

Post-segmentation normalization allows to better set the zero level after
segmentation.

> postseg.cghdata <- postsegnormalize(seg.cghdata)

Now that the data have been normalized and segments have been defined,
we need to determine which segments should be classified as double losses,
losses, normal, gains or amplifications. Cellularity correction is now provided
WITHIN the calling step (as opposed to some earlier of CGHcall)

> tumor.prop <- c(0.75, 0.9)

> result <- CGHcall(postseg.cghdata, nclass = 5, cellularity = tumor.prop)

EM algorithm started ...

[1] "Total number of segments present in the data: 92"

[1] "Number of segments used for fitting the model: 92"

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 397374 10.7 667722 17.9 667722 17.9

Vcells 347059 2.7 786432 6.0 786432 6.0

Calling iteration 1 :

[1] "optim results"

[1] "time: 23"

[1] "minimum: 3757.89563517414"

j rl mudl musl mun mug mudg mua

[1,] 2 3738.879 -1.186574 -0.2971907 0.01269801 0.3266167 0.5583549 1.115040

sddl sdsl sdn sdg sddg sda

[1,] 0.7577915 0.0845596 0.0644851 0.1334502 0.1339624 0.5505281

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 398280 10.7 741108 19.8 741108 19.8

Vcells 347911 2.7 786432 6.0 786432 6.0

Calling iteration 2 :

[1] "optim results"

[1] "time: 18"

3



[1] "minimum: 3752.04053222869"

j rl mudl musl mun mug mudg mua

[1,] 2 3737.682 -1.066646 -0.2934961 0.01665657 0.3287696 0.5620353 1.353487

sddl sdsl sdn sdg sddg sda

[1,] 1.125041 0.08184933 0.05775554 0.1269264 0.1273813 0.5375684

EM algorithm done ...

Computing posterior probabilities for all segments ...

Total time: 1 minutes

The result of CGHcall needs to be converted to a call object. This can
be a large object for large arrays.

> result <- ExpandCGHcall(result, postseg.cghdata)

Adjusting segmented data for cellularity ...

Cellularity sample 1 : 0.75

Cellularity sample 2 : 0.9

Adjusting normalized data for cellularity ...

Cellularity sample 1 : 0.75

Cellularity sample 2 : 0.9

[1] 1

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400213 10.7 741108 19.8 741108 19.8

Vcells 377636 2.9 786432 6.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400223 10.7 741108 19.8 741108 19.8

Vcells 395399 3.1 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400222 10.7 741108 19.8 741108 19.8

Vcells 395398 3.1 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400249 10.7 741108 19.8 741108 19.8

Vcells 423817 3.3 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400563 10.7 741108 19.8 741108 19.8

Vcells 425630 3.3 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400571 10.7 741108 19.8 741108 19.8

Vcells 427409 3.3 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

4



Ncells 400579 10.7 741108 19.8 741108 19.8

Vcells 429188 3.3 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400587 10.7 741108 19.8 741108 19.8

Vcells 430967 3.3 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400595 10.7 741108 19.8 741108 19.8

Vcells 432746 3.4 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400599 10.7 741108 19.8 741108 19.8

Vcells 434524 3.4 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 400633 10.7 741108 19.8 741108 19.8

Vcells 455848 3.5 905753 7.0 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401436 10.8 741108 19.8 741108 19.8

Vcells 463320 3.6 905753 7.0 786432 6.0

[1] 2

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401447 10.8 741108 19.8 741108 19.8

Vcells 481104 3.7 1031040 7.9 786432 6.0

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401448 10.8 741108 19.8 741108 19.8

Vcells 481105 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401447 10.8 741108 19.8 741108 19.8

Vcells 481104 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401451 10.8 741108 19.8 741108 19.8

Vcells 484657 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401447 10.8 741108 19.8 741108 19.8

Vcells 481104 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401447 10.8 741108 19.8 741108 19.8

Vcells 477552 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401455 10.8 741108 19.8 741108 19.8

Vcells 479331 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

5



Ncells 401463 10.8 741108 19.8 741108 19.8

Vcells 481110 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401471 10.8 741108 19.8 741108 19.8

Vcells 482889 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401475 10.8 741108 19.8 741108 19.8

Vcells 484667 3.7 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 401509 10.8 741108 19.8 741108 19.8

Vcells 505991 3.9 1031040 7.9 1030043 7.9

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 404504 10.9 741108 19.8 741108 19.8

Vcells 492233 3.8 1031040 7.9 1030772 7.9

FINISHED!

Total time: 0 minutes

6



To visualize the results per profile we use the plotProfile function:

> plot(result[, 1])

Plotting sample AdCA10

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

1

2

3

4

5

lo
g 2

 ra
tio

pr
ob

ab
ili

ty

chromosomes

AdCA10

Plot resolution: 10%

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

1 2 3 4 5 6 7 9 11 13 15 18 22

MAD = 0.164k x 147 kbp

7



> plot(result[, 2])

Plotting sample SCC27

0.0

0.2

0.4

0.6

0.8

1.0

−5

−4

−3

−2

−1

0

1

2

3

4

5

lo
g 2

 ra
tio

pr
ob

ab
ili

ty

chromosomes

SCC27

Plot resolution: 10%

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

1 2 3 4 5 6 7 9 11 13 15 18 22

MAD = 0.124k x 147 kbp

8



Alternatively, we can create a summary plot of all the samples:

> summaryPlot(result)

Summary Plot

chromosomes

m
ea

n 
pr

ob
ab

ili
ty

1 2 3 4 5 6 7 8 9 11 13 15 18 22

100 %

 50 %

0 %

50 %

100 %

ga
in

s
lo

ss
es

4k x 147 kbp

9



Or a frequency plot::

> frequencyPlotCalls(result)

Frequency Plot

chromosomes

fr
eq

ue
nc

y

1 2 3 4 5 6 7 8 9 11 13 15 18 22

100 %

 50 %

0 %

50 %

100 %

ga
in

s
lo

ss
es

4k x 147 kbp

10



References

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshi-
rani, R., Botstein, D., and Altman, R. B. (2001). Missing value estimation
methods for DNA microarrays. Bioinformatics, 17:520–525.

van de Wiel, M. A., Kim, K. I., Vosse, S. J., van Wieringen, W. N., Wilting,
S. M., and Ylstra, B. (2007). CGHcall: calling aberrations for array CGH
tumor profiles. Bioinformatics, 23:892–894.

Venkatraman, E. S. and Olshen, A. B. (2007). A faster circular binary seg-
mentation algorithm for the analysis of array CGH data. Bioinformatics,
23:657–663.

Wilting, S. M., Snijders, P. J. F., Meijer, G. A., Ylstra, B., van den Ijssel,
P. R. L. A., Snijders, A. M., Albertson, D. G., Coffa, J., Schouten, J. P.,
van de Wiel, M. A., Meijer, C. J. L. M., and Steenbergen, R. D. M.
(2006). Increased gene copy numbers at chromosome 20q are frequent
in both squamous cell carcinomas and adenocarcinomas of the cervix. J
Pathol, 209:220–230.

11


	Overview
	Example

