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1 Introduction

This document briefly describes how to use the package CAGEr. CAGET is a Bioconductor-
compliant R package designed to manipulate, analyse and visualise Cap Analysis of
Gene Expression (CAGE) sequencing data. CAGE (Kodzius et al.| (2006)) is a high-
throughput method for transcriptome analysis that utilizes "cap-trapping” (Carninci
et al. (1996)), a technique based on the biotinylation of the 7-methylguanosine cap of
Pol II transcripts, to pulldown the 5’-complete cDNAs reversely transcribed from the
captured transcripts. A linker sequence is ligated to the 5’ end of the cDNA and a
specific restriction enzyme is used to cleave off a short fragment from the 5’ end. Result-
ing fragments are then amplified and sequenced using massive parallel high-throughput
sequencing technology, which results in a large number of short sequenced tags that can
be mapped back to the referent genome to infer the exact position of the transcription
start sites (T'SSs) used for transcription of captured RNAs (Figure|l)). Number of CAGE
tags supporting each TSS gives the information on relative frequency of its usage and
can be used as a measure of expression from that specific TSS. Thus, CAGE provides
information on two aspects of capped transcriptome: genome-wide 1bp-resolution map
of transcription start sites and transcript expression levels. This information can be used
for various analyses, from 5’ centered expression profiling (Takahashi et al. (2012))) to
studying promoter architecture (Carninci et al.| (2006)).

CAGE samples derived from various organisms (genomes) can be analysed by CAGEr
and the only limitation is the availability of the referent genome within the Bioconduc-
tor BSgenome package. CAGEr provides a comprehensive workflow that starts from
mapped CAGE tags and includes reconstruction of T'SSs and promoters and their visu-
alisation, as well as more specialized downstream analyses like promoter width, expres-
sion profiling and differential TSS usage. It can use both Binary Sequence Alignment
Map (BAM) files of aligned CAGE tags or files with genomic locations of TSSs and
number of supporting CAGE tags as input. If BAM files are provided CAGEr con-
structs TSSs from aligned CAGE tags and counts the number of tags supporting each
TSS, while allowing filtering out low-quality tags and removing technology-specific bias.
It further performs normalization of raw CAGE tag count, clustering of T'SSs into tag
clusters (TC) and their aggregation across multiple CAGE experiments into promoters
to construct the promoterome. Various methods for normalization and clustering of
TSSs are supported. Exporting data into different types of track files allows various
visualisations of TSSs and clusters (promoters) in the UCSC Genome Browser, which
facilitate generation of hypotheses. CAGFEr manipulates multiple CAGE experiments at
once and performs analyses across datasets, including expression profiling and detection
of differential TSS usage (promoter shifting). Multicore option for parallel processing is
supported on Unix-like platforms, which significantly reduces computing time.

Here are some of the functionalities provided in this package:

e Reading in multiple CAGE datasets from various sources; user provided BAM or
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Figure 1: Overview of CAGE experiment



TSS input files, public CAGE datasets from accompanying data package.
Correcting systematic G nucleotide addition bias at the 5" end of CAGE tags.

Plotting pairwise scatter plots, calculating correlation between datasets and merg-
ing datasets.

Normalizing raw CAGE tag count: simple tag per million (tpm) or power-law
based normalization (Balwierz et al.|(2009)).

Clustering individual T'SSs into tag clusters (TCs) and aggregating clusters across
multiple CAGE datasets to create a set of consensus promoters.

Making bedGraph or BED files of individual T'SSs or clusters for visualisation in
the genome browser.

Expression clustering of individual TSSs or consensus promoters into distinct ex-
pression profiles using common clustering algorithms.

Calculating promoter width based on the cumulative distribution of CAGE signal
along the promoter.

Scoring and statistically testing differential TSS usage (promoter shifting) and
detecting promoters that shift between two samples.

A data package FANTOM3andjCAGE is accompanying this package. It contains
all of the up-to-date publicly available CAGE data produced by FANTOM, a genome
regulation-oriented international consortium, and provides a valuable resource of genome-
wide T'SSs in various tissue/cell types in human and mouse that can be used directly in
R. Section 5 in this vignette describes how these public datasets can be included into a
workflow provided by CAGEr. See the vignette of the FANTOM3and4CAGE package
for the list of available CAGE datasets.

2 Input data for CAGEr

CAGEr package supports three types of CAGE data input:

1. Sequenced CAGE tags mapped to the genome: BAM (Binary Sequence

Alignment Map) files of sequenced CAGE tags aligned to the referent genome.

2. CAGE detected TSSs (CTSSs): tab separated files with genomic coordinates

of TSSs and number of tags supporting each TSS. The file should not contain a
header and the data must be organized in four columns:

e name of the chromosome: names must match the names of chromosomes in
the corresponding BSgenome package
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e 1-based coordinate of the T'SS on the chromosome
e genomic strand: should be either 4 or -

e number of CAGE tags supporting that T'SS

3. Publicly available CAGE datasets from R data package: A data package
FANTOMS3and4CAGE containing CAGE data produced by FANTOM consortium

is accompanying this package. Selected subset of these data can be used as input
for CAGEr.

3 Getting started

To load the CAGEr package into your R envirnoment type:
> library(CAGEr)

In this tutorial we will be using data from zebrafish (Danio rerio) that was mapped
to the danRer7 assembly of the genome. Therefore, the corresponding genome package
BSgenome.Drerio. UCSC.danRer7 has to be installed and available to load by typing:

> library(BSgenome.Drerio.UCSC.danRer?7)

In case the data is mapped to a genome that is not readily available through BSgenome
package (not in the list returned by available.genomes () function), a custom BSgenome
package has to be build and installed first. (See the vignette within the BSgenome pack-
age for instructions on how to build a custom genome package). The built genome should
then be loaded by calling 1ibrary() and the genomeName argument should be set to
the name of the build genome package when creating a CAGEset object (see the section
Creating CAGEset object below).

4 CAGEr workflow

4.1 Preparing input files

The subset of zebrafish (Danio rerio) developmental time-series CAGE data generated by
(Nepal et al.| (2013))) will be used for the demonstration of the workflow and the provided
functionalities. Files with genomic coordinates of T'SSs detected by CAGE in 4 zebrafish
developmental stages are included in this package in the extdata subdirectory. The files
contain T'SSs from a part of chromosome 17 (26,000,000-46,000,000), and there are two
files for one of the developmental stages (two independent replicas). The data in files is
organized in four tab separated columns as described above in the section about input
data formats. First we have to define paths to the input files:



> inputDir <- system.file("extdata", package = "CAGEr")
> pathsToInputFiles <- list.files(inputDir, full.names = TRUE)
> basename (pathsToInputFiles)

[1] "Zf.30p.dome.chrl7.ctss"

[2] "Zf.high.chrl7.ctss"

[3] "Zf.prim6.repl.chrl7.ctss"

[4] "Zf.prim6.rep2.chrl7.ctss"

[5] "Zf.unfertilized.egg.chri7.ctss"

4.2 Creating CAGEset object

We start the workflow by creating a CAGEset object, which is a container for storing
CAGE datasets and all the results that will be generated by applying specific functions.
CAGEset is created by providing name of the referent genome, paths to input files, type
of input files and labels of individual CAGE datasets (samples):

> myCAGEset <- new("CAGEset", genomeName = "BSgenome.Drerio.UCSC.danRer7",

+ inputFiles = pathsTolnputFiles, inputFilesType = '"ctss",
+ sampleLabels = c("zf_30p_dome", "zf_high",
+ "zf_prim6_repl", "zf_prim6_rep2", "zf_unfertilized_egg"))

To display the created object type:

> myCAGEset

S4 Object of class CAGEset

Input data information

Reference genome (organism): BSgenome.Drerio.UCSC.danRer7

Input file type: ctss

Input file names: /tmp/Rtmp0zAUgb/Rinst624b5f967bb4/CAGEr/extdata/Zf.30p.dome.chrl7.cts
Sample labels: zf_30p_dome, zf_high, zf_prim6_repl, zf_prim6_rep2, zf_unfertilized_egg

CTSS information

CTSS chromosome:
CTSS position:
CTSS strand:
Tag count:
Normalized tpm:




Tag cluster (TC) information

CTSS clustering method:
Number of TCs per sample:

Consensus cluster information

Number of consensus clusters:
Consensus cluster chromosome:
Consensus cluster start:
Consensus cluster end:
Consensus cluster strand:
Normalized tpm:

Expression profiling

Expression clustering method:
Expression clusters for consensus clusters:

Promoter shifting

GroupX:

GroupY:

Shifting scores:

KS p-values (FDR adjusted):

The supplied information can be seen in the Input data information section,
whereas all other slots are still empty since no data has been read yet and no anal-

ysis conducted.

4.3 Reading in the data

To read in the data from the provided files we use the following function:

> getCTSS (myCAGEset)

This function reads in the data from the provided files in the order they were specified
in the inputFiles argument. It creates a single set of all T'SSs detected across all input
datasets and a table with counts of CAGE tags supporting each TSS in every dataset.
Genomic coordinates of all TSSs and numbers of supporting CAGE tags in every input

sample can be retrieved by typing:



> ctss <- CTSStagCount (myCAGEset)
> head(ctss)

chr pos strand zf_30p_dome zf_high zf_ prim6_repl
1 chrl7 26027430 + 0 0 1
2 chr17 26050540 + 0 0 0
3 chrl7 26068225 - 1 0 0
4 chrl7 26068227 - 1 0 0
5 chrl7 26068233 - 1 0 0
6 chrl7 26074127 - 2 0 0
zf_prim6_rep2 zf_unfertilized_egg
1 0 0
2 0 1
3 0 0
4 0 0
5 0 0
6 0 2

Note that the samples are ordered in the way they were supplied when creating the
CAGEset object and will be presented in that order in all the results and plots. To check
sample labels and their ordering type:

> sampleLabels (myCAGEset)

#FFOOOOFF #CCFFOOFF
"zf_30p_dome" "zf_high"
#O0OFF66FF #0066FFFF
"zf_prim6_repl" "zf_prim6_rep2"
#CCOOFFFF

"zf_unfertilized_egg"

In addition, a colour is assigned to each sample, which is consistently used to depict
that sample in all the plots. By default a rainbow palette of colours is used and the
hexadecimal format of the assigned colours can be seen as names attribute of sample
labels shown above. The colours can be changed to taste at any point in the workflow
using setColors function.

4.4 Correlation between samples

After the data has been read we can start exploring the data by looking at the correlation
between the samples. The plotCorrelation function will plot pairwise scatter plots
of CAGE tag count per TSS and calculate correlation between all possible pairs of
samples. A tag count threshold can be set, so that only TSSs with tag count above the



threshold (either in one or both samples) are considered when calculating correlation.
Three different correlation measures are supported: Pearson’s, Spearman’s and Kendall’s
correlation coefficients.

> corr.m <- plotCorrelation(myCAGEset, samples = "all", method = '"pearson")

The command above will create a PNG file with pairwise scatter plots and calculated
correlation coefficients (Figure [2)), and will return a matrix with correlation coefficients.
Note that the correlation is calculated using raw tag counts on a linear scale, however, the
scatter plots are plotted on a logarithmic scale for the convenience. Figure [2| shows that
early developmental stages correlate very well with each other, whereas their correlation
with later prim6 stage is lower. There is also a very good correlation between the two
replicas for prim6 developmental stage.
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Figure 2: Correlation of raw CAGE tag counts per TSS

Based on calculated correlation we might want to merge and/or rearrange some of the
datasets. To rearrange the samples in the temporal order of the zebrafish development
(unfertilized egg -> high -> 30 percent dome -> prim6) and to merge the two replicas
for the prim6 developmental stage we use the mergeSamples function:



> mergeSamples (myCAGEset, mergelndex = c(3,2,4,4,1),
+ mergedSampleLabels = c("zf_unfertilized_egg",
+ "zf_high", "zf_30p_dome", "zf_prim6"))

The mergeIndex argument controls which samples will be merged and how the final
dataset will be ordered. Samples labeled by the same number (in our case samples three
and four) will be merged together by summing number of CAGE tags per TSS. The final
set of samples will be ordered in the ascending order of values provided in mergeIndex
and will be labeled by the labels provided in the mergedSampleLabels argument. Note
that mergeSamples function resets all slots with results of downstream analyses, so in
case there were any results in the CAGEset object prior to merging, they will be removed.

4.5 Normalization

Library sizes (number of total sequenced tags) of individual experiments differ, thus
normalization is required to make them comparable. The 1ibrarySizes function returns
the total number of CAGE tags in each sample:

> librarySizes (myCAGEset)

zf_unfertilized_egg zf_high zf_30p_dome
56140 45910 41814

zf_prim6

69000

CAGEr package supports both simple tags per million normalization and power-law
based normalization. It has been shown that many CAGE datasets follow a power-
law distribution (Balwierz et al.| (2009)). Plotting the number of CAGE tags (X-axis)
against the number of TSSs that are supported by <= of that number of tags (Y-axis)
results in a distribution that can be approximated by a power-law. On a log-log scale
this reverse cumulative distribution will manifest as a monotonically decreasing linear
function, which can be defined as

y = -1 * alpha * x + beta

and is fully determined by the slope alpha and total number of tags T (which together
with alpha determines the value of beta).

To check whether our CAGE datasets follow power-law distribution and in which range
of values, we can use the plotReverseCumulatives function:

> plotReverseCumulatives (myCAGEset, fitInRange = c(5, 1000), onePlot = TRUE)

This will create a PDF file with reverse cumulative plots (Figure |3) in your working
directory. In addition, a power-law distribution will be fitted to each reverse cumulative
using values in the specified range (denoted with dashed lines in Figure [3) and the
value of alpha will be reported for each sample (shown in the brackets in the Figure
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legend). The plots can help in choosing the optimal parameters for power-law based
normalization. We can see that the reverse cumulative distributions look similar and
follow the power-law in the central part of the CAGE tag counts values with a slope
between -1.1 and -1.3. Thus, we choose a range from 5 to 1000 tags to fit a power-
law, and we normalize all samples to a referent power-law distribution with a total of
50,000 tags and slope of -1.2 (alpha = 1.2). (Note that since this example dataset
contains only data from one part of chromosome 17 and the total number of tags is very
small, we normalize to a referent distribution with a similarly small number of tags.
When analyzing full datasets it is reasonable to set total number of tags for referent
distribution to one million to get normalized tags per million values.)

All samples

— (1.18) zf_unfertilized_egg

100000

— 1(1.10) zf_prim6

number of CTSSs (>= nr tags)
100 1000

10

1

1 10 100 1000 10000 100000
number of CAGE tags

Figure 3: Reverse cumulative distribution of CAGE tags
To perform normalization we pass these parameters to the normalizeTagCount func-
tion:

> normalizeTagCount (myCAGEset, method = "powerLaw",
+ fitInRange = c(5, 1000), alpha = 1.2, T = 5%1074)

The normalization is performed as described in (Balwierz et al.| (2009)):

1. Power-law is fitted to the reverse cumulative distribution in the specified range of
CAGE tags values to each sample separately.

2. A referent power-law distribution is defined based on the provided alpha (slope in
the log-log representation) and T (total number of tags) parameters. Setting T to
1 million results in normalized tags per million (tpm) values.
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3. Every sample is normalized to the defined referent distribution, i.e. given the
parameters that approximate its own power-law distribution it is calculated how
many tags would each TSS have in the referent power-law distribution.

Y

In addition to the two provided normalization methods, a pass-through option "none’
can be set as method parameter to keep using raw tag counts in all downstream steps.
Note that normalizeTagCount function has to be applied to CAGEset object before
moving to next steps. Thus, in order to keep using raw tag counts run the function with
method="none". In that case, all results and parameters in the further steps that would
normally refer to normalized CAGE signal (denoted as tpm), will actually be raw tag
counts.

4.6 Exporting CAGE signal to bedGraph

CAGE data can be visualized in the genomic context by exporting raw or normalized
CAGE tag counts to a bedGraph file and uploading the file to a genome browser. Po-
sitions of T'SSs and tag counts supporting them are exported using exportCTSStoBed-
Graph function:

> exportCTSStoBedGraph (myCAGEset, values = "normalized", oneFile = TRUE)

This will produce a single bedGraph file with multiple annotated tracks that can be
directly visualized as custom tracks in the genome browser (Figure . There are two
tracks per sample; one for T'SSs on the plus strand and the other for the minus strand.
Values for TSSs on minus strand are shown as negative and are pointing downwards in
the browser.

4.7 CTSS clustering

Transcription start sites are found in the promoter region of a gene and reflect the tran-
scriptional activity of that promoter (Figure . TSSs in the close proximity of each
other give rise to a functionally equivalent set of transcripts and are likely regulated by
the same promoter elements. Thus, T'SSs can be spatially clustered into larger transcrip-
tional units, called tag clusters (TCs) that correspond to individual promoters. CAGEr
supports three methods for spatial clustering of TSSs along the genome, two ”ab ini-
tio” methods driven by the data itself as well as assigning T'SSs to predefined genomic
regions:

1. simple distance-based clustering in which two neighbouring TSSs are joined to-
gether if they are closer than some specified distance

2. parametric clustering of data attached to sequences based on the density of the
signal (Frith et al| (2007), http://www.cbrc.jp/paraclu/)
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Figure 4: CAGE data bedGraph track visualized in the UCSC Genome Browser

3. counting TSSs and their signal in a set of user supplied genomic regions (e.g.
annotation derived promoter regions or other regions of interest)

These functionalities are provided in the clusterCTSS function, which accepts additional
arguments for controlling which CTSSs will be included in the clustering as well as for
refining the final set of tag clusters.

We will perform a simple distance-based clustering using 20bp as a maximal allowed
distance between two neighbouring T'SSs. Prior to clustering we will filter out low-
fidelity T'SSs - the ones supported by less than 2 normalized tag counts in all of the
samples.

> clusterCTSS(object = myCAGEset, threshold = 1, thresholdIsTpm = TRUE,
+ nrPassThreshold = 1, method = "distclu", maxDist = 20,
+ removeSingletons = TRUE, keepSingletonsAbove = 5)

Our final set of tag clusters will not include singletons (clusters with only one TSS),
unless the normalized signal is above 5, i.e. it is a reasonably supported TSS. The
(clusterCTSS) function creates a set of clusters for each sample separately; for each
cluster it returns the genomic coordinates, counts the number of T'SSs within the cluster,
determines the position of the most frequently used (dominant) T'SS, calculates the total
CAGE signal within the cluster and CAGE signal supporting the dominant TSS only.
We can extract tag clusters for a desired sample from the CAGEset object by calling
tagClusters function:
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> tc <- tagClusters(myCAGEset, sample = "zf_unfertilized_egg")

> head(tc)
cluster chr start end strand nr_ctss
1 1 chr17 26453631 26453708 + 12
2 2 chrl7 26564507 26564610 + 24
3 3 chrl7 26595636 26595793 + 35
4 4 chrl7 26596032 26596091 + 9
5 5 chrl17 26596117 26596127 + 4
6 6 chrl7 26596149 26596175 + 5
dominant_ctss tpm tpm.dominant_ctss
1 26453667 26.97094 8.250137
2 26564585 128.63720 29.283272
3 26595750 216.99944 100.970037
4 26596070 10.42000 3.216864
5 26596118 12.19946 5.741802
6 26596153 10.96552 3.850167

4.8 Promoter width

Genome-wide mapping of TSSs using CAGE has initially revealed two major classes of
promoters in mammals (Carninci et al.| (2006)), with respect to the number and distri-
bution of TSSs within the promoter. They have been further correlated with differences
in the underlying sequence and the functional classes of the genes they regulate, as well
as the organization of the chromatin around them. These are:

e "broad” promoters with multiple TSSs characterized by a high GC content and
overlap with a CpG island, which are associated with widely expressed or devel-
opmentally regulated genes

e "sharp” promoters with one dominant TSS often associated with a TATA-box at a
fixed upstream distance, which often regulate tissue-specific transcription

Thus, the width of the promoter is an important characteristic that distinguishes differ-
ent functional classes of promoters. CAGEr package analyzes promoter width across all
samples present in the CAGEset object. It defines promoter width by taking into account
both the positions and the CAGE signal at TSSs along the tag cluster, thus making it
more robust with respect to total expression and local level of noise at the promoter.
Width of every tag cluster is calculated as following:

1. Cumulative distribution of CAGE signal along the cluster is calculated.

2. Positions of two selected quantiles are determined. At the 5’ end the position of
the "lower” quantile qLow is determined, which is defined as the point that divides
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the cluster into two parts, such that the 5 part contains < gLow * 100% of the
CAGE signal of that cluster. Accordingly, position of the "upper” quantile qUp is
determined near the 3’ end, which is defined as the point that divides the cluster
into two parts such that the 5’ part contains >= qUp * 100% of the CAGE signal
of that cluster.

3. Promoter width is defined as the distance (in base pairs) between the two quantiles.
This interquantile width marks the central part of the cluster that contains >=
(qUp - qLow) * 100% of the CAGE signal.

The procedure is schematically shown in Figure [5]

14
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Figure 5: Cumulative distribution of CAGE signal and definition of interquantile width

Required computations are done using cumulativeCTSSdistribution and quan-
tilePositions functions, which calculate cumulative distribution for every tag cluster
in each of the samples and determine the positions of selected quantiles, respectively:

> cumulativeCTSSdistribution(myCAGEset, clusters = "tagClusters")
> quantilePositions(myCAGEset, clusters = "tagClusters", qLow = 0.1, qUp = 0.9)

Tag clusters and their interquantile width can be retrieved by calling tagClusters
function:

> tc <- tagClusters(myCAGEset, sample = "zf_unfertilized_egg",

+ returnlnterquantileWidth = TRUE, qLow = 0.1, qUp = 0.9)
> head(tc)

cluster chr start end strand nr_ctss
1 1 chrl7 26453631 26453708 + 12

15



2 2 chrl7 26564507 26564610 + 24
3 3 chr17 26595636 26595793 + 35
4 4 chrl7 26596032 26596091 + 9
5 5 chrl7 26596117 26596127 + 4
6 6 chrl7 26596149 26596175 + 5
dominant_ctss tpm tpm.dominant_ctss q_-0.1
1 26453667 26.97094 8.250137 26453667
2 26564585 128.63720 29.283272 26564524
3 26595750 216.99944 100.970037 26595673
4 26596070 10.42000 3.216864 26596033
5 26596118 12.19946 5.741802 26596118
6 26596153 10.96552 3.850167 26596151
g_-0.9 interquantile_width
1 26453703 37
2 26564588 65
3 26595750 78
4 26596082 50
5 26596127 10
6 26596160 10

Interquantile width can also be visualized in a gene-like representation in the UCSC
genome browser by exporting the data into a BED file:

> exportToBed(object = myCAGEset, what = "tagClusters",
+ qLow = 0.1, qUp = 0.9, oneFile = TRUE)

In this gene-like representation (Figure @, the oriented line shows the full span of the
cluster, filled block marks the interquantile width and a single base-pair thick block
denotes the position of the dominant TSS.

Once the cumulative distributions and the positions of quantiles have been calculated,
the histograms of interquantile width can be plotted to globally compare the promoter
width across different samples (Figure [7)):

> plotInterquantileWidth(myCAGEset, clusters = "tagClusters",
+ tpmThreshold = 3, qLow = 0.1, qUp = 0.9)

Significant difference in the promoter width might indicate global differences in the
modes of gene regulation between the two samples. The histograms can also help in
choosing an appropriate width threshold for separating sharp and broad promoters.

4.9 Creating consensus promoters across samples

Tag clusters are created for each sample individually and they are often sample-specific,
thus can be present in one sample but absent in another. In addition, in many cases
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Figure 6: Tag clusters visualization in the genome browser

tag clusters do not coincide perfectly within the same promoter region, or there might
be two clusters in one sample and only one larger in the other. To be able to compare
genome-wide transcriptional activity across samples and to perform expression profiling,
a single set of consensus clusters has to be created. This is done using aggregateTag-
Clusters function, which aggregates tag clusters from all samples into a single set of
non-overlapping consensus clusters:

> aggregateTagClusters (myCAGEset, tpmThreshold = 5,

+ qLow = 0.1, qUp = 0.9, maxDist = 100)

Tag clusters can be aggregated using their full span (from start to end) or using positions
of previously calculated quantiles as their boundaries. Only tag clusters above given
threshold will be selected and two clusters will be aggregated together if they are <=
maxDist apart. Final set of consensus clusters can be retrieved by:

> consensusCl <- consensusClusters(myCAGEset)
> head(consensusCl)

consensus.cluster chr start end strand
1 1 chrl7 26453631 26453737 +
2 2 chrl7 26564507 26564611 +
3 3 chrl7 26595636 26595805 +
4 4 chrl7 26596032 26596339 +
5 5 chrl17 26645154 26645516 +
6 6 chrl7 26651962 26652050 +
tpm
1 185.9678
2 318.3590
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Figure 7: Distribution of promoter interquantile width
3 1017.8475
4 307.5127
5 2844 .4560
6 71.0783

Analysis of promoter width can be performed for consensus clusters as well, using the cu-
mulativeCTSSdistribution, quantilePositions and plotInterquantileWidth func-
tions as described above for the tag clusters, but by setting the clusters parameter to
"consensusClusters".

4.10 Expression profiling

Since CAGE signal reflects level of transcription from a given TSS or promoter it can
be used for 5 centered expression profiling. Expression clustering can be done at level

18



of individual CTSSs or at level of entire promoters (consensus clusteres). In the former
case, feature vector containing log transformed and scaled normalized CAGE signal at
individual TSS across multiple samples is used as input for clustering algorithm, whereas
in the latter case CAGE signal within the entire consensus cluster is used. CAGEr pack-
age supports two unsupervised clustering algorithms: kmeans and self-organizing maps
(SOM). Both algorithms require to specify number of clusters in advance.

We will perform expression clustering at the level of entire promoter using SOM algo-
rithm and applying it only to promoters with normalized CAGE signal >= 15 in at
least one sample.

> getExpressionProfiles(myCAGEset, what = "consensusClusters', tpmThreshold = 10,
+ nrPassThreshold = 1, method = "som", xDim = 4, yDim = 2)

Distribution of expression across samples for 8 clusters returned by SOM (4 x 2 map)
can be visualized using plotExpressionProfiles function as shown in Figure

> plotExpressionProfiles(myCAGEset, what = "consensusClusters")
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Figure 8: Expression clusters
Each cluster is shown in different color and is marked by its label and the number of

elements (promoters) in the cluster. We can extract promoters belonging to a specific
cluster by typing:
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> class3_1 <- extractExpressionClass (myCAGEset,
+ what = "consensusClusters'", which = "3_1")
> head(class3_1)

consensus.cluster chr start end strand
17 17 chrl7 27293524 27293647 +
36 36 chrl7 28740675 28740728 +
39 39 chrl7 29335651 29335661 +
40 40 chr17 29378660 29378702 +
42 42 chrl17 29404735 29404741 +
46 46 chr17 30507619 30507641 +
tpm zf_unfertilized_egg zf_high zf_30p_dome
17 157.31373 0.00000 0.000000 0
36 49.48524 0.00000 5.072922 0
39 234.10350 23.65617 13.216882 0
40 11.99385 0.00000 0.000000 0
42 11.49493 0.00000 0.000000 0
46 18.65917 0.00000 0.000000 0
zf_prim6 expression_class
17 157.31373 3_1
36 44.41232 3_1
39 197.23045 3_1
40 11.99385 3_1
42 11.49493 3_1
46 18.65917 3_1

Consensus clusters and information on their expression profile can be exported to a
BED file, which allows visualization of the promoters in the genome browser colored in
the color of the expression cluster they belong to (Figure [9):

> exportToBed (myCAGEset, what = "consensusClusters",
+ colorByExpressionProfile = TRUE)

Expression profiling of individual T'SSs is done using the same procedure as described
above for consensus clusters, only by setting what parameter to "CTSS" in all of the
functions.

4.11 Shifting promoters

As shown in Figure [6], T'SSs within the same promoter region can be used differently in
different samples. Thus, although the overall transcription level from a promoter does
not change between the samples, the differential usage of T'SSs or "promoter shifting” may
indicate changes in the regulation of transcription from that promoter, which cannot be
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Figure 9: Consensus clusters colored by expression profile in the genome browser

detected by expression profiling. To detect this promoter shifting, a method described in
Haberle et al.| (2013) has been implemented in CAGEr. Shifting can be detected between
two individual samples or between two groups of samples. In the latter case, samples are
first merged into groups and then compared in the same way as two individual samples.
For all promoters a shifting score is calculated based on the difference in the cumulative
distribution of CAGE signal along that promoter in the two samples. In addition, a
more general assessment of differential T'SS usage is obtained by performing Kolmogorov-
Smirnov test on the cumulative distributions of CAGE signal, as described below. Thus,
prior to shifting score calculation and statistical testing, we have to calculate cumulative
distribution along all consensus clusters:

> cumulativeCTSSdistribution(myCAGEset, clusters = "consensusClusters")

Next, we calculate a shifting score and P-value of Kolmogorov-Smirnov test for all pro-
moters comparing two specified samples:

> scoreShift (myCAGEset, groupX = "zf_unfertilized_egg", groupY = "zf_prim6",
+ testKS = TRUE, useTpmKS = FALSE)

This function will calculate shifting score as illustrated in Figure [I0] Values of shifting
score are in range between -Inf and 1. Positive values can be interpreted as the proportion
of transcription initiation in the sample with lower expression that is happening "outside”
(either upstream or downstream) of the region used for transcription initiation in the
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other sample. In contrast, negative values indicate no physical separation, i.e. the
region used for transcription initiation in the sample with lower expression is completely
contained within the region used for transcription initiation in the other sample. Thus,
shifting score detects only the degree of upstream or downstream shifting, but does not
detect more general changes in TSS rearrangement in the region, e.g. narrowing or
broadening of the region used for transcription.
To assess any general change in the TSS usage within the promoter region, a two-
sample Kolmogorov-Smirnov (K-S) test on cumulative sums of CAGE signal along the
consensus cluster is performed. Cumulative sums in both samples are scaled to range
between 0 and 1 and are considered to be empirical cumulative distribution functions
(ECDF) reflecting sampling of TSS positions during transcription initiation. K-S test
is performed to assess whether the two underlying probability distributions differ. To
obtain P-value (i.e. the level at which the null-hypothesis can be rejected), sample sizes
that generated the ECDFs are required, in addition to actual K-S statistics calculated
from ECDF's. These are derived either from raw tag counts, i.e. exact number of times
each TSS in the cluster was sampled during sequencing (when useTpmKS = FALSE), or
from normalized tpm values (when useTpmKS = TRUE). P-values obtained from K-S tests
are further corrected for multiple testing using Benjamini and Hochenberg (BH) method
and for each P-value a corresponding false-discovery rate (FDR) is also reported.

We can select a subset of promoters with shifting score and/or FDR above specified

threshold:

shifting.promoters <- getShiftingPromoters (myCAGEset,
tpmThreshold = 5, scoreThreshold = 0.6,
fdrThreshold = 0.01)
head(shifting.promoters)

>
+
+
>

consensus.cluster chr start end strand

3 chri7
86 chril7
90 chril7

117 chril7
118 chri7
141 chri7

o O b W N -

26595636
33502377
33581353
37383273
37395387
39957522

shifting.score groupX.pos groupY

26595805
33502477
33581440
37383399
37395504
39957582

.pos groupX.tpm

O WN -

0.
0.6541964
0.6027427
0.
0
0

6659092

7452116

.6311793
.6971956
groupY.

tpm

26595750
33502454
33581374
37383277
37395410
39957572

pvalue.KS

26595709
33502378
33581407
37383375
37395468
39957550

fdr.KS

1 258.321380 0.000000e+00 0.000000e+00
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Figure 10: Calculation of shifting score

2 9.369801 1.350306e-05 2.591966e-05
3 15.107430 1.044059e-05 2.075689e-05
4 47.982965 4.894196e-12 1.634662e-11
5 134.501645 0.000000e+00 0.000000e+00
6 6.454123 1.656264e-03 2.659578e-03

The getShiftingPromoters function returns genomic coordinates, shifting score and
P-value (FDR) of the promoters, as well as the value of CAGE signal and position
of the dominant TSS in the two compared (groups of) samples. Figure shows the
difference in the CAGE signal between the two compared samples for one of the selected
high-scoring shifting promoters.
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Figure 11: Example of shifting promoter

5 Accessing public CAGE datasets

A data package, FANTOMS3and/CAGE, containing CAGE data produced by FANTOM
consortium is accompanying this package. For the full list and description of the available
datasets within this package and references to the original publications of the containing
data, please refer to the vignette of the corresponding package. In this vignette we will
only demonstrate how to include a user-selected subset of the provided datasets into
the CAGEr workflow. We will use CAGE data for various human tissues. To load the
corresponding data package type:

> library (FANTOM3and4CAGE)
Next, we load a list of available samples for human:

> data(FANTOMhumanSamples)
> head (FANTOMhumanSamples)

dataset group sample
1 FANTOMtissueCAGEhuman cerebrum cerebrum
2 FANTOMtissueCAGEhuman renal_artery renal_artery
3 FANTOMtissueCAGEhuman ureter ureter
4 FANTOMtissueCAGEhuman urinary_bladder urinary_bladder
5 FANTOMtissueCAGEhuman kidney malignancy
6 FANTOMtissueCAGEhuman kidney kidney

We can see in the list that there is a single object named FANTOMtissueCAGEhuman that
contains all the data organized into groups by tissue type. To load this object we type:

> data (FANTOMtissueCAGEhuman)

Since this data was mapped to the hgl8 assembly of the human genome we have to load
the corresponding genome before we can use the data in CAGEr:

> library(BSgenome.Hsapiens.UCSC.hg18)

Once we have the required datasets in our working environment we can use the import-
PublicData function to import the desired samples into a CAGEset object. We have to
provide the source dataset and specify which samples from which groups do we want to
select:
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> myCAGEset <- importPublicData(dataset = FANTOMtissueCAGEhuman,
+ group = c("liver", "liver", "blood"),
+ sample = c("liver", "malignancy", "RCB-0806_Jurkat"))

This will select three samples: two originating from liver (normal liver and malignancy)
and one originating from blood (RCB-0806 Jurkat cell line) and import the information
on all CAGE detected T'SSs and raw tag count into a CAGEset object.

> myCAGEset

S4 Object of class CAGEset

Input data information

Reference genome (organism): BSgenome.Hsapiens.UCSC.hgl8

Input file type: FANTOM

Input file names: FANTOM__liver__liver, FANTOM__liver__malignancy, FANTOM__blood__RCB-(
Sample labels: liver__liver, liver__malignancy, blood__RCB-0806_Jurkat

CTSS information

CTSS chromosome: chrl, chrl, chril,
CTSS position: 557440, 559788, 559846,
CTSS strand: +, +, +,
Tag count:
-> liver__liver: 1, 1, 1,
-> liver__malignancy: 0, 0, 0, ...
-> blood__RCB-0806_Jurkat: 0, 0, O,
Normalized tpm:

Tag cluster (TC) information

CTSS clustering method:
Number of TCs per sample:

Consensus cluster information

Number of consensus clusters:
Consensus cluster chromosome:
Consensus cluster start:
Consensus cluster end:
Consensus cluster strand:
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Normalized tpm:

Expression profiling

Expression clustering method:
Expression clusters for consensus clusters:

Promoter shifting

GroupX:

GroupY:

Shifting scores:

KS p-values (FDR adjusted):

Returned CAGEset object can further be normally used in the CAGEr workflow as
described above, i.e. raw tag counts can be normalized, TSSs clustered, consensus
clusters created, etc.

6 Session Info
> sessionInfo()

R version 3.0.1 (2013-05-16)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] LC_CTYPE=C LC_NUMERIC=C
[3] LC_TIME=C LC_COLLATE=C
[5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] parallel stats graphics grDevices utils
[6] datasets methods Dbase

other attached packages:
[1] BSgenome.Hsapiens.UCSC.hg18_1.3.19
[2] FANTOM3and4CAGE_0.99.1
[3] BSgenome.Drerio.UCSC.danRer7_1.3.17
[4] CAGEr_1.2.9
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[5] BSgenome.Mmusculus.UCSC.mm9_1.3.19
[6] BSgenome_1.28.0

[7] Biostrings_2.28.0

[8] GenomicRanges_1.12.5

[9] IRanges_1.18.3

[10] BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] RCurl_1.95-4.1 Rsamtools_1.12.4
[3] VGAM_0.9-1 XML_3.98-1.1

[5] beanplot_1.1 bitops_1.0-6

[7] data.table_1.8.8 rtracklayer_1.20.4
[9] som_0.3-5 stats4_3.0.1

[11] tools_3.0.1 zlibbioc_1.6.0
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