Sample App - Mean Q-score per cycle

Adrian Alexa

March 12, 2013

aalexa@illumina.com

Contents
1 Introduction| 2
2 Authentication| 2
13 Accessing the datal 2
3.1 Browsing available projects| 3
3.2 Selecting samples|o e 4
8.3 Selecting and accessing files|o 6
4 Data crunching| 8
4.1 Plotting (Q-score statistics| 8
[6Storing the results| 9
P.1 Creating a new project|. L 9
b.2 Creating a new AppResult|. 10
[5.3 Uploading data/files| 12
6 Functions used| 13
[7__Session Informationl 14

1 Introduction

This document describes a simple working session using BaseSpaceR. For more details on the functions used
throughout this document please see the package main vignette - BaseSpaceR.

A typical BaseSpace session can be divided into the following steps:

e Client authentication
e Data retrieval and access
e Data processing
e Uploading results back to BaseSpace
In this sample session we’ll show how to explore the project and sample data, select the FASTQ file(s)

associated with the chosen sample, compute and plot Q-score statistics at each cycle, create an AppResults
instance and link the generated figure to it.

> library(BaseSpaceR)

2 Authentication

The first step is the authentication of the client application with the BaseSpace REST server. The authen-
tication and communication between the client and the server is handled by an AppAuth instance. There
are two ways to create an AppAuth instance. The easiest is to provide a pre-generated access token, see help
for AppAuth and the main vignette for more details on this. Assuming the user has access to such a token,
stored as a character string in app_access_token variable, the handler can be created as follows:

> aluth <- AppAuth(access_token = app_access_token)
> aAuth

Object of class "AppAuth" with:

Client Id:
Client Secret:

Server
URL: https://api.basespace.illumina.com
Version: vipre3

Authorized: TRUE

If the access token is valid then the connection with the server is established and we can see it by printing
the AppAuth object (Authorized: TRUE).

One can also use the OAuth2 authentication process, but in this case user interaction is required. Authen-
tication through the OAuth2 process is out of the scope of this document and we’ll not show it here.

Please note that for the purpose of this document one needs an access token with the following scope:
create projects, write global

3 Accessing the data

Now that our client App is authenticated with the server we can start exploring the data. One of the first
steps is to inspect the resources available to the user under the current scope (associated with the access
token).

3.1 Browsing available projects

Let’s assume we need to browse all the projects accessible to the user. We can do this using the 1istPro-
jects() method.

> myProj <- listProjects(aAuth)
> myProj

ProjectsSummary object:
Collection with 3 projectItem objects (out of a total of 3 objects).

{
"I4" . "2",
"Name" : "BaseSpaceDemo",
"Href" : "vlpre3/projects/2",
"DateCreated" : "2012-08-19T21:14:57.0000000",
"UserOwnedBy" : {
"Id" : "1001",
"Href" : "vlpre3/users/1001",
"Name" : "Illumina Inc",
"GravatarUrl" : "https://secure.gravatar.com/avatar/0646200388a465f27694d67b7aaea7cc
¥
}
{
"I4q" . "12",
"Name" : "ResequencingPhixRun",
"Href" : "vlpre3/projects/12",
"DateCreated" : "2012-08-19T21:14:57.0000000",
"UserOwnedBy" : {
"I4" : "1001",
"Href" : "vlpre3/users/1001",
"Name" : "Illumina Inc",
"GravatarUrl" : "https://secure.gravatar.com/avatar/0646200388a465£27694d67b7aaea7cc
}
}
{
"Id" : "148150",
"Name" : "My Project X",
"Href" : "vlpre3/projects/148150",
"DateCreated" : "2012-11-08T13:20:30.0000000",
"UserOwnedBy" : {
"Id" : "660666",
"Href" : "vipre3/users/660666",
"Name" : "Adrian Alexa",
"GravatarUrl" : "https://secure.gravatar.com/avatar/2ca61f7edbd417b45780c8£849622559
}
}

For this instance there are 3 projects available to the user. From the returned object we can get the names
and ids of the available projects.

> data.frame(Name = Name(myProj), Id = Id(myProj))

Name Id
1 BaseSpaceDemo 2
2 ResequencingPhixRun 12
4 My Project X 148150

For each available project we can get more detailed information. Let’s assume we are interested in project
BaseSpaceDemo (with Id = 2) for which we want to analyze the Q-score distribution of the reads. We can
select it using the Projects() method and the ID of the project(s) of interest.

> selProj <- Projects(adAuth, id = 2, simplify = TRUE)
> selProj

Projects object:

{
"HrefSamples" : "vlpre3/projects/2/samples",
"HrefAppResults" : "vipre3/projects/2/appresults",
"Id" . "2",
"Name" : "BaseSpaceDemo",
"Href" : "vlpre3/projects/2",
"DateCreated" : "2012-08-19T21:14:57.0000000",
"UserOwnedBy" : {
"Id" : "1001",
"Href" : "vlpre3/users/1001",
"Name" : "Illumina Inc",
"GravatarUrl" : "https://secure.gravatar.com/avatar/0646200388a465f27694d67b7aaea7cc
1,
"HrefBaseSpaceUI" : "https://basespace.illumina.com/project/2/BaseSpaceDemo"
}

3.2 Selecting samples

Once we have decided the project we want to work on, we can browse the samples associated with it. We
can list all the samples or we can limit the search to a specific number of samples. This can be achieved
using the Limit query parameter.

> sampl <- listSamples(selProj, Limit = 1)
> sampl

SamplesSummary object:
Collection with 1 sampleItem objects (out of a total of 12 objects).

{
"SampleId" : "BC_1",
"Id" : "16018",
"Name" : "BC_1",
"Href" : "vlipre3/samples/16018",
"DateCreated" : "2012-01-14T03:04:36.0000000",
"UserOwnedBy" : {
"Id" : "1001",
"Href" : "vlpre3/users/1001",
"Name" : "Illumina Inc",
"GravatarUrl" : "https://secure.gravatar.com/avatar/0646200388a465f27694d67b7aaea7cc
},
"Status" : "Complete"
}

The same result can be achieved by querying directly the aAuth handler and specifying the project ID.
> listSamples(aAuth, projectld = Id(selProj), Limit = 1)

SamplesSummary object:
Collection with 1 sampleltem objects (out of a total of 12 objects).

{
"SampleId" : "BC_1",
"Id" : "16018",
IlNaInell . IIBC_l n s

"Href" : "vlpre3/samples/16018",

"DateCreated" : "2012-01-14T03:04:36.0000000",
"UserOwnedBy" : {
"Id" : "1001",
"Href" : "vipre3/users/1001",
"Name" : "Illumina Inc",
"GravatarUrl" : "https://secure.gravatar.com/avatar/0646200388a465f27694d67b7aaea7cc
1},
"Status" : "Complete"

There are a total of 12 samples associated with this project, and the listed sample (given that we restricted
the result to one sample) has the ID 16018. We can get more information on this sample by calling the
Samples () method with the aAuth handler and the sample ID as argument or just by calling it using the
sampl object.

> inSample <- Samples(aAuth, id = Id(sampl), simplify = TRUE)
> identical(inSample, Samples(sampl, simplify = TRUE))

[1] TRUE
> inSample

Samples object:

{
"SampleNumber" : 1,
"ExperimentName" : "BacillusCereus",
"HrefFiles" : "vlpre3/samples/16018/files",
"AppSession" : {
"Id" : "f5c152df3fb41dbf9dac94cc7d7bOffa",
"Href" : "vlpre3/appsessions/f5c152df3fb41dbf9dac94cc7d7b0ffa",
"UserCreatedBy" : {
"Id" : "1001",
"Href" : "vipre3/users/1001",
"Name" : "Illumina Inc",
"GravatarUrl" : "https://secure.gravatar.com/avatar/0646200388a465f27694d67Db
1,
"Status" : "Complete",
"StatusSummary" : "",
"DateCreated" : "2012-01-14T01:02:07.0000000"
1,
"IsPairedEnd" : true,
"Readl" : 151,
"Read2" : 140,

"NumReadsRaw" : 1143322,
"NumReadsPF" : 1117752,

"SampleId" : "BC_1",
"Id" : "16018",
"Name" : "BC_1",
"Href" : "vlpre3/samples/16018",
"DateCreated" : "2012-01-14T03:04:36.0000000",
"UserOwnedBy" : {
"Id" : "1001",
"Href" : "vlpre3/users/1001",
"Name" : "Illumina Inc",
"GravatarUrl" : "https://secure.gravatar.com/avatar/0646200388a465f27694d67b7aaea7cc
1,
"Status" : "Complete"

As we can see, the inSample object contains detailed information on the selected sample. For example, the
NumReadsRaw entry contains the number of read pairs available in the chosen sample. We can access each
entry in the Samples resource using the >$’ operator. Please note that the access operator ’$’, works for
every Response object.

> inSample$NumReadsRaw

[1] 1143322

3.3 Selecting and accessing files

We can now access the files linked to the selected sample. To browse the files we use the listFiles()
function. We are interested in the FASTQ files.

> f <- listFiles(inSample, Extensions = ".gz")
> length(f)

[11 6
> f

FilesSummary object:
Collection with 6 fileItem objects (out of a total of 6 objects).

{
"Size" : 7493990,
"Path" : "data/intensities/basecalls/s_G1_L001_I1_001.fastq.1l.gz",
"ContentType" : "application/octet-stream",
"Id" : "b3b5642",
"Name" : "s_G1_L001_I1_001.fastq.1l.gz",
"Href" : "vipre3/files/535642",
"DateCreated" : "2012-01-14T03:04:36.0000000"
¥
{
"Size" : 7525743,
"Path" : "data/intensities/basecalls/s_G1_L001_I1_002.fastq.l.gz",
"ContentType" : "application/octet-stream",
"Id" : "b35643",
"Name" : "s_G1_L001_I1_002.fastq.1l.gz",
"Href" : "vipre3/files/535643",
"DateCreated" : "2012-01-14T03:04:36.0000000"
X
{
"Size" : 43480033,
"Path" : "data/intensities/basecalls/s_G1_LOO1_R1_001.fastq.1l.gz",
"ContentType" : "application/octet-stream",
"Id" : "535644",
"Name" : "s_G1_LOO1_R1_001.fastq.1l.gz",
"Href" : "vipre3/files/535644",
"DateCreated" : "2012-01-14T03:04:36.0000000"
¥
{
"Size" : 43895096,
"Path" : "data/intensities/basecalls/s_G1_LOO1_R1_002.fastq.1l.gz",
"ContentType" : "application/octet-stream",
"Id" : "535645",
"Name" : "s_G1_LOO1_R1_002.fastq.1l.gz",

"Href" : "vlpre3/files/535645",

"DateCreated" : "2012-01-14T03:04:36.0000000"

X
{
"Size" : 42679020,
"Path" : "data/intensities/basecalls/s_G1_LOO1_R2_001.fastq.1l.gz",
"ContentType" : "application/octet-stream",
"Id" : "535646",
"Name" : "s_G1_LOO1_R2_001.fastq.1l.gz",
"Href" : "vipre3/files/535646",
"DateCreated" : "2012-01-14T03:04:36.0000000"
3
{
"Size" : 43104726,
"Path" : "data/intensities/basecalls/s_G1_L001_R2_002.fastq.1l.gz",
"ContentType" : "application/octet-stream",
"Id" : "b535647",
"Name" : "s_G1_LOO1_R2_002.fastq.1.gz",
"Href" : "vipre3/files/535647",
"DateCreated" : "2012-01-14T03:04:36.0000000"
X

The R API is design such that the user can use any query parameters implemented by the REST API. Here
we selected just the *.gz files, which in the context of the Samples resource these are only FASTQ files.

The Path element gives us the relative location of the file(s). We can use this to uniquely identify the files.

> ## full location of the files

> f$Path

[1] "data/intensities/basecalls/s_G1_L001_I1_001.fastq.1l.gz"
[2] "data/intensities/basecalls/s_G1_L001_I1_002.fastq.1l.gz"
[3] "data/intensities/basecalls/s_G1_L0O01_R1_001.fastq.1.gz"
[4] "data/intensities/basecalls/s_G1_L001_R1_002.fastq.l.gz"
[6] "data/intensities/basecalls/s_G1_LO01_R2_001.fastq.1l.gz"
[6] "data/intensities/basecalls/s_G1_LO01_R2_002.fastq.1l.gz"

We further select the fastq files that contain only R1 or R2 in their name.
> idx <- grep("_R(1/2)_", Name(f))
We can therefore download the selected file(s) to a local directory preserving the path information.

> outDir <- paste("Sample", Id(inSample), sep = "_")
> floc <- file.path(outDir, f$Path[idx])

> names(floc) <- basename(floc)

> floc

s_G1_LOO1_R1_001.fastq.l.gz
"Sample_16018/data/intensities/basecalls/s_G1_LOO1_R1_001.fastq.1l.gz"
s_G1_LOO1_R1_002.fastq.1l.gz
"Sample_16018/data/intensities/basecalls/s_G1_LOO1_R1_002.fastq.1.gz"
s_G1_LOO1_R2_001.fastq.1l.gz
"Sample_16018/data/intensities/basecalls/s_G1_LO01_R2_001.fastq.1l.gz"
s_G1_LOO1_R2_002.fastq.1l.gz
"Sample_16018/data/intensities/basecalls/s_G1_LO01_R2_002.fastq.1l.gz"

Next we download the selected file(s) to the outDir (this might take a while, depending on the number of
files selected and the speed of the connection). Method getFiles() is used for downloading the data stream.

> getFiles(aAuth, id = Id(f)[idx], destDir = outDir, verbose = FALSE)
We can quickly check if the files were downloaded:

> file.exists(floc)

[1] TRUE TRUE TRUE TRUE

4 Data crunching

To compute the average Q-scores at each cycle we need to read the FASTQ file in R and extract the base
qualities for each read. The Bioconductor ShortRead library offers tools for this. The functions used in this
computation, getQscoreCounts () and getQscoreStats() are shown in Section [f]

> library(ShortRead)
> qtab <- lapply(floc, getQscoreCounts)

One can use the parallel package and the mclapply function to compute qtab. This is a perfect scenario
for batch processing since we perform the computation on each FASTQ file separately.

> library(parallel)
> gtab <- mclapply(floc, getQscoreCounts, mc.cores = length(floc))

If the read pairs are spread across multiple FASTQ files, we have to aggregate the counts for both R1 and
R2.

TRUE)
TRUE)

idxR1 <- grep("_R1_", names(floc), fixed

idxR2 <- grep("_R2_", names(floc), fixed

if (length(idxR1) != length(idxR2))
stop("Missing files for R1 or R2")

x <- getQscoreStats(cbind (Reduce("+", qtab[idxR1]), Reduce("+", qtab[idxR2])))

vV + Vv VvV

We can quickly inspect the computed statistics:

> head(x)

5% median 95% mean
[1,1 30 34 34 32.80311
[2,] 30 34 34 32.97502
[3,]1 30 34 34 33.03821
[4,] 35 37 37 36.46075
[6,]1 35 37 37 36.39961
[6,] 35 37 37 36.39945

4.1 Plotting Q-score statistics

We can now generate a simple plot summarizing the Q-score distribution. We save the graph into a local
.png file such that we can later upload this file to BaseSpace.

> ylim <- range(x) + c(-2L, 2L)

> gfile <- file.path(tempdir(), "Qscore_per_cycle.png")

> png(file = gfile, width = 1000, height = 500, bg = "transparent")
> plot(x = seq_len(nrow(x)), type = "n", ylim = ylim,

+ xlab = "Cycle", ylab = "QJ-score",

vV + + Vv VVV +V VYV +

Q-score

5

main = "Q-scores statistics")

sx <- apply(x[, c("57", "95%")], 2, function(x) smooth.spline(x)$y)
sx[, "95}"] <- pmax(sx[, "95%4"], x[, "median"])
polygon(c(1L:nrow(x), nrow(x):1L), c(sx[, "95%"], rev(sx[, "5%"1)),

col = "#CCEBC580", border = NA)
matpoints(sx, type = "1", lwd = .5, 1ty = 2, col = "black")
lines(x[, "mean"], 1lwd = 2, col = "red")
lines(x[, "median"], lwd = 2, col = "black")
legend("bottomleft", col = c("black", "red", "#CCEBC580"),

lwd = 10, inset = c(.05, .01), cex = 1.2, bty = "n",

legend = c("Median", "Mean", "5J, - 95}"))
dev.off ()

Q-scores statistics

r?; -
8 -

10
|

- |\ledian
e \ean
5% - 95%

0 50 100 150 200

Cycle

Figure 1: Mean Q-score at each cycle. The shaded region gives the 5% and 95% bands.

Storing the results

250

300

In this section we show how to store the analysis results back in BaseSpace. In this example we’ll just keep
the PNG figure, but we could store any type of file/data if necessary.

To do this we first need to create a new AppResults instance (possibly under the current project if we have
permission to add results to it). Here we assume that we don’t have permission to modify the project from
where we read the samples. So we’ll have to create a new project, associate the samples used with it and

upload the analysis results.

5.

To create a new project we use the createProject () method. In this process it is a good practice to check

1 Creating a new project

whether a project with the same name already exists.

> pname <- "Test Apps"
> ## shows the name of all projects the user can see
> Name (myProj)

[1] "BaseSpaceDemo" "ResequencingPhixRun" "My Project 1" "My Project X"
[6] "Test Apps"

> idx <- which(Name (myProj) 7inj, pname)

> projId <- if(length(idx) == OL) {

+ Id(createProject (aAuth, name = pname))
+ } else {

+ Id(myProj) [idx]

+ }

We can take a closer look at the (newly created) project

> newProj <- Projects(aAuth, id = projId, simplify = TRUE)
> newProj

Projects object:

{
"HrefSamples" : "vlpre3/projects/206206/samples",
"HrefAppResults" : "vlpre3/projects/206206/appresults",
"Id" : "206206",
"Name" : "Test Apps",
"Href" : "vlpre3/projects/206206",
"DateCreated" : "2012-11-22T15:53:49.0000000",
"UserOwnedBy" : {
"Id" : "660666",
"Href" : "vlpre3/users/660666",
"Name" : "Adrian Alexa",
"GravatarUrl" : "https://secure.gravatar.com/avatar/2ca61f7edbd417b45780c8£849622559
.
"HrefBaseSpaceUI" : "https://basespace.illumina.com/project/206206/Test Apps"
3

If this project was created before, most likely there are AppResults associated with it. We can browse the
existing results within this project using the 1istAppResults() method.

> listAppResults(newProj)

AppResultsSummary object:
Collection with 1 appResultItem objects (out of a total of 1 objects).

{

"Id" : "691691",
"Name" : "Q-score dsitribution",
"Href" : "vlpre3/appresults/691691",
"DateCreated" : "2013-03-07T10:14:47.0000000",
"UserOwnedBy" : {

"Id" : "660666",

"Href" : "vlpre3/users/660666",

"Name" : "Adrian Alexa",

"GravatarUrl" : "https://secure.gravatar.com/avatar/2ca61f7edbd417b45780c8£849622559
1,
"Status" : "Complete"

5.2 Creating a new AppResult

We next need to create a new AppResults instance which will hold our analysis data. To do this we create
a JSON object with a well defined set of fields (see Writing back to BaseSpace for more details).

> ar <- list(Name = "@-score dsitribution",

+ Description = "Simple stats on the (-score at each cycle.",
+ "References" = list(Rel = "using",
+ HrefContent = Href (inSample)))

> cat(toJSON(ar, pretty = TRUE))

{
"Name" : "Q-score dsitribution",
"Description" : "Simple stats on the Q-score at each cycle.",
"References" : {
"Rel" : "using",
"HrefContent" : "vlpre3/samples/16018"
}
}

We are now ready to create the AppResults instance.

> newResult <- createAppResults(newProj, value = toJSON(ar))

AppResults:
{
"Name": "Q-score dsitribution",
"Description": "Simple stats on the Q-score at each cycle.",
"References": {
"Rel": "using",
"HrefContent": "vipre3/samples/16018"
}
}

successfully created. Assigned Id: 710710

If the user doesn’t have write access to the current project, then the newResult object will be NULL and
an error message from the REST server will be shown to the user. In this case we can launch the OAuth2
process with the required scope and prompt the user (this requires the user interacting with a web browser).

> if(is.null (newResult)) {
+ initializeAuth(aAuth, scope = paste("write project", projId))
+ requestAccessToken (aAuth)

+ }

Assuming that we have the proper permissions, we can inspect the newly created AppResults instance
associated with our project.

> listAppResults (newProj)

AppResultsSummary object:
Collection with 2 appResultItem objects (out of a total of 2 objects).

{
"Id" : "691691",
"Name" : "Q-score dsitribution",
"Href" : "vlpre3/appresults/691691",
"DateCreated" : "2013-03-07T10:14:47.0000000",
"UserOwnedBy" : {
"Id" : "660666",
"Href" : "vlpre3/users/660666",
"Name" : "Adrian Alexa",
"GravatarUrl" : "https://secure.gravatar.com/avatar/2ca61f7edbd417b45780c8£849622559

"Status" : "Complete"

}
{
"I4" : "710710",
"Name" : "Q-score dsitribution",
"Href" : "vlpre3/appresults/710710",
"DateCreated" : "2013-03-08T12:09:13.0000000",
"UserOwnedBy" : {
"Id" : "660666",
"Href" : "vlpre3/users/660666",
"Name" : "Adrian Alexa",
"GravatarUrl" : "https://secure.gravatar.com/avatar/2ca61f7edbd417b45780c8£849622559
1,
"Status" : "Running"
¥

Please note that at this stage the status of the AppResults instance is set to Running.

5.3 Uploading data/files

The function used for data/file uploads is putFiles(). At the moment this function implements only the
POST method. Multiple file uploads will be soon supported using the same interface.

To upload the PNG file we need to specify the AppResults ID and the file location on the disk.
> newFile <- putFiles(aAuth, resultld = Id(newResult), fIn = gfile)
File: 'Qscore_per_cycle.png' successfully uploaded! Assigned Id: 64259636

If the above command succeeds, the file is uploaded to BaseSpace and a new Files instance is created for
this file.

> newFile

Files object:

{
"UploadStatus" : "complete",
"HrefContent" : "vlpre3/files/64259636/content",
"Size" : 39644,
"Path" : "Qscore_per_cycle.png",
"ContentType" : "application/octet-stream",
"Id" : "64259636",
"Name" : "Qscore_per_cycle.png",
"Href" : "vipre3/files/64259636",
"DateCreated" : "2013-03-08T12:09:14.3298323Z"
b

We can check the UploadStatus given by the newFile and if this is set to Complete, we can then finalize
the session.

> if(newFile$UploadStatus != "complete")

+ stop("Problem upload the result ...")

> ## delete the PNG file from the local storage
> unlink(gfile)

To finalize the session we use the updateAppSessions() method to set the status of the AppSessions to
Complete.

Get the session Id

sessionId <- Id(AppSessions(newResult))

Complete the session

invisible (updateAppSessions (aAuth, id = sessionld, status = "complete"))

vV V. Vv VvV

App statuts successfully updated. New status: Complete

If updating the AppSessions is successful the user will receive a confirmation e-mail.

We can further inspect the AppResults to check if the status is properly set.

> myResults <- listAppResults(newProj)
> myResults

AppResultsSummary object:
Collection with 2 appResultItem objects (out of a total of 2 objects).

{
"Id" : "691691",
"Name" : "Q-score dsitribution",
"Href" : "vlpre3/appresults/691691",
"DateCreated" : "2013-03-07T10:14:47.0000000",
"UserOwnedBy" : {
"Id" : "660666",
"Href" : "vipre3/users/660666",
"Name" : "Adrian Alexa",
"GravatarUrl" : "https://secure.gravatar.com/avatar/2ca61f7edbd417b45780c8£849622559
1,
"Status" : "Complete"
¥
{
"Id" : "710710",
"Name" : "Q-score dsitribution",
"Href" : "vlpre3/appresults/710710",
"DateCreated" : "2013-03-08T12:09:13.0000000",
"UserOwnedBy" : {
"Id" : "660666",
"Href" : "vlpre3/users/660666",
"Name" : "Adrian Alexa",
"GravatarUrl" : "https://secure.gravatar.com/avatar/2ca61f7edbd417b45780c8£849622559
3,
"Status" : "Complete"
}

> Status(myResults)

[1] "Complete" "Complete"

6 Functions used

Bellow are the functions used for computing the Q-score statistics in Section We use the readFastq()
function to read the FASTQ files and quality() to extract the base qualities.

> getQscoreCounts <- function(fIn, maxS = 42L) {

+ ## read the fastq file and keep the qualities

+ r <- quality(quality(readFastq(fIn, withIds = FALSE)))
+ r_row <- width(r)[[1L]]

+ r_col <- length(r)

+

+ ## transorm the qualities to integers from 2 to maxS
+ x <- as.integer(unlist(r, use.names = FALSE)) - 33L
+ dim(x) <- c(r_row, r_col)

+

+ ## tabulate each row in the matrix

+ qtab <- matrix(OL, nrow = maxS, ncol = r_row,

+ dimnames = list(paste0("Q", seq_len(maxS)), NULL))
+ for(i in seq_len(r_row))

+ qtab[, i] <- tabulate(x[i,], nbins = maxS)

+

+ return(qtab)

+ 7}

> getQscoreStats <- function(x) {
+ nr <- nrow(x)

+ nc <- ncol(x)

+ gstat <- matrix(OL, nrow
+ dimnames
+ rleval <- seq_len(ar)

+ for(i in seq_len(nc)) {
+
+
+
+
+
+

nc, ncol = 4L,
1ist(NULL, c("5)", "median", "95)", '"mean")))

r <- Rle(values = rleval, lengths = x[, i])
c(0.05, .5, 0.95)), mean(r))

gstat[i,] <- c(quantile(r, probs
}

return(gstat)
}

7 Session Information

The version number of R and packages loaded for generating the vignette were:

R version 2.15.2 (2012-10-26), x86_64-unknown-1linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_GB.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=en_GB.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=en_GB.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, graphics, grDevices, methods, stats, utils

e Other packages: BaseSpaceR 0.98.2, BiocGenerics 0.4.0, Biostrings 2.26.3, bitops 1.0-5,
GenomicRanges 1.10.6, IRanges 1.16.5, lattice 0.20-13, latticeExtra 0.6-24, RColorBrewer 1.0-5,
RCurl 1.95-3, RJSONIO 1.0-1, Rsamtools 1.10.2, ShortRead 1.16.3

e Loaded via a namespace (and not attached): Biobase 2.18.0, grid 2.15.2, hwriter 1.3, parallel 2.15.2,
statsd 2.15.2, tools 2.15.2, zlibbioc 1.4.0

	Introduction
	Authentication
	Accessing the data
	Browsing available projects
	Selecting samples
	Selecting and accessing files

	Data crunching
	Plotting Q-score statistics

	Storing the results
	Creating a new project
	Creating a new AppResult
	Uploading data/files

	Functions used
	Session Information

