AnnotationHub: A client package for retrieving
data from the AnnotationHub web service

Marc Carlson

August 1, 2013

1 AnnotationHub Obj ects

The AnnotationHub package provides a client interface to resources stored
at the AnnotationHub web service.

> library(AnnotationHub)

The AnnotationHub package is straightforward to use. The 1st thing
you need to do to make use of it is to create an AnnotationHub object like
this:

> ah = AnnotationHub()

Now at this point you have already done everything you need in order
to get annotations. If you know exactly what the resource you want is
called (and where it can be found), you could get it right now by just tab
completing to it using the $ operator.
Lets suppose that you knowd the following is the path to your data:
ah$goldenpath.hgl9.encodeDCC.wgEncodeUuwTfbs . wgEncodeUwTfbsMcf7CtcfStdPkRepl.
narrowPeak_0.0.1.RData
Simply tab completing to the above path (followed by hitting enter),
as demonstrated below will actually retrieve an object and then assign its
contents to a local variable called res.

> res <- ah$goldenpath.hgl9.encodeDCC.wgEncodeUwTtbs.wgEncodeUwTfbsMcf7CtcfStdPkRepl.

As you can see it’s pretty easy to get data out using AnnotationHub
objects. The rest of this vignette is mostly about helping you to make sure
you are accessing the version of AnnotationHub objects that you intend to
use and also about making sure that you can filter down the huge number
of objects to the few that you are really interested in.

ah$goldenpath.hg19.encodeDCC.wgEncodeUwTfbs.wgEncodeUwTfbsMcf7CtcfStdPkRep1.narrowPeak_0.0.1.RData
ah$goldenpath.hg19.encodeDCC.wgEncodeUwTfbs.wgEncodeUwTfbsMcf7CtcfStdPkRep1.narrowPeak_0.0.1.RData

2 Conﬁguring AnnotationHub objects

When you create the AnnotationHub object, it will set up the object for you
with some default settings. If you look at the object you will see some helpful
information about it.

> ah

class: AnnotationHub

length: 7553

filters: none

hubUrl: http://annotationhub.bioconductor.org/ah
snapshotVersion: 2.12; snapshotDate: 2013-04-05
hubCache: /home/biocbuild/.AnnotationHub

By default, you can see that the AnnotationHub object is set to the latest
snapshotData and a snapshot version that matches the version of Biocon-
ductor that you are using. You can also learn about these data with the
appropriate methods.

> snapshotVersion (ah)
[1] "2.12"

> snapshotDate (ah)
[1] "2013-04-05"

If you are interested in using an older version of a snapshot, you can list
previous versions with the possibleDates like this:

> pd <- possibleDates(ah)
> pd

[1] "2013-03-20" "2013-03-21" "2013-03-22" "2013-03-27" "2013-04-05"
And then you can set the dates like this:

> snapshotDate(ah) <- pd[1]

3 Exploring and setting filters for annotationtub

If you are interested in how many annotation resources are currently avail-
able for your AnnotationHub object, you can just take the length like this:

> length(ah)
[1] 7553

Similarly, there are also methods to show the resource names, or even
the full set of resource URLs for available resources.

> names <- head(names(ah),n=1)
> names

ensembl.release.69.fasta.ailuropoda_melanoleuca.cdna.Ailuropoda_
melanoleuca.ailMell.69.cdna.all.fa.rz

> urls <- head(snapshotUrls(ah),n=1)
> urls

http://annotationhub.bioconductor.org/ah/ensembl/release-69/fasta/
ailuropoda_melanoleuca/cdna/Ailuropoda_melanoleuca.ailMell.69.cdna.
all.fa.rz

For humans, the number of resources available is going to be overwhelm-
ing. How should we cut this data set down to size? For this task, we
introduce filters. Every AnnotationHub object contains a list of filters that
can be configured to control which resources it can return. By default this
list is empty, which means you get everything.

> filters(ah)
list()

How can we learn which things are available for filtering? For this we
have defined cols and keytypes methods, which will list all the kinds of
data that can be filtered on.

> cols(ah)

ensembl.release.69.fasta.ailuropoda_melanoleuca.cdna.Ailuropoda_melanoleuca.ailMel1.69.cdna.all.fa.rz
ensembl.release.69.fasta.ailuropoda_melanoleuca.cdna.Ailuropoda_melanoleuca.ailMel1.69.cdna.all.fa.rz
http://annotationhub.bioconductor.org/ah/ensembl/release-69/fasta/ailuropoda_melanoleuca/cdna/Ailuropoda_melanoleuca.ailMel1.69.cdna.all.fa.rz
http://annotationhub.bioconductor.org/ah/ensembl/release-69/fasta/ailuropoda_melanoleuca/cdna/Ailuropoda_melanoleuca.ailMel1.69.cdna.all.fa.rz
http://annotationhub.bioconductor.org/ah/ensembl/release-69/fasta/ailuropoda_melanoleuca/cdna/Ailuropoda_melanoleuca.ailMel1.69.cdna.all.fa.rz

[1]
(4]
[7]
[10]
[13]
[16]
[19]
[22]

"BiocVersion"

"Description"
"RDataClass"
"RDataPath"
"Recipe"
"SourceSize"
"Species"
"Title"

> keytypes (ah)

[1]
(4]
(7]
[10]
[13]
[16]
[19]
[22]

"BiocVersion"
"Description"
"RDataClass"
"RDataPath"
"Recipe"
"SourceSize"
"Species"
"Title"

"Coordinate_1_based"
"Genome"
"RDataDateAdded"
"RDataSize"
"RecipeArgs"
"SourceUrl"

"Tags"

"Coordinate_1_based"
"Genome"
"RDataDateAdded"
"RDataSize"
"RecipeArgs"
"SourceUrl"

n Tags n

"DataProvider"
"Maintainer"
"RDatalLastModifiedDate"
"RDataVersion"
"SourceFile"
"SourceVersion"
"TaxonomyId"

"DataProvider"
"Maintainer"
"RDatalLastModifiedDate"
"RDataVersion"
"SourceFile"
"SourceVersion"
"TaxonomyId"

Once we know which things can be used to filter on, we can extract
values that these things can be required to match. For this task, we have

defined a key method.

> head (keys(ah, keytype="Species"))

(1]

[4] "Apis mellifera"

"Ailuropoda melanoleuca" "Anolis carolinensis"
"Aplysia californica"

"Anopheles gambiae"
"Bos taurus"

Now we are able to construct and assign a filter to our AnnotationHub
object. Lets set it up to only find resources from humans.

> filters(ah) <- list(Species="Homo sapiens")

And now if we look we will see that our AnnotationHub object is only
exposing resources from Homo sapiens.

> length(ah)

[1] 5008

> names <- head(names(ah),n=1)

> names

goldenpath.hgl9.encodeDCC.wgEncodeCshlShortRnaSeq.wgEncodeCshlShortRnaSeqK562Chrom
bedRnaElements_0.0.1.RData

> urls <- head(snapshotUrls(ah),n=1)
> urls

http://annotationhub.bioconductor.org/ah/goldenpath/hgl9/encodeDCC/
wgEncodeCshlShortRnaSeq/wgEncodeCshlShortRnaSeqK5662ChromatinShorttotalTapContigs.
bedRnaElements_0.0.1.RData

4 Using annotationtub to retrieve data

So now that we have our AnnotationHub object configured to expose only
the data for humans how would we go about getting that data downloaded?
As mentioned above, we can use the $ operator and tab completion to pull
down a data source of interest like this
ah$goldenpath.hgl9.encodeDCC.wgEncodeUwTfbs . wgEncodeUwTfbsMcf7CtcfStdPkRepl.
narrowPeak_0.0.1.RData
Just by using tab completion like this:

> res <- ah$goldenpath.hgl9.encodeDCC.wgEncodeUwTtbs.wgEncodeUwTfbsMcf7CtcfStdPkRepl.

And once you have done this, you can look at the object stored in res
and use it etc.. Any dependencies that you need to use this kind of object
should automatically try to load at this time.

> res

GRanges with 82163 ranges and 6 metadata columns:

seqnames ranges strand I name score

<Rle> <IRanges> <Rle> | <character> <integer>

[1] chri [237640, 237790] x| 0

[2] chri (544660, 544810] x| 0

[3] chri [567480, 567630] x| 0

[4] chri [569820, 569970] x| 0

(5] chri [714200, 714350] x| 0
[82159] chrX [154764540, 154764690] x| . 0

goldenpath.hg19.encodeDCC.wgEncodeCshlShortRnaSeq.wgEncodeCshlShortRnaSeqK562ChromatinShorttotalTapContigs.bedRnaElements_0.0.1.RData
goldenpath.hg19.encodeDCC.wgEncodeCshlShortRnaSeq.wgEncodeCshlShortRnaSeqK562ChromatinShorttotalTapContigs.bedRnaElements_0.0.1.RData
http://annotationhub.bioconductor.org/ah/goldenpath/hg19/encodeDCC/wgEncodeCshlShortRnaSeq/wgEncodeCshlShortRnaSeqK562ChromatinShorttotalTapContigs.bedRnaElements_0.0.1.RData
http://annotationhub.bioconductor.org/ah/goldenpath/hg19/encodeDCC/wgEncodeCshlShortRnaSeq/wgEncodeCshlShortRnaSeqK562ChromatinShorttotalTapContigs.bedRnaElements_0.0.1.RData
http://annotationhub.bioconductor.org/ah/goldenpath/hg19/encodeDCC/wgEncodeCshlShortRnaSeq/wgEncodeCshlShortRnaSeqK562ChromatinShorttotalTapContigs.bedRnaElements_0.0.1.RData
ah$goldenpath.hg19.encodeDCC.wgEncodeUwTfbs.wgEncodeUwTfbsMcf7CtcfStdPkRep1.narrowPeak_0.0.1.RData
ah$goldenpath.hg19.encodeDCC.wgEncodeUwTfbs.wgEncodeUwTfbsMcf7CtcfStdPkRep1.narrowPeak_0.0.1.RData

[82160] chrX [154807400, 154807550] * | 0
[82161] chrX [154881060, 154881210] * | 0
[82162] chrX [154892100, 154892250] * | 0
[82163] chrX [154916040, 154916190] * | 0
signalValue pValue qValue peak
<numeric> <numeric> <numeric> <integer>
[1] 30 26.89200 -1 -1
[2] 6 8.16393 -1 -1
[3] 100 56.71760 -1 -1
[4] 85 49.65350 -1 -1
(5] 17 13.18360 -1 -1
[82159] 26 25.2917 -1 -1
[82160] 22 27.6521 -1 -1
[82161] 17 16.4194 -1 -1
[82162] 72 101.6090 -1 -1
[82163] 32 32.5209 -1 -1
seqlengths:
chri chri10 chriil chri2 ... chr8 chr9 chrX
249250621 135534747 135006516 133851895 ... 146364022 141213431 155270560

Also, since you have previously downloaded this object at the start of
this vignette, the 2nd time it should pull this object from a local cache that
AnnotationHub will have created for you. This is a feature of Annotation-
Hub that is meant to provide better performance by removing the need to
pull a large amount of data from a distant server every time. However,
this does not mean that once you have used AnnotationHub to retrieve data
that you no longer need to have internet access. This is because whenever
you create a AnnotationHub object, it needs to talk to the metadata server
to learn about things like the latest available version etc. So if you intend
to access your objects on the plane you will need to either save them to a
convenient location or else take note of where your local cache is located so
that you can load them up manually later.

5 Session Information

R version 3.0.1 (2013-05-16)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods

[8] base

other attached packages:
[1] AnnotationHub_1.0.2 IRanges_1.18.2 BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.22.6 Biobase_2.20.1 BiocInstaller_1.10.3
[4] DBI_0.2-7 GenomicRanges_1.12.4 RSQLite_0.11.4
[7] rjson_0.2.12 stats4_3.0.1 tools_3.0.1

	AnnotationHub Objects
	Configuring AnnotationHub objects
	Exploring and setting filters for AnnotationHub
	Using AnnotationHub to retrieve data
	Session Information

