
AnnotationDbi: Introduction To Bioconductor

Annotation Packages

Marc Carlson

June 4, 2013

GENE ID 

PLATFORM 
PKGS 

GENE ID 

ONTO ID’S 

ORG 
PKGS 

GENE ID 

ONTO ID 

TRANSCRIPT 
PKGS 

SYSTEM 
BIOLOGY 

(GO, KEGG) 

GENE ID 

HOMOLOGY 
PKGS 

Figure 1: Annotation Packages: the big picture

Bioconductor provides extensive annotation resources. These can be
gene centric, or genome centric. Annotations can be provided in packages
curated by Bioconductor, or obtained from web-based resources. This vi-
gnette is primarily concerned with describing the annotation resources that
are available as packages. More advanced users who wish to learn about how
to make new annotation packages should see the vignette titled ”Creating se-
lect Interfaces for custom Annotation resources” from the AnnotationForge
package.

Gene centric AnnotationDbi packages include:

� Organism level: e.g. org.Mm.eg.db.

1



� Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

� Homology level: e.g. hom.Dm.inp.db.

� System-biology level: GO.db

Genome centric GenomicFeatures packages include

� Transcriptome level: e.g. TxDb.Hsapiens.UCSC.hg19.knownGene

� Generic genome features: Can generate via GenomicFeatures

One web-based resource accesses biomart, via the biomaRt package:

� Query web-based ‘biomart’ resource for genes, sequence, SNPs, and
etc.

The most popular annotation packages have been modified so that they
can make use of a new set of methods to more easily access their contents.
These four methods are named: cols, keytypes, keys and select. And
they are described in this vignette. They can currently be used with all
chip, organism, and TranscriptDb packages along with the popular GO.db
package.

For the older less popular packages, there are still conventient ways to
retrieve the data. The How to use bimaps from the ”.db”annotation packages
vignette in the AnnotationDbi package is a key reference for learnign about
how to use bimap objects.

Finally, all of the ‘.db’ (and most other Bioconductor annotation pack-
ages) are updated every 6 months corresponding to each release of Biocon-
ductor. Exceptions are made for packages where the actual resources that
the packages are based on have not themselves been updated.

0.1 AnnotationDb objects and the select method

As previously mentioned, a new set of methods have been added that allow
a simpler way of extracting identifier based annotations. All the annotation
packages that support these new methods expose an object named exactly
the same as the package itself. These objects are collectively called Anntoa-
tionDb objects for the class that they all inherit from. The more specific
classes (the ones that you will actually see in the wild) have names like
OrgDb, ChipDb or TranscriptDb objects. These names correspond to the
kind of package (and underlying schema) being represented. The methods
that can be applied to all of these objects are cols, keys, keytypes and
select.

2

http://www.biomart.org/


0.2 ChipDb objects and the select method

An extremely common kind of Annotation package is the so called platform
based or chip based package type. This package is intended to make the
manufacturer labels for a series of probes or probesets to a wide range of
gene-based features. A package of this kind will load an ChipDb object.
Below is a set of examples to show how you might use the standard 4 methods
to interact with an object of this type.

First we need to load the package:

R> library(hgu95av2.db)

If we list the contents of this package, we can see that one of the many
things loaded is an object named after the package ”hgu95av2.db”:

R> ls("package:hgu95av2.db")

[1] "hgu95av2" "hgu95av2.db"

[3] "hgu95av2ACCNUM" "hgu95av2ALIAS2PROBE"

[5] "hgu95av2CHR" "hgu95av2CHRLENGTHS"

[7] "hgu95av2CHRLOC" "hgu95av2CHRLOCEND"

[9] "hgu95av2ENSEMBL" "hgu95av2ENSEMBL2PROBE"

[11] "hgu95av2ENTREZID" "hgu95av2ENZYME"

[13] "hgu95av2ENZYME2PROBE" "hgu95av2GENENAME"

[15] "hgu95av2GO" "hgu95av2GO2ALLPROBES"

[17] "hgu95av2GO2PROBE" "hgu95av2MAP"

[19] "hgu95av2MAPCOUNTS" "hgu95av2OMIM"

[21] "hgu95av2ORGANISM" "hgu95av2ORGPKG"

[23] "hgu95av2PATH" "hgu95av2PATH2PROBE"

[25] "hgu95av2PFAM" "hgu95av2PMID"

[27] "hgu95av2PMID2PROBE" "hgu95av2PROSITE"

[29] "hgu95av2REFSEQ" "hgu95av2SYMBOL"

[31] "hgu95av2UNIGENE" "hgu95av2UNIPROT"

[33] "hgu95av2_dbInfo" "hgu95av2_dbconn"

[35] "hgu95av2_dbfile" "hgu95av2_dbschema"

We can look at this object to learn more about it:

R> hgu95av2.db

ChipDb object:

| DBSCHEMAVERSION: 2.1

3



| Db type: ChipDb

| Supporting package: AnnotationDbi

| DBSCHEMA: HUMANCHIP_DB

| ORGANISM: Homo sapiens

| SPECIES: Human

| MANUFACTURER: Affymetrix

| CHIPNAME: Human Genome U95 Set

| MANUFACTURERURL: http://www.affymetrix.com/support/technical/byproduct.affx?product=hgu95

| EGSOURCEDATE: 2013-Mar5

| EGSOURCENAME: Entrez Gene

| EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

| CENTRALID: ENTREZID

| TAXID: 9606

| GOSOURCENAME: Gene Ontology

| GOSOURCEURL: ftp://ftp.geneontology.org/pub/go/godatabase/archive/latest-lite/

| GOSOURCEDATE: 20130302

| GOEGSOURCEDATE: 2013-Mar5

| GOEGSOURCENAME: Entrez Gene

| GOEGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA

| KEGGSOURCENAME: KEGG GENOME

| KEGGSOURCEURL: ftp://ftp.genome.jp/pub/kegg/genomes

| KEGGSOURCEDATE: 2011-Mar15

| GPSOURCENAME: UCSC Genome Bioinformatics (Homo sapiens)

| GPSOURCEURL: ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19

| GPSOURCEDATE: 2010-Mar22

| ENSOURCEDATE: 2013-Jan16

| ENSOURCENAME: Ensembl

| ENSOURCEURL: ftp://ftp.ensembl.org/pub/current_fasta

| UPSOURCENAME: Uniprot

| UPSOURCEURL: http://www.UniProt.org/

| UPSOURCEDATE: Thu Mar 7 17:01:43 2013

If we want to know what kinds of data are retriveable via select, then
we should use the cols method like this:

R> cols(hgu95av2.db)

[1] "PROBEID" "ENTREZID" "PFAM" "IPI"

[5] "PROSITE" "ACCNUM" "ALIAS" "CHR"

[9] "CHRLOC" "CHRLOCEND" "ENZYME" "MAP"

4



[13] "PATH" "PMID" "REFSEQ" "SYMBOL"

[17] "UNIGENE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

[21] "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[25] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL"

[29] "OMIM" "UCSCKG"

If we are further curious to know more about those values for cols, we
can consult the help pages. Asking about any of these values will pull up a
manual page describing the different fields and what they mean.

R> help("SYMBOL")

If we are curious about what kinds of fields we could potentiall use as
keys to query the database, we can use the keytypes method. In a perfect
world, this method will return values very similar to what was returned by
cols, but in reality, some kinds of values make poor keys and so this list is
often shorter.

R> keytypes(hgu95av2.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE"

[5] "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[9] "CHRLOCEND" "ENZYME" "MAP" "PATH"

[13] "PMID" "REFSEQ" "SYMBOL" "UNIGENE"

[17] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY"

[25] "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "PROBEID"

[29] "OMIM" "UCSCKG"

If we want to extract some sample keys of a particular type, we can use
the keys method.

R> head(keys(hgu95av2.db, keytype="SYMBOL"))

[1] "A1BG" "A2M" "A2MP1" "NAT1" "NAT2" "AACP"

And finally, if we have some keys, we can use select to extract them. By
simply using appropriate argument values with select we can specify what
keys we want to look up values for (keys), what we want returned back (cols)
and the type of keys that we are passing in (keytype)

5



R> #1st get some example keys

R> k <- head(keys(hgu95av2.db,keytype="PROBEID"))

R> # then call select

R> select(hgu95av2.db, keys=k, cols=c("SYMBOL","GENENAME"), keytype="PROBEID")

PROBEID SYMBOL

1 1000_at MAPK3

2 1001_at TIE1

3 1002_f_at CYP2C19

4 1003_s_at CXCR5

5 1004_at CXCR5

6 1005_at DUSP1

GENENAME

1 mitogen-activated protein kinase 3

2 tyrosine kinase with immunoglobulin-like and EGF-like domains 1

3 cytochrome P450, family 2, subfamily C, polypeptide 19

4 chemokine (C-X-C motif) receptor 5

5 chemokine (C-X-C motif) receptor 5

6 dual specificity phosphatase 1

And as you can see, when you call the code above, select will try to
return a data.frame with all the things you asked for matched up to each
other.

0.3 OrgDb objects and the select method

An organism level package (an ‘org’ package) uses a central gene identi-
fier (e.g. Entrez Gene id) and contains mappings between this identifier
and other kinds of identifiers (e.g. GenBank or Uniprot accession num-
ber, RefSeq id, etc.). The name of an org package is always of the form
org.<Ab>.<id>.db (e.g. org.Sc.sgd.db) where <Ab> is a 2-letter abbrevi-
ation of the organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is
an abbreviation (in lower-case) describing the type of central identifier (e.g.
sgd for gene identifiers assigned by the Saccharomyces Genome Database,
or eg for Entrez Gene ids).

Just as the chip packages load a ChipDb object, the org packages will
load a OrgDb object. The following exercise should acquaint you with the
use of these methods in the context of an organism package.

Exercise 1
Display the OrgDb object for the org.Hs.eg.db package.

6

http://bioconductor.org/packages/devel/bioc/html/org.Hs.eg.db.html


Use the cols method to discover which sorts of annotations can be ex-
tracted from it. Is this the same as the result from the keytypes method?
Use the keytypes method to find out.

Finally, use the keys method to extract UNIPROT identifiers and then
pass those keys in to the select method in such a way that you extract the
gene symbol and KEGG pathway information for each. Use the help system
as needed to learn which values to pass in to cols in order to achieve this.

Solution:

R> library(org.Hs.eg.db)

R> cols(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE"

[5] "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[9] "CHRLOCEND" "ENZYME" "MAP" "PATH"

[13] "PMID" "REFSEQ" "SYMBOL" "UNIGENE"

[17] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY"

[25] "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "OMIM"

[29] "UCSCKG"

R> help("SYMBOL") ## for explanation of these cols and keytypes values

R> keytypes(org.Hs.eg.db)

[1] "ENTREZID" "PFAM" "IPI" "PROSITE"

[5] "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[9] "CHRLOCEND" "ENZYME" "MAP" "PATH"

[13] "PMID" "REFSEQ" "SYMBOL" "UNIGENE"

[17] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GENENAME"

[21] "UNIPROT" "GO" "EVIDENCE" "ONTOLOGY"

[25] "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "OMIM"

[29] "UCSCKG"

R> uniKeys <- head(keys(org.Hs.eg.db, keytype="UNIPROT"))

R> cols <- c("SYMBOL", "PATH")

R> select(org.Hs.eg.db, keys=uniKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 P04217 A1BG <NA>

2 P01023 A2M 04610

7



3 F5H5R8 NAT1 00232

4 F5H5R8 NAT1 00983

5 F5H5R8 NAT1 01100

6 P18440 NAT1 00232

7 P18440 NAT1 00983

8 P18440 NAT1 01100

9 Q400J6 NAT1 00232

10 Q400J6 NAT1 00983

11 Q400J6 NAT1 01100

12 A4Z6T7 NAT2 00232

13 A4Z6T7 NAT2 00983

14 A4Z6T7 NAT2 01100

So how could you use select to annotate your results? This next exercise
should hlep you to understand how that should generally work.

Exercise 2
Please run the following code snippet (which will load a fake data result that
I have provided for the purposes of illustration):

R> load(system.file("extdata", "resultTable.Rda", package="AnnotationDbi"))

R> head(resultTable)

logConc logFC LR.statistic PValue FDR

100418920 -9.639471 -4.679498 378.0732 3.269307e-84 2.613484e-80

100419779 -10.638865 -4.264830 291.1028 2.859424e-65 1.142912e-61

100271867 -11.448981 -4.009603 222.3653 2.757135e-50 7.346846e-47

100287169 -11.026699 -3.486593 206.7771 6.934967e-47 1.385953e-43

100287735 -11.036862 3.064980 204.1235 2.630432e-46 4.205535e-43

100421986 -12.276297 -4.695736 190.5368 2.427556e-43 3.234314e-40

The rownames of this table happen to provide entrez gene identifiers
for each row (for human). Find the gene symbol and gene name for each
of the rows in resultTable and then use the merge method to attach those
annotations to it.

Solution:

R> annots <- select(org.Hs.eg.db, keys=rownames(resultTable),

cols=c("SYMBOL","GENENAME"), keytype="ENTREZID")

R> resultTable <- merge(resultTable, annots, by.x=0, by.y="ENTREZID")

R> head(resultTable)

8



Row.names logConc logFC LR.statistic PValue FDR

1 100127888 -10.57050 2.758937 182.8937 1.131473e-41 1.130624e-38

2 100131223 -12.37808 -4.654318 179.2331 7.126423e-41 6.329847e-38

3 100271381 -12.06340 3.511937 188.4824 6.817155e-43 7.785191e-40

4 100271867 -11.44898 -4.009603 222.3653 2.757135e-50 7.346846e-47

5 100287169 -11.02670 -3.486593 206.7771 6.934967e-47 1.385953e-43

6 100287735 -11.03686 3.064980 204.1235 2.630432e-46 4.205535e-43

SYMBOL GENENAME

1 LOC100127888 uncharacterized LOC100127888

2 LOC100131223 ADP-ribosylation factor-like 8B pseudogene

3 RPS28P8 ribosomal protein S28 pseudogene 8

4 MPVQTL1 Mean platelet volume QTL1

5 LOC100287169 ubiquitin-conjugating enzyme E2 variant 1-like

6 TTTY13B testis-specific transcript, Y-linked 13B

0.4 Using select with GO.db

When you load the GO.db package, a GODb object is also loaded. This
allows you to use the cols, keys, keytypes and select methods on the
contents of the GO ontology. So if for example, you had a few GO IDs and
wanted to know more about it, you could do it like this:

R> library(GO.db)

R> GOIDs <- c("GO:0042254","GO:0044183")

R> select(GO.db, keys=GOIDs, cols="DEFINITION", keytype="GOID")

GOID

1 GO:0042254

2 GO:0044183

DEFINITION

1 A cellular process that results in the biosynthesis of constituent macromolecules, assembly, and arrangement of constituent parts of ribosome subunits; includes transport to the sites of protein synthesis.

2 Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules) that contributes to the process of protein folding.

0.5 Using select with TranscriptDb packages

A TranscriptDb package (a ’TxDb’ package) connects a set of genomic co-
ordinates to various transcript oriented features. The package can also con-
tain Identifiers to features such as genes and transcripts, and the internal
schema describes the relationships between these different elements. All

9



TranscriptDb containing packages follow a specific naming scheme that tells
where the data came from as well as which build of the genome it comes
from.

Exercise 3
Display the TranscriptDb object for the TxDb.Hsapiens.UCSC.hg19.knownGene
package.

As before, use the cols and keytypes methods to discover which sorts
of annotations can be extracted from it.

Use the keys method to extract just a few gene identifiers and then pass
those keys in to the select method in such a way that you extract the
transcript ids and transcript starts for each.

Solution:

R> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

R> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

R> txdb

TranscriptDb object:

| Db type: TranscriptDb

| Supporting package: GenomicFeatures

| Data source: UCSC

| Genome: hg19

| Organism: Homo sapiens

| UCSC Table: knownGene

| Resource URL: http://genome.ucsc.edu/

| Type of Gene ID: Entrez Gene ID

| Full dataset: yes

| miRBase build ID: GRCh37.p5

| transcript_nrow: 80922

| exon_nrow: 286852

| cds_nrow: 235842

| Db created by: GenomicFeatures package from Bioconductor

| Creation time: 2013-03-08 09:43:09 -0800 (Fri, 08 Mar 2013)

| GenomicFeatures version at creation time: 1.11.14

| RSQLite version at creation time: 0.11.2

| DBSCHEMAVERSION: 1.0

R> cols(txdb)

10

http://bioconductor.org/packages/devel/bioc/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html


[1] "CDSID" "CDSNAME" "CDSCHROM" "CDSSTRAND" "CDSSTART"

[6] "CDSEND" "EXONID" "EXONNAME" "EXONCHROM" "EXONSTRAND"

[11] "EXONSTART" "EXONEND" "GENEID" "TXID" "EXONRANK"

[16] "TXNAME" "TXCHROM" "TXSTRAND" "TXSTART" "TXEND"

R> keytypes(txdb)

[1] "GENEID" "TXID" "TXNAME" "EXONID" "EXONNAME" "CDSID"

[7] "CDSNAME"

R> keys <- head(keys(txdb, keytype="GENEID"))

R> cols <- c("TXID", "TXSTART")

R> select(txdb, keys=keys, cols=cols, keytype="GENEID")

GENEID TXID TXSTART

1 1 68796 58858172

2 1 68797 58859832

3 10 31203 18248755

4 100 70442 43248163

5 1000 63795 25530930

6 1000 63796 25530930

7 10000 7702 243651535

8 10000 7703 243663021

9 10000 7704 243663021

10 100008586 74057 49217763

R>

As is widely known, in addition to providing access via the select

method, TranscriptDb objects also provide access via the more familiar tran-
scripts, exons, cds, transcriptsBy, exonsBy and cdsBy methods. For those
who do not yet know about these other methods, more can be learned by
seeing the vignette called: Making and Utilizing TranscriptDb Objects in the
GenomicFeatures package.

The version number of R and packages loaded for generating the vignette
were:

R version 3.0.1 (2013-05-16)

Platform: x86_64-unknown-linux-gnu (64-bit)

11



locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] parallel stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] TxDb.Hsapiens.UCSC.hg19.knownGene_2.9.2

[2] GenomicFeatures_1.12.2

[3] GenomicRanges_1.12.4

[4] IRanges_1.18.1

[5] GO.db_2.9.0

[6] hgu95av2.db_2.9.0

[7] AnnotationForge_1.2.1

[8] org.Hs.eg.db_2.9.0

[9] RSQLite_0.11.4

[10] DBI_0.2-7

[11] AnnotationDbi_1.22.6

[12] Biobase_2.20.0

[13] BiocGenerics_0.6.0

loaded via a namespace (and not attached):

[1] BSgenome_1.28.0 Biostrings_2.28.0 RCurl_1.95-4.1

[4] Rsamtools_1.12.3 XML_3.96-1.1 biomaRt_2.16.0

[7] bitops_1.0-5 rtracklayer_1.20.2 stats4_3.0.1

[10] tools_3.0.1 zlibbioc_1.6.0

12


	AnnotationDb objects and the select method
	ChipDb objects and the select method
	OrgDb objects and the select method
	Using select with GO.db
	Using select with TranscriptDb packages

