Package 'oligoClasses' October 9, 2013 **Version** 1.22.0 Title Classes for high-throughput arrays supported by oligo and crlmm Author Benilton Carvalho and Robert Scharpf **Maintainer** Benilton Carvalho <Benilton.Carvalho@cancer.org.uk> and Robert Scharpf <rscharpf@jhsph.edu> **Depends** R (\geq 2.14), BiocGenerics (\geq 0.3.2) **Imports** BiocGenerics, Biobase (>= 2.17.8), methods, graphics, IRanges (>= 1.13.30), GenomicRanges, Biostrings (>= 2.23.6), affyio (>= 1.23.2), ff, foreach, BiocInstaller, utils Enhances doMC, doMPI, doSNOW, doParallel, doRedis Suggests RSQLite, hapmapsnp5, hapmap- snp6, pd. genomewidesnp. 6, pd. genomewidesnp. 5, pd. mapping 50 k. hind 240, pd. mapping 50 k. xba 240, pd. mapping 250 k. sty, pd. laICE, RUnit, human 370 v1cCrlmm **Description** This package contains class definitions, validity checks, and initialization methods for classes used by the oligo and crlmm packages. **License** GPL (>= 2) LazyLoad yes Collate AllClasses.R AllGenerics.R utils-general.R utils-lds.R utils-parallel.R methods-gSet.R initialize-methods.R methods-AlleleSet.R methods-AnnotatedDataFrame.R methods-FeatureSet.R methods-AssayData.R methods-SnpFeatureSet.R methods-oligoSnpSet.R methods-CopyNumberSet.R methods-CNSet.R methods-PDInfo.R $methods\hbox{-}RangedDataCNV.R\ methods\hbox{-}SnpSet.R$ $methods\hbox{-}Genome Annotated Data Frame. R\ methods\hbox{-}Bead Studio Set. R$ methods-BeadStudioSetList.R methods-gSetList.R methods-GRanges.R methods-SummarizedExperiment.R show-methods.R functions.R zzz.R biocViews Infrastructure # R topics documented: | affyPlatforms | 3 | |--------------------------------------|----| | AlleleSet-class | 4 | | annotationPackages | 5 | | AssayData-methods | 6 | | AssayDataList | 7 | | assayDataList-methods | 8 | | batch | 8 | | batchStatistics | 9 | | BeadStudioSet-class | 10 | | BeadStudioSetList-class | 11 | | celfileDate | 12 | | celfileName | 12 | | checkExists | 13 | | checkOrder | 14 | | chromosome-methods | 15 | | chromosome2integer | 16 | | CNSet-class | 17 | | CopyNumberSet-class | 18 | | CopyNumberSet-methods | 20 | | createFF | | | db | 22 | | DBPDInfo-class | 23 | | efsExample | 23 | | exprs-methods | | | featureDataList-methods | 24 | | FeatureSet-class | 24 | | ffdf-class | 25 | | ff_matrix-class | 26 | | ff_or_matrix-class | 27 | | fileConnections | 27 | | flags | 28 | | generics | 29 | | GenomeAnnotatedDataFrame-class | 29 | | GenomeAnnotatedDataFrameFrom-methods | 31 | | genomeBuild | 32 | | geometry | 32 | | getA | 33 | | getBar | 34 | | getSequenceLengths | 34 | | GRanges-methods | 35 | | gSet-class | 37 | | gSetList-class | 38 | | с
i2p | 39 | | initializeBigMatrix | 40 | | integerMatrix | 41 | | is ffmatrix | 42 | affyPlatforms 3 | ex | | 66 | |----|------------------------------|----------| | | SummarizedExperiment-methods | 03 | | | 1 1 | 64
65 | | | splitIndicesByLength | 63 | | | SnpSuperSet-class | 62 | | | SnpSet2-class | 61 | | | SnpSet-methods | 60 | | | sfsExample | 59 | | | setCluster | 58 | | | scqsExample | 58 | | | sampleNames-methods | 57 | | | requireClusterPkgSet | 57 | | | requireAnnotation | 56 | | | position-methods | 55 | | | pmFragmentLength-methods | 55 | | | platform-methods | 55 | | | pdPkgFromBioC | 54 | | | parStatus | 53 | | | oligoSnpSet-methods | 53 | | | oligoSet | 52 | | | ocSamples | 51 | | | ocLapply | 50 | | | manufacturer-methods | 50 | | | makeFeatureGRanges | 49 | | | locusLevelData | 48 | | | ListClasses | 48 | | | list.celfiles | 47 | | | library2 | 46 | | | length-methods | 46 | | | | 45 | | | 1 | 44 | | | | 44 | | | 18PackageLoaded | 43 | # Description Provides a listing of available Affymetrix platforms currently supported by the R package oligo # Usage affyPlatforms() 4 AlleleSet-class #### Value A vector of class character. #### Author(s) R. Scharpf #### **Examples** ``` affyPlatforms() ``` AlleleSet-class Class "AlleleSet" ### **Description** A class for storing the locus-level summaries of the normalized intensities ### **Objects from the Class** Objects can be created by calls of the form new("AlleleSet", assayData, phenoData, featureData, experimentData, ### **Slots** ``` assayData: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ featureData: Object of class "AnnotatedDataFrame" ~~ experimentData: Object of class "MIAME" ~~ annotation: Object of class "character" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ .__classVersion__: Object of class "Versions" ~~ ``` #### **Extends** ``` Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned", by class "eSet", distance 3. ``` #### Methods **allele** signature(object = "AlleleSet"): extract allele specific summaries. For 50K (XBA and Hind) and 250K (Sty and Nsp) arrays, an additional argument (strand) must be used (allowed values: 'sense', 'antisense'. **bothStrands** signature(object = "AlleleSet"): tests if data contains allele summaries on both strands for a given SNP. **bothStrands** signature(object = "SnpFeatureSet"): tests if data contains allele summaries on both strands for a given SnpFeatureSet. annotationPackages 5 ``` db signature(object = "AlleleSet"): link to database connection. getA signature(object = "AlleleSet"): average intensities (across alleles) getM signature(object = "AlleleSet"): log-ratio (Allele A vs. Allele B) ``` ### Author(s) R. Scharpf ### See Also SnpSuperSet, CNSet ### **Examples** ``` showClass("AlleleSet") ## an empty AlleleSet x <- new("matrix") new("AlleleSet", senseAlleleA=x, senseAlleleB=x, antisenseAlleleA=x, antisenseAlleleB=x) ##or new("AlleleSet", alleleA=x, alleleB=x)</pre> ``` annotationPackages Annotation Packages ### **Description** annotationPackages will return a character vector of the names of annotation packages. ### Usage ``` annotationPackages() ``` ### Value a character vector of the names of annotation packages 6 AssayData-methods AssayData-methods Methods for class AssayData in the oligoClasses package ### **Description** Batch statistics used for estimating copy number are stored as AssayData in the 'batchStatistics' slot of the CNSet class. Each element in the AssayData must have the same number of rows and columns. Rows correspond to features and columns correspond to batch. ### **Objects from the Class** A virtual Class: No objects may be created from it. #### Methods ``` batchNames signature(object = "AssayData"): ... batchNames<- signature(object = "AssayData"): ... corr signature(object = "AssayData", allele = "character"): ... nu signature(object = "AssayData", allele = "character"): ... phi signature(object = "AssayData", allele = "character"): ...</pre> ``` #### **Details** 1M: Extracts entire list of linear model parameters. corr: The within-genotype correlation of log2(A) and log2(B) intensities. nu: The intercept for the linear model. The linear model is fit to the A and B alleles independently. phi: The slope for the linear model. The linear model is fit independently to the A and B alleles. #### See Also ``` CNSet-class ``` ``` library(crlmm) library(Biobase) data(cnSetExample, package="crlmm") cnSet <- cnSetExample isCurrent(cnSet) assayDataElementNames(batchStatistics(cnSet)) ## Accessors for linear model parameters ## -- Included here primarily as a check that accessors are working ## -- Values are all NA until CN estimation is performed using the crlmm package ## subsetting cnSet[1:10,]</pre> ``` Assay DataList 7 ``` ## names of elements in the object ## accessors for parameters nu(cnSet, "A")[1:10,] nu(cnSet, "B")[1:10,] phi(cnSet, "A")[1:10,] phi(cnSet, "B")[1:10,] ``` AssayDataList Create a list of assay data elements ### **Description** The eSetList-derived classes have an assayDataList slot instead of an assayData slot. ### Usage ``` AssayDataList(storage.mode = c("lockedEnvironment", "environment", "list"), ...) ``` # Arguments ``` storage.mode See assayDataNew. ... Named lists of matrices ``` #### Value environment # Author(s) R.Scharpf ### See Also assayDataNew ``` r <- replicate(5, matrix(rnorm(25),5,5), simplify=FALSE) r <- lapply(r, function(x,dns) {dimnames(x) <- dns; return(x)}, dns=list(letters[1:5], LETTERS[1:5])) ad <- AssayDataList(r=r) ls(ad)</pre> ``` 8 batch assayDataList-methods Accessor for slot assayDataList in Package oligoClasses ### **Description** Accessor for slot assayDataList in Package oligoClasses #### Methods ``` signature(object = "gSetList") An object inheriting from class gSetList. signature(object = "oligoSetList") An object inheriting from class gSetList. ``` batch The batch variable for the samples. ### **Description** Copy number estimates are susceptible to systematic differences between groups of samples that were processed at different times or by different labs. While 'batch' is often unknown, a useful surrogates is often the scan date of the arrays (e.g., the month of the calendar year) or the 96 well chemistry plate on which the samples were arrayed during lab processing. ### Usage ``` batch(object) batchNames(object) batchNames(object) <- value</pre> ``` ### **Arguments** object An object of class CNSet. value For 'batchNames', the value must be a character string corresponding of the unique batch names. ### Value The method 'batch' returns a character vector that has the same length as the number of samples in the CNSet object. #### Author(s) R. Scharpf ### See Also CNSet-class batchStatistics 9 ### **Examples** ``` a <- matrix(1:25, 5, 5) colnames(a) <- letters[1:5] object <- new("CNSet", alleleA=a, batch=rep("batch1", 5)) batch(object) batchNames(object)</pre> ``` batchStatistics Accessor for batch statistics uses for copy number estimation and storage of model parameters ### **Description** The batchStatistics slot contains statistics estimated from each batch that are used to derive copy number estimates. ### **Usage** ``` batchStatistics(object) batchStatistics(object) <- value</pre> ``` ### **Arguments** object An object
of class CNSet value An object of class AssayData #### **Details** An object of class AssayData for slot batchStatistics is initialized automatically when creating a new CNSet instance. Required in the call to new is a factor called batch whose unique values determine the number of columns for each assay data element. ### Value $batch Statics\ is\ an\ accessor\ for\ the\ slot\ batch Statistics\ that\ returns\ an\ object\ of\ class\ Assay Data.$ ### See Also ``` CNSet-class, batchNames, batch ``` 10 BeadStudioSet-class BeadStudioSet-class Class "BeadStudioSet" #### Description A container for log R ratios and B allele frequencies from SNP arrays. ### **Objects from the Class** Objects can be created by calls of the form new("BeadStudioSet", assayData, phenoData, featureData, experimentD #### Slots ``` featureData: Object of class "GenomeAnnotatedDataFrame" ~~ assayData: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ experimentData: Object of class "MIAxE" ~~ annotation: Object of class "character" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ genome: Object of class "character" ~~ .__classVersion__: Object of class "Versions" ~~ ``` ### Extends ``` Class "gSet", directly. Class "eSet", by class "gSet", distance 2. Class "VersionedBiobase", by class "gSet", distance 3. Class "Versioned", by class "gSet", distance 4. ``` #### Methods In the methods below, object has class BeadStudioSet. ``` baf(object): accessor for the matrix of B allele frequencies. ``` baf(object) <- value replacement method for B allele frequencies: value must be a matrix of integers. as(object, "data.frame"): coerce to data.frame with column headers 'lrr', 'baf', 'x' (physical position with unit Mb), 'id', and 'is.snp'. Used for plotting with lattice. copyNumber(object): accessor for log R ratios. copyNumber(object) <- value: replacement method for the log R ratios</pre> initialize signature(.Object = "BeadStudioSet"): constructs an instance of the class 1rr(object): accessor for matrix of log R ratios lrr(object) <- value replacement method for log R ratios: value should be a matrix or a ff_matrix.</pre> show(object): print a short summary of the BeadStudioSet object. updateObject(object): update a BeadStudioSet object. BeadStudioSetList-class 11 ### Author(s) R. Scharpf ### **Examples** ``` new("BeadStudioSet") ``` BeadStudioSetList-class List classes with assay data listed by chromosome # Description Container for log R ratios and B allele frequencies stored by chromosome. ### **Slots** ``` assayDataList: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ featureDataList: Object of class "list" ~~ chromosome: Object of class "integer" ~~ annotation: Object of class "character" ~~ genome: Object of class "character" indicating the genome build. Valid entries are "hg18" and "hg19". ``` #### Methods defined for the class ``` clone(object, id, prefix="",...) ``` Performs a deep copy of the ff objects in the assay data elements of object. A new object of the same class will be instantiated. The ff objects in the instantiated object will point to ff files on disk with prefix given by the argument prefix. A use-case for such a function is that one may want to perform wave correction on the log R ratios in object, but keep a copy of the original unadjusted log R ratios. If object is not copied using clone prior to wave correction, the log R ratios will be updated on disk and the original, unadjusted log R ratios will no longer be available. #### Author(s) R. Scharpf ### See Also See supporting packages for methods defined for the class. 12 celfileName celfileDate Cel file dates # Description Parses cel file dates from the header of .CEL files for the Affymetrix platform # Usage ``` celfileDate(filename) ``` ### **Arguments** filename Name of cel file ### Value character string ### Author(s) H. Jaffee # **Examples** ``` require(hapmapsnp6) path <- system.file("celFiles", package="hapmapsnp6") celfiles <- list.celfiles(path, full.names=TRUE) dts <- sapply(celfiles, celfileDate)</pre> ``` celfileName Extracts complete cel file name from a CNSet object # Description Returns the complete cel file (including path) for a CNSet object # Usage ``` celfileName(object) ``` # Arguments object An object of class CNSet checkExists 13 ### Value Character string vector. #### Note If the CEL files for an experiment are relocated, the datadir should be updated accordingly. See examples. ### Author(s) R. Scharpf ### **Examples** ``` ## Not run: if(require(crlmm)){ data(cnSetExample, package="crlmm") celfileName(cnSetExample) } ## End(Not run) ``` checkExists Checks to see whether an object exists and, if not, executes the appropriate function. # Description Only loads an object if the object name is not in the global environment. If not in the global environment and the file exists, the object is loaded (by default). If the file does not exist, the function FUN is run. # Usage ``` checkExists(.name, .path = ".", .FUN, .FUN2, .save.it=TRUE, .load.it, ...) ``` ### **Arguments** | .name | Character string giving name of object in global environment | |----------|--| | .path | Path to where the object is saved. | | . FUN | Function to be executed if <name> is not in the global environment and the file does not exist.</name> | | .FUN2 | Not currently used. | | .save.it | Logical. Whether to save the object to the directory indicaged by path. This argument is ignored if the object was loaded from file or already exists in the .GlobalEnv. | 14 checkOrder .load.it Logical. If load.it is TRUE, we try to load the object from the indicated path. The returned object will replace the object in the .GlobalEnv unless the object is bound to a different name (symbol) when the function is executed. Additional arguments passed to FUN. #### Value Could be anything – depends on what FUN, FUN2 perform. Future versions could return a 0 or 1 indicating whether the function performed as expected. ### Author(s) R. Scharpf ### **Examples** ``` path <- tempdir() dir.create(path) x <- 3+6 x <- checkExists("x", .path=path, .FUN=function(y, z) y+z, y=3, z=6) rm(x) x <- checkExists("x", .path=path, .FUN=function(y, z) y+z, y=3, z=6) rm(x) x <- checkExists("x", .path=path, .FUN=function(y, z) y+z, y=3, z=6) rm(x) ##now there is a file called x.rda in tempdir(). The file will be loaded x <- checkExists("x", .path=path, .FUN=function(y, z) y+z, y=3, z=6) rm(x) unlink(path, recursive=TRUE)</pre> ``` checkOrder Checks whether a eSet-derived class is ordered by chromosome and physical position ### **Description** Checks whether a eSet-derived class (e.g., a SnpSet or CNSet object) is ordered by chromosome and physical position ### Usage ``` checkOrder(object, verbose = FALSE) chromosomePositionOrder(object, ...) ``` ### Arguments object A SnpSet or CopyNumberSet. verbose Logical. ... additional arguments to order chromosome-methods 15 ### **Details** Checks whether the object is ordered by chromosome and physical position. #### Value Logical ### Author(s) R. Scharpf #### See Also order ### **Examples** ``` data(oligoSetExample) if(!checkOrder(oligoSet)){ oligoSet <- chromosomePositionOrder(oligoSet) } checkOrder(oligoSet)</pre> ``` chromosome-methods Methods for function chromosome in package oligoClasses ### **Description** Methods for function chromosome in package oligoClasses ~~ ### Methods The methods for chromosome extracts the chromosome (represented as an integer) for each marker in a eSet-derived class or a AnnotatedDataFrame-derived class. ``` signature(object = "AnnotatedDataFrame") Accessor for chromosome. ``` - signature(object = "eSet") If 'chromosome' is included in fvarLabels(object), the integer representation of the chromosome will be returned. Otherwise, an error is thrown. - signature(object = "GenomeAnnotatedDataFrame") Accessor for chromosome. If annotation was not available due to a missing or non-existent annotation package, the value returned by the accessor will be a vector of zero's. - (chromosome(object) <- value): Assign chromosome to the AnnotatedDataFrame slot of an eSet-derived object. ``` signature(object = "RangedDataCNV") Accessor for chromosome. ``` chromosome2integer #### Note Integer representation: chr X = 23, chr Y = 24, chr XY = 25. Symbols M, Mt, and MT are coded as 26. #### See Also chromosome2integer ### **Examples** ``` chromosome2integer(c(1:22, "X", "Y", "XY", "M")) ``` chromosome2integer Converts chromosome to integer ### **Description** Coerces character string for chromosome in the pd. annotation packages to integers # Usage ``` chromosome2integer(chrom) integer2chromosome(intChrom) ``` ### **Arguments** chrom A one or 2 letter character string (e.g, "1", "X", "Y", "MT", "XY") intChrom An integer vector with values 1-25 possible ### **Details** This is useful when sorting SNPs in an object by chromosome and physical position – ensures that the sorting is done in the same way for different objects. ### Value integer2chromosome returns a vector of character string indicating the chromosome the same length as intChrom. chromosome2integer returns a vector of integers the same length as the number of elements in the chrom vector. ### Author(s) R. Scharpf ``` chromosome2integer(c(1:22, "X", "Y", "XY", "M")) integer2chromosome(chromosome2integer(c(1:22, "X", "Y", "XY", "M"))) ``` CNSet-class 17 CNSet-class Class "CNSet" ### **Description** CNSet is a container for intermediate data and parameters pertaining to allele-specific copy number estimation. Methods for CNSet objects, including accessors for linear model parameters and allele-specific copy number are included here. ### **Objects from the Class** An object from the class is not generally intended to be initialized by the user, but returned by the genotype
function in the crlmm package. The following creates a very basic CNSet with assayData containing the required elements. ``` new(CNSet, alleleA=new("matrix"), alleleB=new("matrix"), call=new("matrix"), callProbability=new("m ``` #### Slots ``` batch: Object of class "factor" ~~ batchStatistics: Object of class "AssayData" ~~ assayData: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ featureData: Object of class "AnnotatedDataFrame" ~~ experimentData: Object of class "MIAME" ~~ annotation: Object of class "character" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ datadir: Object of class "list"~~ mixtureParams: Object of class "matrix"~~ .__classVersion_: Object of class "Versions" ~~ ``` ### Methods The argument object for the following methods is a CNSet. B(objet): accessor for the normalized intensities of allele B ``` object[i, j]: subset the CNSet object by markers (i) and/or samples (j). A(objet): accessor for the normalized intensities of allele A A(object) <- value: replace intensities for the A allele intensities by value. The object value must be a matrix, ff_matrix, or ffdf. allele(object, allele): accessor for the normalized intensities for the A or B allele. The argument for allele must be either 'A' or 'B'</pre> ``` B(object) <- value: replace intensities for the B allele intensities by value. The object value must be a matrix, ff_matrix, or ffdf. batch(object): vector of batch labels for each sample. batchNames(object): the unique batch names batchNames(object) <- value: relabel the batches</pre> calls(object): accessor for genotype calls coded as 1 (AA), 2 (AB), or 3 (BB). Nonpolymorphic markers are NA. confs(object): accessor for the genotype confidence scores. close(object): close any open file connections to ff objects stored in the CNSet object. as(object, "oligoSnpSet"): coerce a CNSet object to an object of class oligoSnpSet – a container for the total copy number and genotype calls. corr(object): the correlation of the A and B intensities within each genotype. flags(object): flags to indicate possible problems with the copy number estimation. Not fully implemented at this point. new("CNSet"): instantiating a CNSet object. nu(object, allele): accessor for the intercept (background) for the A and B alleles. The value of allele must be 'A' or 'B'. open(object) open file connections for all ff objects stored in the CNSet object. nu(object, allele): accessor for the slope for the A and B alleles. The value of allele must be 'A' or 'B'. sigma2(object, allele): accessor for the within genotype variance tau2(object, allele): accessor for background variance ### Author(s) R. Scharpf ### **Examples** new("CNSet") CopyNumberSet-class Class "CopyNumberSet" ### Description Container for storing total copy number estimates and confidence scores of the copy number estimates. ### **Objects from the Class** Objects can be created by calls of the form new("CopyNumberSet", assayData, phenoData, featureData, experimentD CopyNumberSet-class 19 ### **Slots** ``` assayData: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ featureData: Object of class "AnnotatedDataFrame" ~~ experimentData: Object of class "MIAxE" ~~ annotation: Object of class "character" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ .__classVersion__: Object of class "Versions" ~~ ``` #### **Extends** ``` Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned", by class "eSet", distance 3. ``` #### Methods ``` cnConfidence signature(object = "CopyNumberSet"): ... cnConfidence<- signature(object = "CopyNumberSet", value = "matrix"): ... coerce signature(from = "CNSet", to = "CopyNumberSet"): ... copyNumber signature(object = "CopyNumberSet"): ... copyNumber<- signature(object = "CopyNumberSet", value = "matrix"): ... initialize signature(.0bject = "CopyNumberSet"): ...</pre> ``` ### Note This container is primarily for platforms for which genotypes are unavailable. As oligoSnpSet extends this class, methods related to total copy number that do not depend on genotypes can be defined at this level. ### Author(s) R. Scharpf #### See Also For genotyping platforms, total copy number estimates and genotype calls can be stored in the oligoSnpSet class. ``` showClass("CopyNumberSet") cnset <- new("CopyNumberSet") ls(Biobase::assayData(cnset))</pre> ``` CopyNumberSet-methods Methods for class CopyNumberSet. ### **Description** Accessors and CopyNumberSet ### Usage ``` copyNumber(object, ...) cnConfidence(object) copyNumber(object) <- value cnConfidence(object) <- value</pre> ``` ### **Arguments** ``` object CopyNumberSet object or derived class ... Ignored for CopyNumberSet and oligoSnpSet. value matrix ``` ### Value copyNumber returns a matrix of copy number estimates or relative copy number estimates. Since the copy number estimates are stored as integers (copy number * 100), the matrix returned by the copyNumber accessor will need to be divided by a factor of 100 to transform the measurements back to the original copy number scale. cnConfidence returns a matrix of confidence scores for the copy number estimates. These are also represented as integers and will require a back-transformation to the original scale. ``` library(Biobase) data(locusLevelData) path <- system.file("extdata", package="oligoClasses") fd <- readRDS(file.path(path, "genomeAnnotatedDataFrameExample.rds")) ## the following command creates an 'oligoSnpSet' object, storing ## an integer representation of the log2 copy number in the 'copyNumber' element ## of the assayData. Genotype calls and genotype confidence scores are also stored ## in the assayData. oligoSet <- new("oligoSnpSet", copyNumber=integerMatrix(log2(locusLevelData[["copynumber"]]/100), 100), call=locusLevelData[["genotypes"]], callProbability=integerMatrix(locusLevelData[["crlmmConfidence"]], 1), annotation=locusLevelData[["platform"]], featureData=fd, genome="hg19")</pre> ``` createFF 21 ``` ## There are several accessors for the oligoSnpSet class. icn <- copyNumber(oligoSet)</pre> range(icn) ## integer scale lcn <- icn/100</pre> range(lcn) ## log2 copy number ## confidence scores for the genotypes are also represented on an integer scale ipr <- snpCallProbability(oligoSet)</pre> range(ipr) ## integer scale ## for genotype confidence scores, the helper function i2p ## converts back to a probability scale pr <- i2p(ipr)</pre> range(pr) ## The helper function confs is a shortcut, extracting the ## integer-based confidence scores and transforming to the ## probability scale pr2 <- confs(oligoSet)</pre> all.equal(pr, pr2) ## To extract information on the annotation of the SNPs, one can use position(oligoSet) chromosome(oligoSet) ## the position and chromosome coordinates were extracted from build hg19 genomeBuild(oligoSet) ``` createFF Create ff objects. ### Description Creates ff objects (array-like) using settings (path) defined by oligoClasses. #### **Usage** ``` createFF(name, dim, vmode = "double", initdata = NULL) ``` ### **Arguments** name Prefix for filename. dim Dimensions. vmode Mode. initdata NULL. ### Value ff object. 22 db ### Note This function is meant to be used by developers. ### See Also ff db Get the connection to the SQLite Database # Description This function will return the SQLite connection to the database associated to objects used in oligo. # Usage ``` db(object) ``` # Arguments object Object of valid class. See methods. #### Value SQLite connection. #### Methods ``` object = "FeatureSet" object of class FeatureSet object = "SnpCallSet" object of class SnpCallSet object = "DBPDInfo" object of class DBPDInfo object = "SnpLevelSet" object of class SnpLevelSet ``` ### Author(s) Benilton Carvalho ``` ## db(object) ``` DBPDInfo-class 23 DBPDInfo-class Class "DBPDInfo" ### **Description** A class for Platform Design Information objects, stored using a database approach ### **Objects from the Class** Objects can be created by calls of the form new("DBPDInfo", ...). #### **Slots** ``` getdb: Object of class "function" tableInfo: Object of class "data.frame" manufacturer: Object of class "character" genomebuild: Object of class "character" geometry: Object of class "integer" with length 2 (rows x columns) ``` ### Methods annotation string describing annotation package associated to object efsExample ExpressionFeatureSet Object # Description Example of ExpressionFeatureSet Object. ### Usage ``` data(efsExample) ``` ### **Format** Object belongs to ExpressionFeatureSet class. ``` data(efsExample) class(efsExample) ``` 24 FeatureSet-class exprs-methods Accessor for the 'exprs' slot ### Description Accessor for the 'exprs'/'se.exprs' slot of FeatureSet-like objects #### Methods **object = "ExpressionSet"** Expression matrix for objects of this class. Usually results of preprocessing algorithms, like RMA. object = "FeatureSet" General container 'exprs' inherited from eSet **object = "SnpSet"** General container 'exprs' inherited from eSet, not yet used. featureDataList-methods Accessor for slot featureDataList in Package oligoClasses ~~ ### **Description** Accessor for slot featureDataList in Package oligoClasses ~~ ### Methods signature(object = "gSetList") An object inheriting from class gSetList. FeatureSet-class "FeatureSet" and "FeatureSet" Extensions # Description Classes to store data from Expression/Exon/SNP/Tiling arrays at the feature level. # **Objects from the Class** The FeatureSet class is VIRTUAL. Therefore users are not able to create instances of such class. Objects for FeatureSet-like classes can be created by calls of the form: new(CLASSNAME, assayData, manufacturer, platf But the preferred way is using parsers like read.celfiles and read.xysfiles. ffdf-class 25 ### **Slots** ``` manufacturer: Object of class "character" assayData: Object of class "AssayData" phenoData: Object of class "AnnotatedDataFrame" featureData: Object of class "AnnotatedDataFrame"
experimentData: Object of class "MIAME" annotation: Object of class "character" .__classVersion__: Object of class "Versions" ``` ### Methods ``` show signature(.Object = "FeatureSet"): show object contents ``` **bothStrands** signature(.0bject = "SnpFeatureSet"): checks if object contains data for both strands simultaneously (50K/250K Affymetrix SNP chips - in this case it returns TRUE); if object contains data for one strand at a time (SNP 5.0 and SNP 6.0 - in this case it returns FALSE) ### Author(s) Benilton Carvalho ### See Also ``` eSet, VersionedBiobase, Versioned ``` ### **Examples** ``` set.seed(1) tmp <- 2^matrix(rnorm(100), ncol=4) rownames(tmp) <- 1:25 colnames(tmp) <- paste("sample", 1:4, sep="") efs <- new("ExpressionFeatureSet", exprs=tmp)</pre> ``` ffdf-class Class "ffdf" # Description Extended package ff's class definitions for ff to S4. ### **Objects from the Class** A virtual Class: No objects may be created from it. 26 ff_matrix-class # Slots ``` .S3Class: Object of class ffdf ~~ ``` ### **Extends** ``` Class "oldClass", directly. Class "list_or_ffdf", directly. ``` ### Methods No methods defined with class "ffdf" in the signature. ff_matrix-class Class "ff_matrix" # Description ``` ~~ A concise (1-5 lines) description of what the class is. ~~ ``` # **Objects from the Class** A virtual Class: No objects may be created from it. ### **Slots** ``` .S3Class: Object of class "character" ~~ ``` ### **Extends** ``` Class "oldClass", directly. ``` ### Methods ``` annotatedDataFrameFrom signature(object = "ff_matrix"): ... ``` ``` showClass("ff_matrix") ``` ff_or_matrix-class 27 ``` ff_or_matrix-class Class "ff_or_matrix" ``` ### **Description** ``` A class union of 'ffdf', 'ff_matrix', and 'matrix' ``` ### **Objects from the Class** A virtual Class: No objects may be created from it. #### Methods ``` GenomeAnnotatedDataFrameFrom signature(object = "ff_or_matrix"): ... ``` ### Author(s) R. Scharpf ### See Also ``` ff, ffdf ``` ### **Examples** ``` showClass("ff_or_matrix") ``` fileConnections Open and close methods for matrices and numeric vectors # Description CNSet objects can contain ff-derived objects that contain pointers to files on disk, or ordinary matrices. Here we define open and close methods for ordinary matrices and vectors that that simply pass back the original matrix/vector. ### Usage ``` open(con, ...) openff(object) closeff(object) ``` # Arguments ``` con matrix or vector object A CNSet object. . . . Ignored ``` 28 flags ### Value not applicable # Author(s) R. Scharpf # **Examples** ``` open(rnorm(15)) open(matrix(rnorm(15), 5,3)) ``` flags Batch-level summary of SNP flags. # Description Used to flag SNPs with low minor allele frequencies, or for possible problems during the CN estimation step. Currently, this is primarily more for internal use. # Usage ``` flags(object) ``` ### Arguments object An object of class CNSet ### Value A matrix or ff_matrix object with rows corresponding to markers and columns corresponding to batch. ### See Also batchStatistics generics 29 generics Miscellaneous generics. Methods defined in packages that depend on oligoClasses # Description Miscellaneous generics. Methods defined in packages that depend on oligoClasses # Usage ``` baf(object) lrr(object) ``` # Arguments object A eSet-derived class. # Author(s) R. Scharpf ${\tt GenomeAnnotatedDataFrame-class}$ Class "GenomeAnnotatedDataFrame" ### **Description** AnnotatedDataFrame with genomic coordinates (chromosome, position) ### **Slots** ``` varMetadata: Object of class "data.frame" ~~ data: Object of class "data.frame" ~~ dimLabels: Object of class "character" ~~ .__classVersion__: Object of class "Versions" ~~ ``` ### **Extends** Class "AnnotatedDataFrame", directly. Class "Versioned", by class "AnnotatedDataFrame", distance 2. ### Coercion to or from other classes ``` as(from, "GenomeAnnotatedDataFrame"): Coerce an object of class AnnotatedDataFrame to a GenomeAnnotatedDataFrame. makeFeatureGRanges(object, genome, ...): ``` Construct a GRanges instance from a GenomeAnnotatedDataFrame object. genome is a character string indicating the UCSC build. Supported builds are "hg18" and "hg19", but are platform specific. In particular, some platforms only support build hg19 at this time. ``` updateObject(object): ``` For updating a GenomeAnnotatedDataFrame ### Accessors ``` chromosome(object), chromosome(object) <- value Get or set chromosome. isSnp(object): Many platforms include polymorphic and nonpolymorphic markers. isSnp evalutes to TRUE if the marker is polymorphic. position(ojbect): Physical position in the genome getArm(object, genome):</pre> ``` Retrieve character vector indicating the chromosome arm of each marker in object. genome should indicate which genome build was used to define the chromosomal locations (currently, only UCSC genome builds 'hg18' and 'hg19' supported for this function). ### Author(s) R. Scharpf ### See Also AnnotatedDataFrame GenomeAnnotatedDataFrameFrom-methods Methods for Function GenomeAnnotatedDataFrameFrom in Package oligoClasses #### **Description** GenomeAnnotatedDataFrameFrom is a convenience for creating GenomeAnnotatedDataFrame objects. #### Methods Use the method with GenomeAnnotatedDataFrameFrom(object, annotationPkg, genome, ...); the argument annotationPkg *must* be specified for matrix and AssayData classes. signature(object="assayData") This method creates an GenomeAnnotatedDataFrame using feature names and dimensions of an AssayData object as a template. signature(object="matrix") This method creates an GenomeAnnotatedDataFrame using row names and dimensions of a matrix object as a template. signature(object="NULL") This method (called with 'NULL' as the object) creates an empty GenomeAnnotatedDataFrame. signature(object="array") This method (called with 'array' as the object) creates a GenomeAnnotatedDataFrame using the first dimension of the array (rows are the number of features). ### Author(s) R Scharpf ``` require(Biobase) minReqVersion <- "1.0.2" require(human370v1cCrlmm) if (packageDescription("human370v1cCrlmm", fields='Version') >= minReqVersion){ x <- matrix(1:25, 5, 5, dimnames=list(c("rs10000092","rs1000055", "rs100016", "rs10003241", "rs10004197"), NULL)) gd <- GenomeAnnotatedDataFrameFrom(x, annotationPkg="human370v1cCrlmm", genome="hg18") pData(gd) chromosome(gd) position(gd) }</pre> ``` 32 geometry genomeBuild Genome Build Information ### **Description** Returns the genome build. This information comes from the annotation package and is given as an argument during the package creation process. ### Usage ``` genomeBuild(object) ``` ### **Arguments** object Supported objects include PDInfo, FeatureSet, and any gSet-derived or eSetList-derived object. ### Value character string ### Note Supported builds are UCSC genome builds are 'hg18' and 'hg19'. # **Examples** ``` showMethods("genomeBuild", where="package:oligoClasses") ``` geometry Array Geometry Information ### **Description** For a given array, geometry returns the physical geometry of it. ### Usage ``` geometry(object) ``` # **Arguments** object PDInfo or FeatureSet object ``` if (require(pd.mapping50k.xba240)) geometry(pd.mapping50k.xba240) ``` getA 33 getA Compute average log-intensities / log-ratios ### Description Methods to compute average log-intensities and log-ratios across alleles, within strand. ### Usage ``` getA(object) getM(object) A(object, ...) B(object, ...) ``` ### **Arguments** object SnpQSet, SnpCnvQSet or TilingFeatureSet2 object. ... arguments to be passed to allele - 'sense' and 'antisense' are valid values if the array is pre-SNP_5.0 ### **Details** For SNP data, SNPRMA summarizes the SNP information into 4 quantities (log2-scale): - antisenseThetaAantisense allele A. (Not applicable for Affymetrix 5.0 and 6.0 platforms.) - antisenseThetaBantisense allele B. (Not applicable for Affymetrix 5.0 and 6.0 platforms.) - senseThetaAsense allele A. (Not applicable for Affymetrix 5.0 and 6.0 platforms.) - senseThataBsense allele B. (Not applicable for Affymetrix 5.0 and 6.0 platforms.) - alleleAAffymetrix 5.0 and 6.0 platforms - alleleBAffymetrix 5.0 and 6.0 platforms The average log-intensities are given by: (antisenseThetaA+antisenseThetaB)/2 and (senseThetaA+senseThetaB)/2. The average log-ratios are given by: antisenseThetaA-antisenseThetaB and senseThetaA-senseThetaB. For Tiling data, getM and getA return the log-ratio and average log-intensities computed across channels: M = log2(channel1)-log2(channel2) A = (log2(channel1)+log2(channel2))/2 When large data support is enabled with the ff package, the AssayData elements of an AlleleSet object can be ff_matrix or ffdf, in which case pointers to the ff object are stored in the assay data. The functions open and close can be used to open or close the connection, respectively. #### Value A 3-dimensional array (SNP's x Samples x Strand) with the requested measure, when the input SNP data (50K, 250K). A 2-dimensional array (SNP's x Samples), when the input is from SNP 5.0 and SNP 6.0 arrays. A 2-dimensional array if the input is from Tiling arrays. 34 getSequenceLengths ### See Also snprma getBar Gets a bar of a given length. ### **Description** Gets a bar of a given length. ### Usage ``` getBar(width = getOption("width")) ``` ### **Arguments** width desired length of the bar. # Value character string. ### Author(s) Benilton S Carvalho ### **Examples** ``` message(getBar()) ``` getSequenceLengths Load chromosome sequence lengths for UCSC genome build hg18 or hg19 # Description Load chromosome sequence lengths for UCSC genome build hg18 or hg19 # Usage ``` getSequenceLengths(build) ``` # **Arguments** build character string: "hg18" or "hg19" GRanges-methods 35 ### **Details** The chromosome sequence lengths for UCSC builds hg18 and hg19 were extracted from the packages BSgenome.Hsapiens.UCSC.hg18 and BSgenome.Hsapiens.UCSC.hg19, respectively. ### Value Names integer vector of chromosome lengths. ### Author(s) R. Scharpf ###
Examples ``` getSequenceLengths("hg18") getSequenceLengths("hg19") if(require("GenomicRanges")){ ## from GenomicRanges sl <- getSequenceLengths("hg18")[c("chr1", "chr2", "chr3")]</pre> gr <- GRanges(seqnames = Rle(c("chr1", "chr2", "chr1", "chr3"), c(1, 3, 2, 4)), IRanges(1:10, width = 10:1, names = head(letters,10)), strand = Rle(strand(c("-", "+", "*", "+", "-")), c(1, 2, 2, 3, 2)), score = 1:10, GC = seq(1, 0, length=10), seqlengths=sl) metadata(gr) <- list(genome="hg18")</pre> metadata(gr) ``` GRanges-methods Methods for GRanges objects # Description Methods for GRanges objects 36 GRanges-methods ### findOverlaps methods ``` findOverlaps(query, subject, ...): ``` Find the feature indices in subject that overlap the genomic intervals in query, where query is a GRanges object and subject is a gSet-derived object. Additional arguments to the findOverlaps method in the package **IRanges** can be passed through the . . . operator. #### Accessors object is an instance of the GRanges class. ``` coverage2(object): ``` For the GRanges and GRangesList objects returned by the hidden Markov model implemented in the "VanillaICE" package and the segmentation algorithm in the "MinimumDistance" package, the intervals are annotated by the number of probes (markers) for SNPs and nonpolymorphic regions. coverage2 and numberProbes are convenient accessors for these annotations. ``` genomeBuild(object): ``` Accessor for the UCSC genome build. ``` numberProbes(object): ``` Integer vector indicating the number of probes (markers) for each range in object. Equivalent to coverage2. ``` state(object): ``` Accessor for the elementMetadata column 'state', when applicable. State is used to contain the index of the inferred copy number state for various hmm methods defined in the **VanillaICE**. ### See Also **GRanges** ``` library(IRanges) library(GenomicRanges) gr1 <- GRanges(seqnames = "chr2", ranges = IRanges(3, 6),</pre> state=3L, numberProbes=100L) ## convenience functions state(gr1) numberProbes(gr1) gr2 <- GRanges(seqnames = c("chr1", "chr1"),</pre> ranges = IRanges(c(7,13), width = 3), state=c(2L, 2L), numberProbes=c(200L, 250L)) gr3 <- GRanges(seqnames = c("chr1", "chr2"),</pre> ranges = IRanges(c(1, 4), c(3, 9)), state=c(1L, 4L), numberProbes=c(300L, 350L)) ## Ranges organized by sample grl <- GRangesList("sample1" = gr1, "sample2" = gr2, "sample3" = gr3)</pre> sampleNames(grl) ## same as names(grl) numberProbes(grl) chromosome(grl) ``` gSet-class 37 ``` state(grl) gr <- stack(grl) sampleNames(gr) chromosome(gr) state(gr)</pre> ``` gSet-class Container for objects with genomic annotation on SNPs # **Description** Container for objects with genomic annotation on SNPs # **Objects from the Class** A virtual Class: No objects may be created from it. ### **Slots** ``` featureData: Object of class "GenomeAnnotatedDataFrame" ~~ assayData: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ experimentData: Object of class "MIAxE" ~~ annotation: Object of class "character" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ genome: Object of class "character" ~~ .__classVersion_: Object of class "Versions" ~~ ``` # **Extends** ``` Class "eSet", directly. Class "VersionedBiobase", by class "eSet", distance 2. Class "Versioned", by class "eSet", distance 3. ``` ### Methods db(object): database connection The object for the below methods is a class that extends the virtual class gSet. ``` checkOrder(object): checks that the object is ordered by chromosome and physical position. Returns logical. chromosome(object): accessor for chromosome in the GenomeAnnotatedDataFrame slot. chromosome(object) <- value: replacement method for chromosome in the GenomeAnnotatedDataFrame slot. value must be an integer vector.</pre> ``` 38 gSetList-class ``` genomeBuild(object), genomeBuild(object) <- value: Get or set the UCSC genome build. Supported builds are hg18 and hg19. getArm(object): Character vector indicating the chromosomal arm for each marker in object. isSnp(object): whether the marker is polymorphic. Returns a logical vector. makeFeatureGRanges(object): Construct an instance of the GRanges class from a GenomeAnnotatedDataFrame. position(object): integer vector of the genomic position show(object): Print a concise summary of object. Author(s) R. Scharpf See Also chromosome, position, isSnp Examples ``` gSetList-class showClass("gSet") Virtual Class for Lists of eSets ### **Description** Virtual Class for Lists of eSets. ### **Objects from the Class** A virtual Class: No objects may be created from it. #### **Slots** ``` assayDataList: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ experimentData: Object of class "MIAME" ~~ featureDataList: Object of class "list" ~~ chromosome: Object of class "vector" ~~ annotation: Object of class "character" ~~ genome: Object of class "character" ~~ ``` i2p 39 #### Accessors object is an instance of a gSetList-derived class. ``` annotation(object): ``` character string indicating the package used to provide annotation for the features on the array. chromosome(object): Returns the chromosome corresponding to each element in the gSetList object elementLengths(object): Returns the number of rows for each list of assays. In most gSetList-derived classes, the assays are organized by chromosome and elementLengths returns the number of markers for each chromosome. ``` genomeBuild(object), genomeBuild(object) <- value:</pre> ``` Get or set the UCSC genome build. Supported builds are hg18 and hg19. #### Coercion object is an instance of a gSetList-derived class. ``` makeFeatureGRanges(object, ...): ``` Create a GRanges object for the featureData. The featureData is stored as a list. This method stacks the featureData from each list element. Metadata columns in the GRanges object include physical position ('position'), a SNP indicator ('isSnp'), and the chromosome. The genome build is extracted from object using the method genomeBuild. ### Author(s) R. Scharpf ### See Also ``` oligoSetList, BeadStudioSetList ``` ### **Examples** ``` showClass("gSetList") ``` i2p Functions to convert probabilities to integers, or integers to probabilities. ### **Description** Probabilities estimated in the crlmm package are often stored as integers to save memory. We provide a few utility functions to go back and forth between the probability and integer representations. 40 initializeBigMatrix ### Usage ``` i2p(i) p2i(p) ``` ### **Arguments** i A matrix or vector of integers. p A matrix or vector of probabilities. ### Value ``` The value returned by i2p is 1 - exp(-i/1000) The value returned by 2pi is as.integer(-1000*log(1-p)) ``` ### See Also confs ### **Examples** ``` i2p(693) p2i(0.5) i2p(p2i(0.5)) ``` initializeBigMatrix Initialize big matrices/vectors. # Description Initialize big matrices or vectors appropriately (conditioned on the status of support for large datasets - see Details). ### Usage ``` initializeBigMatrix(name=basename(tempfile()), nr=OL, nc=OL, vmode = "integer", initdata = NA) initializeBigVector(name=basename(tempfile()), n=OL, vmode = "integer", initdata = NA) initializeBigArray(name=basename(tempfile()), dim=c(OL,OL,OL), vmode="integer", initdata=NA) ``` integerMatrix 41 # **Arguments** name prefix to be used for file stored on disk nr number of rows nc number of columns n length of the vector vmode mode - "integer", "double" initdata Default is NA dim Integer vector indicating the dimensions of the array to initialize #### **Details** These functions are meant to be used by developers. They provide means to appropriately create big vectors or matrices for packages like oligo and crlmm (and friends). These objects are created conditioned on the status of support for large datasets. #### Value If the 'ff' package is loaded (in the search path), then an 'ff' object is returned. A regular R vector or array is returned otherwise. ### **Examples** ``` x <- initializeBigVector("test", 10) class(x) x if (isPackageLoaded("ff")) finalizer(x) <- "delete" rm(x) initializeBigMatrix(nr=5L, nc=5L) initializeBigArray(dim=c(10, 5, 3))</pre> ``` integerMatrix Coerce numeric matrix (or array) to a matrix (array) of integers, retaining dimnames. ### **Description** Coerce numeric matrix to matrix of integers, retaining dimnames. ### Usage ``` integerMatrix(x, scale = 100) integerArray(x, scale=100) ``` 42 is.ffmatrix # **Arguments** x a matrix or array scale scalar (numeric). If not 1, x is multiplied by scale prior to coercing to a matrix of integers. ### Value A matrix or array of integers. # Author(s) R. Scharpf # **Examples** ``` x <- matrix(rnorm(10), 5, 2) rownames(x) = letters[1:5] i <- integerMatrix(x, scale=100)</pre> ``` is.ffmatrix Check if object is an ff-matrix object. # Description Check if object is an ff-matrix object. ### Usage ``` is.ffmatrix(object) ``` # Arguments object object to be checked # Value Logical. ### Note This function is meant to be used by developers. isPackageLoaded 43 # **Examples** ``` if (isPackageLoaded("ff")){ x1 <- ff(vmode="double", dim=c(10, 2)) is.ffmatrix(x1) } x1 <- matrix(0, nr=10, nc=2) is.ffmatrix(x1)</pre> ``` isPackageLoaded Check if package is loaded. # Description Checks if package is loaded. # Usage isPackageLoaded(pkg) # Arguments pkg Package to be checked. # **Details** Checks if package name is in the search path. # Value Logical. ### See Also search ``` isPackageLoaded("oligoClasses") isPackageLoaded("ff") isPackageLoaded("snow") ``` 44 kind isSnp-methods Methods for Function isSnp in package oligoClasses~~ #### **Description** ~~ Methods for function isSnp in package oligoClasses ~~ #### Methods Return an indicator for whether the marker is polymorphic (value 1) or nonpolymorphic (value 0). Return an indicator for whether the vector of marker identifiers in object is polymorphic. pkgname must be one of the supported annotation packages specific
to the platform. signature(object = "character", pkgname = "character"@nature(object = "eSet", pkgname = "ANY") If 'isSnp' is included in fvarLabels(object), an indicator for polymorphic markers is returned. Otherwise, an error is thrown. signature(object = "GenomeAnnotatedDataFrame", pkgname = "ANY") Accessor for indicator of whether the marker is polymorphic. If annotation was not available due to a missing or non-existent annotation package, the value returned by the accessor will be a vector of zero's. kind Array type ### **Description** Retrieves the array type. ### Usage ``` kind(object) ``` ### **Arguments** object FeatureSet or DBPDInfo object ### Value ``` String: "Expression", "Exon", "SNP" or "Tiling" ``` ``` if (require(pd.mapping50k.xba240)){ data(sfsExample) Biobase::annotation(sfsExample) <- "pd.mapping50k.xba240" kind(sfsExample) }</pre> ``` ldSetOptions 45 | ldSetOptions | Set/check large dataset options. | |--------------|----------------------------------| | | | ### **Description** Set/check large dataset options. # Usage ``` ldSetOptions(nsamples=100, nprobesets=20000, path=getwd(), verbose=FALSE) ldStatus(verbose=FALSE) ldPath(path) ``` # Arguments nsamples number of samples to be processed at once. nprobesets number of probesets to be processed at once. path where to store large dataset objects. verbose verbosity (logical). ### **Details** Some functions in oligo/crlmm can process data in batches to minimize memory footprint. When using this feature, the 'ff' package resources are used (and possibly combined with cluster resources set in options() via 'snow' package). Methods that are executed on a sample-by-sample manner can use ocSamples() to automatically define how many samples are processed at once (on a compute node). Similarly, methods applied to probesets can use ocProbesets(). Users should set these options appropriately. 1dStatus checks the support for large datasets. 1dPath checks where ff files are stored. #### Author(s) Benilton S Carvalho #### See Also ocSamples, ocProbesets # **Examples** ldStatus(TRUE) 46 library2 length-methods Number of samples for FeatureSet-like objects. # Description Number of samples for FeatureSet-like objects. ### Methods ``` x = "FeatureSet" Number of samples ``` library2 Supress package startup messages when loading a library # Description Supress package startup messages when loading a library # Usage ``` library2(...) ``` # Arguments ... arguments to library # Author(s) R. Scharpf # See Also library ``` library2("Biobase") ``` list.celfiles 47 list.celfiles List CEL files. ### **Description** Function used to get a list of CEL files. # Usage ``` list.celfiles(..., listGzipped=FALSE) ``` # Arguments ``` ... Passed to list.files listGzipped Logical. List .CEL.gz files? ``` #### Value Character vector with filenames. ### Note Quite often users want to use this function to pass filenames to other methods. In this situations, it is safer to use the argument 'full.names=TRUE'. #### See Also ``` list.files ``` ``` if (require(hapmapsnp5)){ path <- system.file("celFiles", package="hapmapsnp5") ## only the filenames list.celfiles(path) ## the filenames with full path... ## very useful when genotyping samples not in the working directory list.celfiles(path, full.names=TRUE) }else{ ## this won't return anything ## if in the working directory there isn't any CEL list.celfiles(getwd()) }</pre> ``` 48 locusLevelData ListClasses eSetList class # Description Initialization method for eSetList virtual class. locusLevelData Basic data elements required for the HMM # **Description** This object is a list containing the basic data elements required for the HMM ### Usage data(locusLevelData) #### **Format** A list # Details The basic assay data elements that can be used for fitting the HMM are: - 1. a mapping of platform identifiers to chromosome and physical position - 2. (optional) a matrix of copy number estimates - 3. (optional) a matrix of confidence scores for the copy number estimates (e.g., inverse standard deviations) - 4. (optional) a matrix of genotype calls - 5. (optional) CRLMM confidence scores for the genotype calls At least (2) or (4) is required. The locusLevelData is a list that contains (1), (2), (4), and (5). #### **Source** A HapMap sample on the Affymetrix 50k platform. Chromosomal alterations were simulated. The last 100 SNPs on chromosome 2 are, in fact, a repeat of the first 100 SNPs on chromosome 1 – this was added for internal use. ``` data(locusLevelData) str(locusLevelData) ``` makeFeatureGRanges 49 ${\it make Feature GRanges}$ Construct a GRanges object from several possible feature-level classes ### **Description** Construct a GRanges object from several possible feature-level classes. The conversion is useful for subsequent ranged-data queries, such as findOverlaps, countOverlaps, etc. # Usage ``` makeFeatureGRanges(object, ...) ``` ### **Arguments** object A gSet-derived object containing chromosome and physical position for the markers on the array. ... See the makeFeatureGRanges method for GenomeAnnotatedDataFrame. #### Value A GRanges object. ### Author(s) R. Scharpf #### See Also findOverlaps, GRanges, GenomeAnnotatedDataFrame ``` if(require("VanillaICE")){ library(oligoClasses) library(GenomicRanges) library(Biobase) library(foreach) registerDoSEQ() data(oligoSetExample, package="oligoClasses") oligoSet <- oligoSet[chromosome(oligoSet) == 1,] grl <- hmm(oligoSet,TAUP=1e10) class(grl)## GRangesList gr <- grl[[1]] (frange <- makeFeatureGRanges(oligoSet)) ## which features overlap with the second range in sample NA06993 subsetByOverlaps(frange, gr[2,]) }</pre> ``` 50 ocLapply manufacturer-methods Manufacturer ID for FeatureSet-like objects. ### **Description** Manufacturer ID for FeatureSet-like and DBPDInfo-like objects. ### Methods ``` object = "FeatureSet" Manufacturer ID object = "PDInfo" Manufacturer ID ``` ocLapply lapply-like function that parallelizes code when possible. ### Description ocLapply is an lapply-like function that checks if ff/snow are loaded and if the cluster variable is set to execute FUN on a cluster. If these requirements are not available, then lapply is used. ### Usage ``` ocLapply(X, FUN, ..., neededPkgs) ``` ### **Arguments** X first argument to FUN. FUN function to be executed. ... additional arguments to FUN. neededPkgs packages needed to execute FUN on the compute nodes. #### **Details** neededPkgs is needed when parallel computing is expected to be used. These packages are loaded on the compute nodes before the execution of FUN. ### Value A list of length length(X). ### Author(s) Benilton S Carvalho ### See Also lapply, parStatus ocSamples 51 ocSamples Cluster and large dataset management utilities. ### **Description** Tools to simplify management of clusters via 'snow' package and large dataset handling through the 'bigmemory' package. #### Usage ``` ocSamples(n) ocProbesets(n) ``` ### Arguments n integer representing the maximum number of samples/probesets to be processed simultaneously on a compute node. #### **Details** Some methods in the oligo/crlmm packages, like backgroundCorrect, normalize, summarize and rma can use a cluster (set through the 'foreach' package). The use of cluster features is conditioned on the availability of the 'ff' (used to provide shared objects across compute nodes) and 'foreach' packages. To use a cluster, 'oligo/crlmm' checks for three requirements: 1) 'ff' is loaded; 2) an adaptor for the parallel backend (like 'doMPI', 'doSNOW', 'doMC') is loaded and registered. If only the 'ff' package is available and loaded (in addition to the caller package - 'oligo' or 'crlmm'), these methods will allow the user to analyze datasets that would not fit in RAM at the expense of performance. In the situations above (large datasets and cluster), oligo/crlmm uses the options ocSamples and ocProbesets to limit the amount of RAM used by the machine(s). For example, if ocSamples is set to 100, steps like background correction and normalization process (in RAM) 100 samples simultaneously on each compute node. If ocProbesets is set to 10K, then summarization processes 10K probesets at a time on each machine. ### Warning In both scenarios (large dataset and/or cluster use), there is a penalty in performance because data are written to disk (to either minimize memory footprint or share data across compute nodes). #### Author(s) Benilton Carvalho 52 oligoSet # **Examples** ``` if(require(doMC)) { registerDoMC() ## tasks like summarize() } ``` oligoSet An example instance of oligoSnpSet class ### **Description** An example instance of the oligoSnpSet class # Usage ``` data(oligoSetExample) ``` ### **Source** Created from the simulated locusLevelData provided in this package. ### See Also locusLevelData ``` ## Not run: ## 'oligoSetExample' created by the following data(locusLevelData) oligoSet <- new("oligoSnpSet", copyNumber=integerMatrix(log2(locusLevelData[["copynumber"]]/100), 100), call=locusLevelData[["genotypes"]], callProbability=locusLevelData[["crlmmConfidence"]], annotation=locusLevelData[["platform"]], genome="hg19") oligoSet <- oligoSet[!is.na(chromosome(oligoSet)),] oligoSet <- oligoSet[chromosome(oligoSet) < 3,] ## End(Not run) data(oligoSetExample) oligoSet</pre> ``` oligoSnpSet-methods 53 oligoSnpSet-methods Methods for oligoSnpSet class ### **Description** Methods for oligoSnpSet class #### Methods In the following code, object is an instance of the oligoSnpSet class. new("oligoSnpSet", ...): Instantiates an object of class oligoSnpSet. The assayData elements of the oligoSnpSet class can include matrices of genotype calls, confidence scores for the genotype calls, B allele frequencies, absolute or relative copy number, and confidence scores for the copy number estimates. Each matrix should be coerced to an integer scale prior to assignment to the oligoSnpSet object. Validity methods defined for the class will fail if the matrices are not integers. See examples for
additional details. baf(object): Accessor for integer representation of the B allele frequencies. The value returned by this method can be divided by 1000 to obtain B allele frequencies on the original [0,1] scale. baf(object) <- value: Assign an integer representation of the B allele frequencies to the 'baf' element of the assayData slot. value must be a matrix of integers. See the examples for help converting BAFs to a matrix of integers. parStatus Checks if oligo/crlmm can use parallel resources. ### **Description** Checks if oligo/crlmm can use parallel resources (needs ff and snow package, in addition to options(cluster=makeCluster(...)). ### Usage parStatus() ### Value logical # Author(s) Benilton S Carvalho 54 pdPkgFromBioC pdPkgFromBioC Get packages from BioConductor. # Description This function checks if a given package is available on BioConductor and installs it, in case it is. # Usage ``` pdPkgFromBioC(pkgname, lib = .libPaths()[1], verbose = TRUE) ``` # Arguments pkgname character. Name of the package to be installed. lib character. Path where to install the package at. verbose logical. Verbosity flag. ### **Details** Internet connection required. ### Value Logical: TRUE if package was found, downloaded and installed; FALSE otherwise. # Author(s) Benilton Carvalho ### See Also download.packages ``` ## Not run: pdPkgFromBioC("pd.mapping50k.xba240") ## End(Not run) ``` platform-methods 55 platform-methods Platform Information ### Description Platform Information #### Methods object = "FeatureSet" platform information pmFragmentLength-methods Information on Fragment Length ### **Description** This method will return the fragment length for PM probes. ### Methods **object = "AffySNPPDInfo"** On AffySNPPDInfo objects, it will return the fragment length that contains the SNP in question. position-methods Methods for function position in Package oligoClasses # Description Methods for function position in package oligoClasses #### Methods The methods for position extracts the physical position stored as an integer for each marker in a eSet-derived class or a AnnotatedDataFrame-derived class. ``` signature(object = "AnnotatedDataFrame") Accessor for physical position. ``` - signature(object = "eSet") If 'position' is included in fvarLabels(object), the physical position will be returned. Otherwise, an error is thrown. - signature(object = "GenomeAnnotatedDataFrame") Accessor for physical position. If annotation was not available due to a missing or non-existent annotation package, the value returned by the accessor will be a vector of zero's. 56 requireAnnotation ${\tt requireAnnotation}$ Helper function to load packages. # Description This function checkes the existence of a given package and loads it if available. If the package is not available, the function checks its availability on BioConductor, downloads it and installs it. ### Usage ``` requireAnnotation(pkgname, lib=.libPaths()[1], verbose = TRUE) ``` # Arguments pkgname character. Package name (usually an annotation package). lib character. Path where to install packages at. verbose logical. Verbosity flag. ### Value Logical: TRUE if package is available or FALSE if package unavailable for download. # Author(s) Benilton Carvalho # See Also install.packages ``` ## Not run: requirePackage("pd.mapping50k.xba240") ## End(Not run) ``` requireClusterPkgSet 57 requireClusterPkgSet DEPRECATED FUNCTIONS. Package loaders for clusters. # Description Package loaders for clusters. ### Usage ``` requireClusterPkgSet(packages) requireClusterPkg(pkg, character.only) ``` ### **Arguments** packages character vector with the names of the packages to be loaded on the compute nodes. pkg name of a package given as a name or literal character string character.only a logical indicating whether 'pkg' can be assumed to be a character string ### **Details** requireClusterPkgSet applies require for a set of packages on the cluster nodes. requireClusterPkg applies require for *ONE* package on the cluster nodes and accepts every argument taken by require. ### Value Logical. ### Author(s) Benilton S Carvalho ### See Also require sampleNames-methods Sample names for FeatureSet-like objects ### **Description** Returns sample names for FeatureSet-like objects. ### Methods ``` object = "FeatureSet" Sample names ``` 58 setCluster scqsExample SnpCnvQSet Example # Description Example of SnpCnvQSet object. ### Usage ``` data(scqsExample) ``` ### **Format** Object belongs to SnpCnvQSet class. ### **Examples** ``` data(scqsExample) class(scqsExample) ``` setCluster DEPRECATED FUNCTIONS. Cluster and large dataset management utilities. # Description Tools to simplify management of clusters via 'snow' package and large dataset handling through the 'bigmemory' package. # Usage ``` setCluster(...) getCluster() delCluster() ``` # Arguments arguments to be passed to makeCluster in the 'snow' package. sfsExample 59 #### **Details** Some methods in the oligo/crlmm packages, like backgroundCorrect, normalize, summarize and rma can use a cluster (set through 'snow' package). The use of cluster features is conditioned on the availability of the 'bigmemory' (used to provide shared objects across compute nodes) and 'snow' packages. To use a cluster, 'oligo/crlmm' checks for three requirements: 1) 'ff' is loaded; 2) 'snow' is loaded; and 3) the 'cluster' option is set (e.g., via options(cluster=makeCluster(...)) or setCluster(...)). If only the 'ff' package is available and loaded (in addition to the caller package - 'oligo' or 'crlmm'), these methods will allow the user to analyze datasets that would not fit in RAM at the expense of performance. In the situations above (large datasets and cluster), oligo/crlmm uses the options ocSamples and ocProbesets to limit the amount of RAM used by the machine(s). For example, if ocSamples is set to 100, steps like background correction and normalization process (in RAM) 100 samples simultaneously on each compute node. If ocProbesets is set to 10K, then summarization processes 10K probesets at a time on each machine. ### Warning In both scenarios (large dataset and/or cluster use), there is a penalty in performance because data are written to disk (to either minimize memory footprint or share data across compute nodes). ### Author(s) Benilton Carvalho sfsExample SnpFeatureSet Example ### Description Example of SnpFeatureSet object. # Usage data(sfsExample) ### **Format** Object belongs to SnpFeatureSet class ``` data(sfsExample) class(sfsExample) ``` 60 SnpSet-methods | SnpSet-methods | Accessors and methods for SnpSet objects | |----------------|--| | | | ### **Description** Utility functions for accessing data in SnpSet objects. #### Usage ``` calls(object) calls(object) <- value confs(object, transform=TRUE) confs(object) <- value</pre> ``` # **Arguments** object A SnpSet object. transform Logical. Whether to transform the integer representation of the confidence score (for memory efficiency) to a probability. See details. value A matrix. #### **Details** calls returns the genotype calls. CRLMM stores genotype calls as integers (1 - AA; 2 - AB; 3 - BB). confs returns the confidences associated with the genotype calls. The current implementation of CRLMM stores the confidences as integers to save memory on disk by using the transformation: ``` round(-1000*log2(1-p)), ``` where 'p' is the posterior probability of the call. confs is a convenience function that transforms the integer representation back to a probability. Note that if the assayData elements of the SnpSet objects are ff_matrix or ffdf, the confs function will return a warning. For such objects, one should first subset the ff object and coerce to a matrix, then apply the above conversion. The function snpCallProbability for the callProbability slot of SnpSet objects. See the examples below. checkOrder checks whether the object is ordered by chromosome and physical position, evaluating to TRUE or FALSE. #### Note Note that the replacement method for confs<- expects a matrix of probabilities and will automatically convert the probabilities to an integer representation. See details for the conversion. The accessor snpCallProbability is an accessor for the 'callProbability' element of the assayData. The name can be misleading, however, as the accessor will not return a probability if the call probabilities are represented as integers. SnpSet2-class 61 ### See Also The helper functions p2i converts probabilities to integers and i2p converts integers to probabilities. See order and checkOrder. ### **Examples** SnpSet2-class Class "SnpSet2" ### **Description** A container for genotype calls and confidence scores. Similar to the SnpSet class in **Biobase**, but SnpSet2 extends gSet directly whereas SnpSet extends eSet. Useful properties of gSet include the genome slot and the GenomeAnnotatedDataFrame. # **Objects from the Class** Objects can be created by calls of the form new("SnpSet2", assayData, phenoData, featureData, experimentData, a ### Slots ``` genome: Object of class "character" indicating the UCSC genome build. Supported builds are 'hg18' and 'hg19'. assayData: Object of class "AssayData". phenoData: Object of class "AnnotatedDataFrame". featureData: Object of class "AnnotatedDataFrame". experimentData: Object of class "MIAxE". annotation: Object of class "character" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ .__classVersion__: Object of class "Versions" ~~ ``` #### **Extends** ``` Class "gSet", directly. Class "eSet", by class "gSet", distance 2. Class "VersionedBiobase", by class "gSet", distance 3. Class "Versioned", by class "gSet", distance 4. ``` 62 SnpSuperSet-class #### Accessors ``` The argument object for the following methods is an instance of the SnpSet2 class. ``` ``` calls(object): calls(object) <- value: Gets or sets the genotype calls. value can be a matrix or a ff_matrix. confs(object): confs(object) <- value: Gets or sets
the genotype confidence scores. value can be a matrix or a ff_matrix. snpCall(object): snpCallProbability(object) <- value: Gets or sets the genotype confidence scores.</pre> ``` ### Author(s) R. Scharpf ### See Also SnpSet ### **Examples** ``` showClass("SnpSet2") new("SnpSet2") ``` SnpSuperSet-class Class "SnpSuperSet" # Description A class to store locus-level summaries of the quantile normalized intensities, genotype calls, and genotype confidence scores ### **Objects from the Class** ``` new("SnpSuperSet", allelea=alleleA, alleleB=alleleB, call=call, callProbability, ...). ``` ### **Slots** ``` assayData: Object of class "AssayData" ~~ phenoData: Object of class "AnnotatedDataFrame" ~~ featureData: Object of class "AnnotatedDataFrame" ~~ experimentData: Object of class "MIAME" ~~ annotation: Object of class "character" ~~ protocolData: Object of class "AnnotatedDataFrame" ~~ .__classVersion__: Object of class "Versions" ~~ ``` splitIndicesByLength 63 ### **Extends** ``` Class "AlleleSet", directly. Class "SnpSet", directly. Class "eSet", by class "AlleleSet", distance 2. Class "VersionedBiobase", by class "AlleleSet", distance 3. Class "Versioned", by class "AlleleSet", distance 4. ``` ### Methods No methods defined with class "SnpSuperSet" in the signature. ### Author(s) R. Scharpf ### See Also AlleleSet ### **Examples** ``` showClass("SnpSuperSet") ## empty object from the class x <- new("matrix") new("SnpSuperSet", alleleA=x, alleleB=x, call=x, callProbability=x)</pre> ``` splitIndicesByLength Tools to distribute objects across nodes or by length. # **Description** Tools to distribute objects across nodes or by length. ### Usage ``` splitIndicesByLength(x, lg, balance=FALSE) splitIndicesByNode(x) ``` # Arguments x object to be split lg length balance logical. Currently ignored # **Details** ``` splitIndicesByLength splits x in groups of length lg. splitIndicesByNode splits x in N groups (where N is the number of compute nodes available). ``` 64 sqsExample # Value List. # Author(s) Benilton S Carvalho # See Also split # **Examples** ``` x <- 1:100 splitIndicesByLength(x, 8) splitIndicesByLength(x, 8, balance=TRUE) splitIndicesByNode(x)</pre> ``` sqsExample SnpQSet Example # Description Example of SnpQSet instance. # Usage ``` data(sqsExample) ``` ### **Format** Belongs to SnpQSet class. ``` data(sqsExample) class(sqsExample) ``` ${\tt SummarizedExperiment-methods}$ Methods for SummarizedExperiment objects ### **Description** Methods for SummarizedExperiment. # Usage ``` ## S4 method for signature 'SummarizedExperiment' baf(object) ## S4 method for signature 'SummarizedExperiment' chromosome(object,...) ## S4 method for signature 'SummarizedExperiment' isSnp(object, ...) ## S4 method for signature 'SummarizedExperiment' lrr(object) ``` ## Arguments ``` object A SummarizedExperiment object. ... ignored ``` ### **Details** baf and 1rr are accessors for the B allele frequencies and log R ratio assays (matrices or arrays), respectively, chromosome returns the seqnames of the rowData. isSnp returns a logical vector for each marker in rowData indicating whether the marker targets a SNP (nonpolymorphic regions are FALSE). ### See Also SummarizedExperiment # **Index** | *Topic IO | celfileName, 12 | |------------------------------------|-----------------------------| | list.celfiles, 47 | checkExists, 13 | | *Topic attribute | checkOrder, 14 | | getSequenceLengths, 34 | chromosome2integer, 16 | | *Topic classes | CopyNumberSet-methods, 20 | | AlleleSet-class, 4 | createFF, 21 | | AssayData-methods, 6 | featureDataList-methods, 24 | | BeadStudioSet-class, 10 | fileConnections, 27 | | BeadStudioSetList-class, 11 | flags, 28 | | CNSet-class, 17 | genomeBuild, 32 | | CopyNumberSet-class, 18 | geometry, 32 | | DBPDInfo-class, 23 | getA, 33 | | FeatureSet-class, 24 | getBar, 34 | | ff_matrix-class, 26 | i2p, 39 | | ff_or_matrix-class, 27 | initializeBigMatrix,40 | | ffdf-class, 25 | integerMatrix,41 | | GenomeAnnotatedDataFrame-class, 29 | is.ffmatrix,42 | | gSet-class, 37 | isPackageLoaded, 43 | | gSetList-class, 38 | kind,44 | | ListClasses, 48 | ldSetOptions, 45 | | SnpSet2-class, 61 | library2,46 | | SnpSuperSet-class, 62 | makeFeatureGRanges, 49 | | *Topic datasets | ocLapply, 50 | | efsExample, 23 | ocSamples, 51 | | locusLevelData, 48 | parStatus, 53 | | oligoSet, 52 | requireClusterPkgSet, 57 | | scqsExample, 58 | setCluster, 58 | | sfsExample, 59 | SnpSet-methods, 60 | | sqsExample, 64 | splitIndicesByLength, 63 | | *Topic data | *Topic methods | | pdPkgFromBioC, 54 | assayDataList-methods, 8 | | requireAnnotation, 56 | batch, 8 | | *Topic list | batchStatistics, 9 | | affyPlatforms, 3 | chromosome-methods, 15 | | *Topic manip | CopyNumberSet-methods, 20 | | AssayDataList, 7 | db, 22 | | assayDataList-methods, 8 | exprs-methods, 24 | | batchStatistics, 9 | featureDataList-methods, 24 | | celfileDate, 12 | flags, 28 | | | | | ${\tt GenomeAnnotatedDataFrameFrom-methods},$ | AffySNPCNVPDInfo-class | |--|--| | 31 | (DBPDInfo-class), 23 | | GRanges-methods, 35 | AffySNPPDInfo (DBPDInfo-class), 23 | | isSnp-methods, 44 | AffySNPPDInfo-class (DBPDInfo-class), 23 | | length-methods, 46 | AffySTPDInfo (DBPDInfo-class), 23 | | manufacturer-methods, 50 | AffySTPDInfo-class (DBPDInfo-class), 23 | | oligoSnpSet-methods, 53 | AffyTilingPDInfo (DBPDInfo-class), 23 | | platform-methods, 55 | AffyTilingPDInfo-class | | pmFragmentLength-methods, 55 | (DBPDInfo-class), 23 | | position-methods, 55 | allele (AlleleSet-class), 4 | | sampleNames-methods, 57 | allele, AlleleSet-method | | SummarizedExperiment-methods, 65 | (AlleleSet-class), 4 | | *Topic misc | allele, CNSet-method (CNSet-class), 17 | | affyPlatforms, 3 | allele, SnpFeatureSet-method | | generics, 29 | (AlleleSet-class), 4 | | *Topic utilities | AlleleSet, 63 | | list.celfiles,47 | AlleleSet (AlleleSet-class), 4 | | [,CNSet-method(CNSet-class), 17 | AlleleSet-class, 4 | | [,gSetList-method(gSetList-class), 38 | AnnotatedDataFrame, 29, 30 | | [[,BafLrrSetList,ANY,ANY-method | annotatedDataFrameFrom,ff_matrix-method | | (BeadStudioSetList-class), 11 | (ff_matrix-class), 26 | | [[,BeadStudioSetList,ANY,ANY-method | annotation, DBPDInfo-method | | (BeadStudioSetList-class), 11 | (DBPDInfo-class), 23 | | [[<-,BafLrrSetList,ANY,ANY,BafLrrSet-method | annotation,gSetList-method | | (BeadStudioSetList-class), 11 | (gSetList-class), 38 | | [[<-,gSetList,ANY,ANY,BafLrrSet-method | annotationPackages, 5 | | (gSetList-class), 38 | AssayData, 31 | | <pre>\$,gSetList-method(gSetList-class), 38</pre> | AssayData-methods, 6 | | <pre>\$<-,gSetList-method(gSetList-class), 38</pre> | AssayDataList, 7 | | ,, | assayDataList(assayDataList-methods), 8 | | A (getA), 33 | assayDataList,gSetList-method | | A, AlleleSet-method (getA), 33 | (gSetList-class), 38 | | A, CNSet-method (CNSet-class), 17 | assayDataList,oligoSetList-method | | A<- (getA), 33 | (assayDataList-methods), 8 | | A<-, AlleleSet, matrix-method (getA), 33 | assayDataList-methods, 8 | | A<-, AlleleSet-method (getA), 33 | assayDataNew, 7 | | A<-, CNSet-method (CNSet-class), 17 | • | | AffyExonPDInfo (DBPDInfo-class), 23 | B (getA), 33 | | AffyExonPDInfo-class (DBPDInfo-class), | B, AlleleSet-method (getA), 33 | | 23 | B, CNSet-method (CNSet-class), 17 | | AffyExpressionPDInfo(DBPDInfo-class), | B<- (getA), 33 | | 23 | B<-,AlleleSet,matrix-method(getA),33 | | AffyExpressionPDInfo-class | B<-,AlleleSet-method(getA), 33 | | (DBPDInfo-class), 23 | B<-,CNSet-method(CNSet-class), 17 | | AffyGenePDInfo (DBPDInfo-class), 23 | baf (generics), 29 | | AffyGenePDInfo-class (DBPDInfo-class), | baf,BeadStudioSet-method | | 23 | (BeadStudioSet-class), 10 | | affyPlatforms, 3 | baf,BeadStudioSetList-method | | AffySNPCNVPDInfo (DBPDInfo-class), 23 | (BeadStudioSetList-class), 11 | | baf,oligoSetList-method | calls,oligoSnpSet-method | |--|---| | (BeadStudioSetList-class), 11 | (oligoSnpSet-methods), 53 | | baf,oligoSnpSet-method | calls, SnpSet-method (SnpSet-methods), 60 | | (oligoSnpSet-methods), 53 | calls, SnpSet2-method (SnpSet2-class), 61 | | baf,SummarizedExperiment-method | calls<- (SnpSet-methods), 60 | | (SummarizedExperiment-methods), | calls<-,CNSet,matrix-method | | 65 | (CNSet-class), 17 | | <pre>baf<- (BeadStudioSet-class), 10</pre> | calls<-,oligoSnpSet,matrix-method | | <pre>baf<-,BeadStudioSet-method</pre> | (oligoSnpSet-methods), 53 | | (BeadStudioSet-class), 10 | calls<-,SnpSet,matrix-method | | <pre>baf<-,oligoSnpSet-method</pre> | (SnpSet-methods), 60 | | (oligoSnpSet-methods), 53 | calls<-,SnpSet2,matrix-method | | BafLrrSet-class (BeadStudioSet-class), | (SnpSet2-class), 61 | | 10 | callsConfidence,oligoSnpSet-method | | BafLrrSetList-class | (oligoSnpSet-methods), 53 | | (BeadStudioSetList-class), 11 | callsConfidence<-,oligoSnpSet,matrix-method | | batch, 8, 9 | (oligoSnpSet-methods), 53 | | batch, CNSet-method (CNSet-class), 17 | celfileDate, 12 | | ${\sf batchNames}, 9$ | celfileName, 12 | | batchNames (batch), 8 | checkExists, 13 | | batchNames,AssayData-method | checkOrder, 14, 61 | | (AssayData-methods), 6 | checkOrder,CopyNumberSet-method | | <pre>batchNames, CNSet-method (CNSet-class),</pre> | (CopyNumberSet-class), 18 | | 17 | checkOrder, gSet-method (gSet-class), 37 | | batchNames<- (batch), 8 | checkOrder, SnpSet-method | | batchNames<-,AssayData-method | (SnpSet-methods), 60 | | (AssayData-methods), 6 | chromosome, 38 | | batchNames<-,CNSet-method | chromosome (chromosome-methods), 15 | | (CNSet-class), 17 | chromosome, AnnotatedDataFrame-method | | batchStatistics, 9, 28 | (chromosome-methods), 15 | | batchStatistics, CNSet-method | chromosome, GenomeAnnotatedDataFrame-method | | (CNSet-class), 17 | (chromosome-methods), 15 | | batchStatistics<-
(batchStatistics), 9 | chromosome, GRanges-method | | batchStatistics<-,CNSet,AssayData-method | (chromosome-methods), 15 | | (CNSet-class), 17 | chromosome, GRangesList-method | | BeadStudioSet (BeadStudioSet-class), 10 | (chromosome-methods), 15 | | BeadStudioSet-class, 10 | chromosome, gSet-method | | BeadStudioSetList, 39 | (chromosome-methods), 15 | | BeadStudioSetList-class, 11 | chromosome, gSetList-method | | bothStrands (AlleleSet-class), 4 | (gSetList-class), 38 | | bothStrands, AlleleSet-method | chromosome, SnpSet-method | | (AlleleSet-class), 4 | (chromosome-methods), 15 | | bothStrands, SnpFeatureSet-method | chromosome, SummarizedExperiment-method | | (AlleleSet-class), 4 | (SummarizedExperiment-methods), | | calls (SnpSet-methods), 60 | 65 | | calls, CNSet-method (CNSet-class), 17 | chromosome-methods, 15 | | calls, oligoSetList-method | chromosome2integer, 16, 16 | | (BeadStudioSetList-class), 11 | chromosome<- (chromosome-methods), 15 | | (| , | | chromosome<-,GenomeAnnotatedDataFrame,integ | | |--|--| | (chromosome-methods), 15 | (gSetList-class), 38 | | chromosome<-,gSet,integer-method | <pre>coerce,oligoSnpSet,data.frame-method</pre> | | (chromosome-methods), 15 | (oligoSnpSet-methods), 53 | | <pre>chromosome<-,SnpSet,integer-method</pre> | confs, 40 | | (chromosome-methods), 15 | confs (SnpSet-methods), 60 | | <pre>chromosomePositionOrder(checkOrder), 14</pre> | <pre>confs, CNSet-method (CNSet-class), 17</pre> | | <pre>clone (BeadStudioSetList-class), 11</pre> | confs, SnpSet-method (SnpSet-methods), 60 | | clone,BafLrrSetList-method | <pre>confs,SnpSet2-method(SnpSet2-class),61</pre> | | (BeadStudioSetList-class), 11 | confs<- (SnpSet-methods), 60 | | close (fileConnections), 27 | <pre>confs<-,CNSet,matrix-method</pre> | | close, AlleleSet-method (getA), 33 | (CNSet-class), 17 | | close, array-method (fileConnections), 27 | confs<-,SnpSet,matrix-method | | close, CNSet-method (CNSet-class), 17 | (SnpSet-methods), 60 | | close, matrix-method (fileConnections), | confs<-,SnpSet2,matrix-method | | 27 | (SnpSet2-class), 61 | | close, numeric-method (fileConnections), | copyNumber (CopyNumberSet-methods), 20 | | 27 | copyNumber,BeadStudioSet-method | | closeff (fileConnections), 27 | (BeadStudioSet-class), 10 | | closeff, CNSet-method (fileConnections), | copyNumber,CopyNumberSet-method | | 27 | (CopyNumberSet-class), 18 | | cnConfidence (CopyNumberSet-methods), 20 | <pre>copyNumber,oligoSetList-method</pre> | | | (BeadStudioSetList-class), 11 | | cnConfidence, CopyNumberSet-method | <pre>copyNumber,oligoSnpSet-method</pre> | | (CopyNumberSet-class), 18 | <pre>(oligoSnpSet-methods), 53</pre> | | cnConfidence, oligoSnpSet-method | <pre>copyNumber<- (CopyNumberSet-methods), 20</pre> | | (oligoSnpSet-methods), 53 | <pre>copyNumber<-,BeadStudioSet,ANY-method</pre> | | <pre>cnConfidence<- (CopyNumberSet-methods), 20</pre> | (BeadStudioSet-class), 10 | | | copyNumber<-,CopyNumberSet,matrix-method | | cnConfidence<-,CopyNumberSet,matrix-method | (CopyNumberSet-class), 18 | | (CopyNumberSet-class), 18 | <pre>copyNumber<-,oligoSnpSet,matrix-method</pre> | | cnConfidence<-,oligoSnpSet,matrix-method | (oligoSnpSet-methods), 53 | | (oligoSnpSet-methods), 53 | CopyNumberSet (CopyNumberSet-class), 18 | | CNSet, 5 | CopyNumberSet-class, 18 | | CNSet (CNSet-class), 17 | CopyNumberSet-methods, 20 | | CNSet-class, 17 | <pre>corr (AssayData-methods), 6</pre> | | coerce, AnnotatedDataFrame, GenomeAnnotatedDa | atakramethod
haracter-method | | (GenomeAnnotatedDataFrame-class), | (CNSet-class), 17 | | 29 | coverage2 (GRanges-methods), 35 | | coerce, BeadStudioSet, data.frame-method | coverage2,GRanges-method | | (BeadStudioSet-class), 10 | (GRanges-methods), 35 | | coerce, CNSet, CopyNumberSet-method | coverage2,GRangesList-method | | (CNSet-class), 17 | (GRanges-methods), 35 | | <pre>coerce, CNSet, oligoSnpSet (CNSet-class),</pre> | createFF, 21 | | 17 | W 00 | | coerce, CNSet, oligoSnpSet-method | db, 22 | | (CNSet-class), 17 | db, AlleleSet-method (AlleleSet-class), 4 | | coerce, CNSetLM, CNSet-method | db, DBPDInfo-method (db), 22 | | (CNSet-class), 17 | db, FeatureSet-method (db), 22 | | db,gSet-method(gSet-class),37 | flags, 28 | |--|---| | db, SnpCnvQSet-method (db), 22 | flags,AssayData-method | | db, SnpQSet-method (db), 22 | (AssayData-methods), 6 | | db, SnpSet-method (db), 22 | flags, CNSet-method (CNSet-class), 17 | | db-methods (db), 22 | | | DBPDInfo (DBPDInfo-class), 23 | GeneFeatureSet (FeatureSet-class), 24 | | DBPDInfo-class, 23 | GeneFeatureSet-class | | delCluster (setCluster), 58 | (FeatureSet-class), 24 | | delCluster-deprecated (setCluster), 58 | generics, 29 | | <pre>dims,gSetList-method(gSetList-class),</pre> | GenomeAnnotatedDataFrame, 31, 49 | | 38 | GenomeAnnotatedDataFrame | | 30 | (GenomeAnnotatedDataFrame-class), | | efsExample, 23 | 29 | | elementLengths,gSetList-method | GenomeAnnotatedDataFrame-class, 29 | | (gSetList-class), 38 | GenomeAnnotatedDataFrameFrom | | eSet, 4, 10, 19, 25, 37, 61, 63 | (GenomeAnnotatedDataFrameFrom-methods), | | ExonFeatureSet (FeatureSet-class), 24 | 31 | | ExonFeatureSet-class | GenomeAnnotatedDataFrameFrom,array-method | | (FeatureSet-class), 24 | (GenomeAnnotatedDataFrameFrom-methods), | | ExpressionFeatureSet | 31 | | | GenomeAnnotatedDataFrameFrom,AssayData-method | | (FeatureSet-class), 24 | (GenomeAnnotatedDataFrameFrom-methods), | | ExpressionFeatureSet-class | 31 | | (FeatureSet-class), 24 | | | ExpressionPDInfo (DBPDInfo-class), 23 | GenomeAnnotatedDataFrameFrom, ff_or_matrix-method | | ExpressionPDInfo-class | (GenomeAnnotatedDataFrameFrom-methods), | | (DBPDInfo-class), 23 | 31 | | exprs, FeatureSet-method | GenomeAnnotatedDataFrameFrom,list-method | | (exprs-methods), 24 | (GenomeAnnotatedDataFrameFrom-methods), | | exprs, SnpSet2-method (SnpSet2-class), 61 | 31 | | exprs-methods, 24 | GenomeAnnotatedDataFrameFrom, NULL-method | | | (GenomeAnnotatedDataFrameFrom-methods), | | featureDataList | 31 | | (featureDataList-methods), 24 | ${\tt Genome Annotated Data Frame From-methods},$ | | <pre>featureDataList,gSetList-method</pre> | 31 | | (gSetList-class), 38 | genomeBuild, 32 | | featureDataList-methods, 24 | genomeBuild,DBPDInfo-method | | FeatureSet (FeatureSet-class), 24 | (genomeBuild), 32 | | FeatureSet-class, 24 | genomeBuild,FeatureSet-method | | ff, 27 | (genomeBuild), 32 | | ff_matrix-class, 26 | genomeBuild,GRanges-method | | ff_or_matrix-class, 27 | (GRanges-methods), 35 | | ffdf, 27 | <pre>genomeBuild,gSet-method(gSet-class),37</pre> | | ffdf-class, 25 | <pre>genomeBuild,gSetList-method</pre> | | fileConnections, 27 | (gSetList-class), 38 | | findOverlaps, 49 | <pre>genomeBuild<- (genomeBuild), 32</pre> | | <pre>findOverlaps,GRanges,gSet-method</pre> | genomeBuild<-,gSet,character-method | | (GRanges-methods), 35 | (gSet-class), 37 | | <pre>findOverlaps,GRangesList,gSet-method</pre> | <pre>genomeBuild<-,gSetList,character-method</pre> | | (GRanges-methods), 35 | (gSetList-class), 38 | | . 22 | | |--|---| | geometry, 32 | initialize, GenomeAnnotatedDataFrame-method | | geometry, DBPDInfo-method (geometry), 32 | (GenomeAnnotatedDataFrame-class), | | geometry, FeatureSet-method (geometry), | 29 | | 32 | initialize, gSet-method (gSet-class), 37 | | getA, 33 | initialize,gSetList-method | | getA, AlleleSet-method | (gSetList-class), 38 | | (AlleleSet-class), 4 | initialize,oligoSnpSet-method | | getA, SnpCnvQSet-method (getA), 33 | (oligoSnpSet-methods), 53 | | getA, SnpQSet-method (getA), 33 | initialize, SnpSet2-method | | getA, TilingFeatureSet2-method (getA), 33 | (SnpSet2-class), 61 | | getArm (gSet-class), 37 | initialize, SnpSuperSet-method | | getArm, GenomeAnnotatedDataFrame-method | (SnpSuperSet-class), 62 | | (GenomeAnnotatedDataFrame-class), | initializeBigArray | | 29 | (initializeBigMatrix), 40 | | getArm, gSet-method (gSet-class), 37 | initializeBigMatrix, 40 | | getBar, 34 | initializeBigVector | | getCluster (setCluster), 58 | (initializeBigMatrix), 40 | | getCluster-deprecated (setCluster), 58 | integer2chromosome | | getM (getA), 33 | (chromosome2integer), 16 | | getM, AlleleSet-method | integerArray (integerMatrix), 41 | | (AlleleSet-class), 4 | integerMatrix, 41 | | getM, SnpCnvQSet-method (getA), 33 | is.ffmatrix,42 | | getM, SnpQSet-method (getA), 33 | isPackageLoaded, 43 | | getM, TilingFeatureSet2-method (getA), 33 | isSnp, <i>38</i> | | getSequenceLengths, 34 | isSnp (isSnp-methods), 44 | | GRanges, <i>36</i> , <i>49</i> | <pre>isSnp, character-method (isSnp-methods),</pre> | | GRanges-methods, 35 | 44 | | gSet, 10, 61 | isSnp,GenomeAnnotatedDataFrame-method | | gSet (gSet-class), 37 | (isSnp-methods), 44 | | gSet-class, 37 | isSnp,gSet-method(isSnp-methods),44 | | gSetList-class, 38 | <pre>isSnp,SnpSet-method(isSnp-methods),44</pre> | | | isSnp,SummarizedExperiment-method | | i2p, 39, 61 | (Summarized Experiment-methods), | | initialize,BeadStudioSet-method | 65 | | (BeadStudioSet-class), 10 | isSnp-methods, 44 | | <pre>initialize,BeadStudioSetList-method</pre> | | | (BeadStudioSetList-class), 11 | kind, 44 | | <pre>initialize, CNSet-method (CNSet-class),</pre> | kind, AffyExonPDInfo-method (kind), 44 | | 17 | kind,AffyExpressionPDInfo-method | | initialize,CNSetLM-method | (kind), 44 | | (CNSet-class), 17 | kind, AffyGenePDInfo-method (kind), 44 | | <pre>initialize,CopyNumberSet-method</pre> | kind, AffySNPCNVPDInfo-method(kind), 44 | | (CopyNumberSet-class), 18 | kind, AffySNPPDInfo-method (kind), 44 | | initialize,DBPDInfo-method | kind, ExpressionPDInfo-method (kind), 44 | | (DBPDInfo-class), 23 | kind, FeatureSet-method (kind), 44 | |
<pre>initialize,eSetList-method</pre> | kind, TilingPDInfo-method (kind), 44 | | (ListClasses), 48 | | | initialize,FeatureSet-method | ldPath(ldSetOptions), 45 | | (FeatureSet-class), 24 | ldSetOptions, 45 | | ldStatus (ldSetOptions), 45 | NgsExpressionPDInfo(DBPDInfo-class), 23 | |--|---| | length,FeatureSet-method | NgsExpressionPDInfo-class | | (length-methods), 46 | (DBPDInfo-class), 23 | | length,gSetList-method | NgsTilingPDInfo (DBPDInfo-class), 23 | | (gSetList-class), 38 | NgsTilingPDInfo-class (DBPDInfo-class), | | length-methods, 46 | 23 | | library, 46 | nu (AssayData-methods), 6 | | library2, 46 | nu, AssayData, character-method | | list.celfiles, 47 | (AssayData-methods), 6 | | list.files,47 | nu, CNSet, character-method | | list_or_ffdf, 26 | (CNSet-class), 17 | | list_or_ffdf-class (ffdf-class), 25 | numberProbes (GRanges-methods), 35 | | ListClasses, 48 | numberProbes, GRanges-method | | locusLevelData, 48, 52 | (GRanges-methods), 35 | | lrr (generics), 29 | numberProbes, GRangesList-method | | lrr,BeadStudioSet-method | (GRanges-methods), 35 | | (BeadStudioSet-class), 10 | (Granges metrious), 33 | | lrr,BeadStudioSetList-method | | | (BeadStudioSetList-class), 11 | ocLapply, 50 | | lrr,SummarizedExperiment-method | ocProbesets (ocSamples), 51 | | (SummarizedExperiment-methods), | ocSamples, 51 | | 65 | oldClass, 26 | | lrr<- (BeadStudioSet-class), 10 | oligoSet, 52 | | 1rr<-,BafLrrSet,ANY-method | oligoSetList, 39 | | (BeadStudioSet-class), 10 | oligoSetList-class | | lrr<-,BafLrrSet-method | (BeadStudioSetList-class), 11 | | (BeadStudioSet-class), 10 | oligoSnpSet, <i>19</i> | | lrr<-,BafLrrSetList,matrix-method | oligoSnpSet-class | | (BeadStudioSetList-class), 11 | (oligoSnpSet-methods), 53 | | lrr<-,BeadStudioSet,ANY-method | oligoSnpSet-methods, 53 | | (BeadStudioSet, ANT-method | open (fileConnections), 27 | | lrr<-,BeadStudioSet-method | open, AlleleSet-method (getA), 33 | | (BeadStudioSet method | open, array-method (fileConnections), 27 | | (DeadStudioSet Class), 10 | open, CNSet-method (CNSet-class), 17 | | makeFeatureGRanges, 49 | open, matrix-method (fileConnections), 27 | | makeFeatureGRanges,GenomeAnnotatedDataFran | ne-mapen numeric-method (fileConnections), | | (GenomeAnnotatedDataFrame-class), | 27 | | 29 | openff(fileConnections), 27 | | makeFeatureGRanges,gSet-method | openff, CNSet-method (fileConnections), | | (gSet-class), 37 | 27 | | makeFeatureGRanges,gSetList-method | order, 15, 61 | | (gSetList-class), 38 | | | manufacturer (manufacturer-methods), 50 | p2i, <i>61</i> | | manufacturer, DBPDInfo-method | p2i (i2p), 39 | | (manufacturer-methods), 50 | parStatus, 53 | | manufacturer, FeatureSet-method | pdPkgFromBioC, 54 | | (manufacturer-methods), 50 | phi (AssayData-methods), 6 | | manufacturer-methods, 50 | phi, AssayData-methods), 0 phi, AssayData, character-method | | matrix, 31 | (AssayData-methods), 6 | | mati 1A, 31 | (Assayvata-IIIetHous), U | | sampleNames,GRangesList-method | |---| | (GRanges-methods), 35 | | sampleNames,gSetList-method | | (gSetList-class), 38 | | sampleNames-methods, 57 | | <pre>sampleNames<-,gSetList,character-method</pre> | | (gSetList-class), 38 | | scqsExample, 58 | | se.exprs,FeatureSet-method | | (exprs-methods), 24 | | setCluster, 58 | | setCluster-deprecated (setCluster), 58 | | sfsExample, 59 | | show,BeadStudioSet-method | | (BeadStudioSet-class), 10 | | show, CNSet-method (CNSet-class), 17 | | <pre>show,DBPDInfo-method(DBPDInfo-class),</pre> | | 23 | | show,FeatureSet-method | | (FeatureSet-class), 24 | | show, gSet-method (gSet-class), 37 | | <pre>show,gSetList-method(gSetList-class),</pre> | | 38 | | sigma2,CNSet,character-method | | (CNSet-class), 17 | | ${\sf snpCallProbability}, 60$ | | <pre>snpCallProbability,CNSet-method</pre> | | method (CNSet-class), 17 | | <pre>SnpCnvFeatureSet (FeatureSet-class), 24</pre> | | SnpCnvFeatureSet-class | | (FeatureSet-class), 24 | | SNPCNVPDInfo (DBPDInfo-class), 23 | | SNPCNVPDInfo-class (DBPDInfo-class), 23 | | SnpFeatureSet (FeatureSet-class), 24 | | <pre>SnpFeatureSet-class (FeatureSet-class),</pre> | | 24 | | SNPPDInfo (DBPDInfo-class), 23 | | SNPPDInfo-class (DBPDInfo-class), 23 | | snprma, 34 | | SnpSet, 60, 62, 63 | | SnpSet-methods, 60 | | SnpSet2-class, 61 | | SnpSuperSet, 5 | | <pre>SnpSuperSet (SnpSuperSet-class), 62</pre> | | SnpSuperSet-class, 62 | | splitIndicesByLength, 63 | | splitIndicesByNode | | (splitIndicesByLength), 63 | | | ``` sqsExample, 64 state (GRanges-methods), 35 state, GRanges-method (GRanges-methods), state, GRangesList-method (GRanges-methods), 35 SummarizedExperiment, 65 SummarizedExperiment-methods, 65 tau2, CNSet, character-method (CNSet-class), 17 TilingFeatureSet (FeatureSet-class), 24 TilingFeatureSet-class (FeatureSet-class), 24 TilingFeatureSet2 (FeatureSet-class), 24 TilingFeatureSet2-class (FeatureSet-class), 24 TilingPDInfo (DBPDInfo-class), 23 TilingPDInfo-class (DBPDInfo-class), 23 updateObject,BeadStudioSet-method (BeadStudioSet-class), 10 updateObject,BeadStudioSetList-method (BeadStudioSetList-class), 11 updateObject,CNSet-method (CNSet-class), 17 update Object, Genome Annotated Data Frame-method\\ (GenomeAnnotatedDataFrame-class), updateObject,oligoSnpSet-method (oligoSnpSet-methods), 53 Versioned, 4, 10, 19, 25, 29, 37, 61, 63 VersionedBiobase, 4, 10, 19, 25, 37, 61, 63 ```