Package 'bsseq'

October 9, 2013

Version 0.8.0

Title Analyze, manage and store bisulfite sequencing data

Description Tools for analyzing and visualizing bisulfite sequencing data

Author Kasper Daniel Hansen

Maintainer Kasper Daniel Hansen <khansen@jhsph.edu>

Depends R (>= 2.15), methods, BiocGenerics, IRanges, GenomicRanges, parallel, matrixStats

Imports scales, stats, graphics, Biobase, locfit

Suggests RUnit, bsseqData

Collate hasGRanges.R BSseq_class.R BSseq_utils.R utils.R read.bsmooth.R read.bismark.R BSmooth.R dmrFinder.R gof_stats.R plotting.R fisher.R fixes.R

License Artistic-2.0

LazyData yes

biocViews DNAMethylation

R topics documented:

BS.chr22
BSmooth 3
BSmooth.tstat
BSseq
BSseq-class
BSseqTstat-class
data.frame2GRanges
dmrFinder
fisherTests
getCoverage
getMeth
getStats

BS.chr22

oodnessOfFit	8
asGRanges-class	9
lotRegion	1
ead.bismark	2
ead.bsmooth	4
ead.umtab	5
2'	7

BS.chr22	Whole-genome bisulfite sequencing for chromosome 22 from Lister et
	al.

Description

This dataset represents chromosome 22 from the IMR90 cell line sequenced in Lister et al. Only CpG methylation are included (there were very few non-CpG loci). The two samples are two different extractions from the same cell line (ie. technical replicates), and are pooled in the analysis in the original paper.

Usage

data(BS.chr22)

Format

An object of class "BSseq".

Details

All coordinates are in hg18.

Source

Obtained from http://neomorph.salk.edu/human_methylome/data.html specifically the files mc_h1_r1.tar.gz and mc_h1_r1.tar.gz. A script which downloads these files and constructs the BS.chr22 object may be found in 'inst/scripts/get_BS.chr22.R', see the example.

References

Lister et al. (2010). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315-322.

Index

BSmooth

Examples

```
data(BS.chr22)
BS.chr22
script <- system.file("scripts", "get_BS.chr22.R", package = "bsseq")
script
readLines(script)</pre>
```

```
BSmooth
```

BSmooth, smoothing bisulfite sequence data

Description

This implements the BSsmooth smoothing algorithm for bisulfite sequencing data.

Usage

BSmooth(BSseq, ns = 70, h = 1000, maxGap = 10^8, parallelBy = c("sample", "chromosome"), mc.preschedule = FALSE, mc.cores = 1, keep.se = FALSE, verbose = TRUE)

Arguments

BSseq	An object of class "BSseq".
ns	The minimum number of methylation loci in a smoothing window.
h	The minimum smoothing window, in bases.
maxGap	The maximum gap between two methylation loci, before the smoothing is bro- ken across the gap. The default smoothes each chromosome separately.
parallelBy	Should the computation be parallel by chromosome or sample, see details.
mc.preschedule	Passed to mclapply (should the tasks be prescheduled).
mc.cores	Passed to mclapply (the number of cores used). Note that setting mc.cores to a value greater than 1 is not supported on MS Windows, see the help page for mclapply.
keep.se	Should the estimated standard errors from the smoothing algorithm be kept. This will make the return object roughly 30 percent bigger and may not be used for anything.
verbose	Should the function be verbose.

Details

ns and h are passed to the locfit function. The bandwidth used is the maximum (in genomic distance) of the h and a width big enough to contain ns number of methylation loci.

The function uses the parallel package to do parallel computations. In order to use this, make sure your system have enough RAM, these are typically big objects. The computation can either be split by chromosome or by sample, which is better depends on the number of samples and how many concurrent smoothings may be done.

Value

An object of class "BSseq", containing smoothed values and optionally standard errors for these.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

References

KD Hansen, B Langmead, and RA Irizarry (2012). BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Submitted.

See Also

locfit in the locfit package, as well as BSseq.

Examples

```
## Not run:
BS.fit <- BSmooth(BS.chr22, verbose = TRUE)
BS.fit
```

End(Not run)

Compute t-statistics based on smoothed whole-genome bisulfite sequencing data.

Description

Compute t-statistics based on smoothed whole-genome bisulfite sequencing data.

Usage

```
BSmooth.tstat(BSseq, group1, group2,
 estimate.var = c("same", "paired", "group2"), local.correct = TRUE,
 maxGap = NULL, qSd = 0.75, k = 101, mc.cores = 1, verbose = TRUE)
```

Arguments

BSseq	An object of class "BSseq".
group1	A vector of sample names or indexes for the 'treatment' group.
group2	A vector of sample names or indexes for the 'control' group.
estimate.var	How is the variance estimated, see details.
local.correct	A logical; should local correction be used, see details.
maxGap	A scalar greater than 0, see details.

BSmooth.tstat

qSd	A scalar between 0 and 1, see details.
k	A positive scalar, see details.
mc.cores	The number of cores used. Note that setting mc.cores to a value greater than 1 is not supported on MS Windows, see the help page for mclapply.
verbose	Should the function be verbose?

Details

T-statistics are formed as the difference in means between group 1 and group 2 divided by an estimate of the standard deviation, assuming that the variance in the two groups are the same (same), that we have paired samples (paired) or only estimate the variance based on group 2 (group2). The standard deviation estimates are then smoothed (using a running mean with a width of k) and thresholded (using qSd which sets the minimum standard deviation to be the qSd-quantile). Optionally, the t-statistics are corrected for low-frequency patterns.

It is sometimes useful to use local.correct even if no large scale changes in methylation have been found; it makes the marginal distribution of the t-statistics more symmetric.

Additional details in the reference.

Value

An object of class "BSseqTstat".

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

References

KD Hansen, B Langmead, and RA Irizarry (2012). *BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions*. Submitted.

See Also

BSmooth for the input object and BSseq for its class. BSseqTstat describes the return class. This function is likely to be followed by the use of dmrFinder. And finally, see the package vignette(s) for more information on how to use it.

Examples

```
6
```

```
## bsseqData package
}
```

BSseq

The constructor function for BSseq objects.

Description

The constructor function for BSseq objects.

Usage

```
BSseq(M = NULL, Cov = NULL, coef = NULL, se.coef = NULL,
trans = NULL, parameters = NULL, phenoData = NULL, gr = NULL,
pos = NULL, chr = NULL, sampleNames = NULL, rmZeroCov = FALSE)
```

Arguments

М	A matrix of methylation evidence.
Cov	A matrix of coverage.
coef	Smoothing estimates.
se.coef	Smoothing standard errors.
trans	A smoothing transformation.
parameters	A list of smoothing parameters.
phenoData	An object of class "phenoData".
sampleNames	A vector of sample names.
gr	An object of type "GRanges".
pos	A vector of locations.
chr	A vector of chromosomes.
rmZeroCov	Should genomic locations with zero coverage in all samples be removed.

Details

Genomic locations are specified either through gr or through chr and pos but not both. There should be the same number of genomic locations as there are rows in the M and Cov matrix.

The argument rmZeroCov may be useful in order to reduce the size of the return object be removing methylation loci with zero coverage.

In case one or more methylation loci appears multiple times, the M and Cov matrices are summed over rows linked to the same methylation loci. See the example below.

Users should never have to specify coef, se.coef, trans, and parameters, this is for internal use (they are added by BSmooth).

phenoData is a way to specify pheno data (as known from the "ExpressionSet" and "eSet" classes), at a minimum sampleNames should be given (if they are not present, the function uses col.names(M)).

BSseq-class

Value

An object of class "BSseq".

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

BSseq

Examples

BSseq-class Class BSseq

Description

A class for representing whole-genome or capture bisulfite sequencing data.

Objects from the Class

An object from the class links together several pieces of information. (1) genomic locations stored as a GRanges object, a location by samples matrix of M values, a location by samples matrix of Cov (coverage) values and phenodata information. In addition, there are slots for representing smoothed data. Objects can be created by calls of the form BSseq(...).

Slots

- gr: Object of class "GRanges" giving genomic locations.
- M: Object of class "matrix". This is a location by sample matrix of the number of reads supporting methylation.
- Cov: Object of class "matrix". This is a location by sample matrix of the coverage.
- coef: Object of class "matrixOrNULL". This is an optional slot representing smoothed data.
- se.coef: Object of class "matrixOrNULL". This is an optional slot representing standard errors of the smoothing.
- trans: Object of class "function". This function transforms the coef slot from the scale the smoothing was done to the 0-1 methylation scale.

parameters: Object of class "list". A list of parameters representing for example how the data was smoothed.

phenoData: Object of class "AnnotatedDataFrame". Sample information.

Methods

- [signature(x = "BSseq"): Subsetting by location (using integer indices) or sample (using integers or sample names).
- dim The dimensions of the object (number of locations by number of samples).
- ncol The number of columns (equal to the number of samples).
- nrow The number of rows (equal to the number of genomic locations).
- sampleNames, sampleNames<- Sample names and its replacement function for the object.
- **phenoData, phenoData**<- Obtain and replace the phenoData slot.
- pData,pData<- Obtain and replace the pData slot of the phenoData slot.
- show The show method.
- **combine** This function combines two BSSeq objects. The genomic locations of the new object is the union of the genomic locations of the individual objects. In addition, the methylation data matrices are placed next to each other (as appropriate wrt. the new genomic locations) and zeros are entered into the matrices as needed.

Utilities

This class extends hasGRanges and therefore inherits a number of useful GRanges methods that operate on the gr slot, used for accessing and setting the genomic locations and also do subsetByOverlaps.

There are a number of almost methods-like functions for operating on objects of class "BSseq", including getBSseq, collapseBSseq, and orderBSseq. They are detailed below.

- collapseBSseq(BSseq, columns) is used to collapse an object of class "BSseq". By collapsing we simply mean that certain columns (samples) are merge together by summing up the methylation evidence and coverage. This is a useful function if you start by reading in a dataset based on say flowcells and you (after QC) want to simply add a number of flowcells into one sample. The argument columns specify which samples are to be merged, in the following way: it is a character vector of new sample names, and the names of the column vector indicates which samples in the BSseq object are to be collapsed. If columns have the same length as the number of rows of BSseq (and has no names) it is assumed that the ordering corresponds to the sample ordering in BSseq.
- orderBSseq(BSseq, seqOrder = NULL) simply orders an object of class "BSseq" according to (increasing) genomic locations. The seqOrder vector is a character vector of seqnames(BSseq) describing the order of the chromosomes. This is useful for ordering chr1 before chr10.
- chrSelectBSseq(BSseq, seqnames = NULL, order = FALSE) subsets and optionally reorders an object of class "BSseq". The seqnames vector is a character vector of seqnames(BSseq) describing which chromosomes should be retained. If order is TRUE, the chromosomes are also re-ordered using orderBSseq.

- getBSseq(BSseq, type = c("Cov", "M", "gr", "coef", "se.coef", "trans", "parameters"))
 is a general accessor: is used to obtain a specific slot of an object of class "BSseq". It is primarily intended for internal use in the package, for users we recommend granges to get the
 genomic locations, getCoverage to get the coverage slots and getMeth to get the smoothed
 values (if they exist).
- hasBeenSmoothed(BSseq) This function returns a logical depending on whether or not the BSseq object has been smoothed using BSmooth.
- combineList(list) This function function is a faster way of using combine on multiple objects, all containing methylation data for the exact same methylation loci. The input is a list, with each component an object of class BSseq. The (slower) alternative is to use Reduce(combine, list).

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

The package vignette. BSseq for the constructor function. hasGRanges for accessing the genomic locations. getBSseq, getCoverage, and getMeth for accessing the data stored in the object and finally BSmooth for smoothing the bisulfite sequence data.

Examples

```
M <- matrix(1:9, 3,3)
colnames(M) <- c("A1", "A2", "A3")
BStest <- BSseq(pos = 1:3, chr = c("chr1", "chr2", "chr1"), M = M, Cov = M + 2)
chrSelectBSseq(BStest, seqnames = "chr1", order = TRUE)
collapseBSseq(BStest, columns = c("A1" = "A", "A2" = "A", "A3" = "B"))</pre>
```

BSseqTstat-class Class BSseqTstat

Description

A class for representing t-statistics for smoothed whole-genome bisulfite sequencing data.

Usage

BSseqTstat(gr = NULL, stats = NULL, parameters = NULL)

Arguments

gr	The genomic locations as an object of class GRanges.
stats	The statistics, as a matrix.
parameters	A list of parameters.

Objects from the Class

Objects can be created by calls of the form BSseqTstat(...). However, usually objects are returned by BSmooth.tstat(...) and not constructed by the user.

Slots

- stats: This is a matrix with columns representing various statistics for methylation loci along the genome.
- parameters: Object of class "list". A list of parameters representing how the t-statistics were computed.
- gr: Object of class "GRanges" giving genomic locations.

Extends

Class "hasGRanges", directly.

Methods

[The subsetting operator; one may only subset in one dimension, corresponding to methylation loci.

show The show method.

Utilities

This class extends hasGRanges and therefore inherits a number of useful GRanges methods that operate on the gr slot, used for accessing and setting the genomic locations and also do subsetByOverlaps.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

The package vignette(s). hasGRanges for accessing the genomic locations. BSmooth.tstat for a function that objects of class "BSseqTstat", and dmrFinder for a function that computes DMRs based on the t-statistics. Also see BS.cancer.ex.tstat for an example of the class in the bsseq-Data package.

Description

Converting a data.frame to a GRanges object. The data.frame needs columns like chr, start and end (strand is optional). Additional columns may be kept in the GRanges object.

Usage

```
data.frame2GRanges(df, keepColumns = FALSE, ignoreStrand = FALSE)
```

Arguments

df	A data.frame with columns chr or seqnames, start, end and optionally a strand column.
keepColumns	In case df has additional columns, should these columns be stored as metadata for the return GRanges or should they be discarded.
ignoreStrand	In case df has a strand column, should this column be ignored.

Value

An object of class "GRanges"

Note

In case df has rownames, they will be used as names for the return object.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

Examples

dmrFinder

Description

Finds differentially methylated regions for whole genome bisulfite sequencing data. Essentially identifies regions of the genome where all methylation loci have an associated t-statistic that is beyond a (low, high) cutoff.

Usage

```
dmrFinder(BSseqTstat, cutoff = NULL, qcutoff = c(0.025, 0.975),
maxGap=300, column = c("tstat.corrected", "tstat"),
verbose = TRUE)
```

Arguments

BSseqTstat	An object of class BSseqTstat.
cutoff	The cutoff of the t-statistics. This should be a vector of length two giving the (low, high) cutoff. If NULL, see qcutoff.
qcutoff	In case cutoff is NULL, compute the cutoff using these quantiles of the t-statistic.
maxGap	If two methylation loci are separated by this distance, break a possible DMR. This guarantees that the return DMRs have CpGs that are this distance from each other.
column	Which t-statistic column should be used?
verbose	Should the function be verbose?

Details

The workhorse function is BSmooth.tstat which sets up a t-statistic for a comparison between two groups.

Note that post-processing of these DMRs are likely to be necessary, filtering for example for length (or number of loci).

Value

A data.frame with columns

start, end, width, chr

	genomic locations and width.
n	The number of methylation loci.
invdensity	Average length per loci.
group1.mean	The mean methylation level across samples and loci in 'group1'.
group2.mean	The mean methylation level across samples and loci in 'group2'.

fisherTests

meanDiff	The mean difference in methylation level; the difference between group1.mean and group2.mean.
idxStart, idxEn	d, cluster Internal use.
areaStat	The 'area' of the t-statistic; equal to the sum of the t-statistics for the individual methylation loci.
direction	either 'hyper' or 'hypo'.
areaStat.correc	ted
	Only present if column = "tstat.corrected", contains the area of the corrected t-statistics.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

References

KD Hansen, B Langmead, and RA Irizarry (2012). BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Submitted.

See Also

BSmooth.tstat for the function constructing the input object, and "BSseqTstat" for its class. In the example below, we use BS.cancer.ex.tstat as the actual input object. Also see the package vignette(s) for a detailed example.

Examples

```
if(require(bsseqData)) {
 dmrs0 <- dmrFinder(BS.cancer.ex.tstat, cutoff = c(-4.6, 4.6), verbose = TRUE)</pre>
 dmrs <- subset(dmrs0, abs(meanDiff) > 0.1 & n >= 3)
}
```

fisherTests Compute Fisher-tests for a BSseq object

Description

A function to compute Fisher-tests for an object of class "BSseq".

Usage

```
fisherTests(BSseq, group1, group2, lookup = NULL,
  returnLookup = TRUE, mc.cores = 1, verbose = TRUE)
```

Arguments

BSseq	An object of class "BSseq".
group1	A vector of sample names or indexes for the 'treatment' group.
group2	A vector of sample names or indexes for the 'control' group.
lookup	A 'lookup' object, see details.
returnLookup	Should a 'lookup' object be returned, see details.
mc.cores	The number of cores used. Note that setting mc.cores to a value greater than 1 is not supported on MS Windows, see the help page for mclapply.
verbose	Should the function be verbose.

Details

This function computes row-wise Fisher's exact tests. It uses an internal lookup table so rows which forms equivalent 2x2 tables are group together and only a single test is computed. If returnLookup is TRUE the return object contains the lookup table which may be feed to another call to the function using the lookup argument.

If group1, group2 designates more than 1 sample, the samples are added together before testing.

This function can use multiple cores on the same computer.

This test cannot model biological variability.

Value

if returnLookup is TRUE, a list with components results and lookup, otherwise just the results component. The results (component) is a matrix with the same number of rows as the BSseq argument and 2 columns p.value (the unadjusted p-values) and log2OR (log2 transformation of the odds ratio).

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

fisher.test for information about Fisher's test. mclapply for the mc.cores argument.

Examples

14

getCoverage

Description

Obtain coverage for BSseq objects.

Usage

```
getCoverage(BSseq, regions = NULL, type = c("Cov", "M"),
what = c("perBase", "perRegionAverage", "perRegionTotal"))
```

Arguments

BSseq	An object of class "BSseq".
regions	An optional "data.frame" or "GenomicRanges" object specifying a number of genomic regions.
type	This returns either coverage or the total evidence for methylation at the loci.
what	The type of return object, see details.

Value

If regions are not specified (regions = NULL) a matrix (what = "perBase") or a vector (otherwise) is returned. This will either contain the per-base coverage or the genome total or average coverage.

If what = "perBase" and regions are specified, a list is returned. Each element of the list is a matrix corresponding to the genomic loci inside the region. It is conceptually the same as splitting the coverage by region.

If what = "perRegionAverage" or what = "perRegionTotal" and regions are specified the return value is a matrix. Each row of the matrix corresponds to a region and contains either the total coverage of the average coverage in the region.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

See Also

BSseq for the "BSseq" class.

Examples

```
head(getCoverage(BS.chr22, type = "M"))
reg <- GRanges(seqnames = c("chr22", "chr22"),
    ranges = IRanges(start = c(1, 2*10^7), end = c(2*10^7 +1, 4*10^7)))
getCoverage(BS.chr22, regions = reg, what = "perRegionAverage")
cList <- getCoverage(BS.chr22, regions = reg)
length(cList)
head(cList[[1]])</pre>
```

```
getMeth
```

Obtain methylation estimates for BSseq objects.

Description

Obtain methylation estimates for BSseq objects, both smoothed and raw.

Usage

```
getMeth(BSseq, regions = NULL, type = c("smooth", "raw"),
what = c("perBase", "perRegion"), confint = FALSE, alpha = 0.95)
```

Arguments

BSseq	An object of class "BSseq".
regions	An optional "data.frame" or "GenomicRanges" object specifying a number of genomic regions.
type	This returns either smoothed or raw estimates of the methylation level.
what	The type of return object, see details.
confint	Should a confidence interval be return for the methylation estimates (see below). This is only supported if what is equal to perBase.
alpha	alpha value for the confidence interval.

Value

If region = NULL the what argument is ignored. This is also the only situation in which confint = TRUE is supported. The return value is either a matrix (confint = FALSE or a list with three components confint = TRUE ("meth", "upper" and "lower"), giving the methylation estimates and (option-ally) confidence intervals.

Confidence intervals for type = "smooth" is based on standard errors from the smoothing algorithm (if present). Otherwise it is based on pointwise confidence intervals for binomial distributions described in Agresti (see below), specifically the score confidence interval.

If regions are specified, what = "perBase" will make the function return a list, each element of the list being a matrix corresponding to a genomic region (and each row of the matrix being a loci inside the region). If what = "perRegion" the function returns a matrix, with each row corresponding to a region and containing the average methylation level in that region.

16

getStats

Note

A "BSseq" object needs to be smoothed by the function BSmooth in order to support type = "smooth".

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

References

A Agresti and B Coull (1998). Approximate Is Better than "Exact" for Interval Estimation of Binomial Proportions. The American Statistician 52, 119-126.

See Also

BSseq for the "BSseq" class and BSmooth for smoothing such an object.

Examples

```
head(getMeth(BS.chr22, type = "raw"))
reg <- GRanges(seqnames = c("chr22", "chr22"),
    ranges = IRanges(start = c(1, 2*10^7), end = c(2*10^7 +1, 4*10^7)))
head(getMeth(BS.chr22, regions = reg, type = "raw", what = "perBase"))</pre>
```

getStats

Obtain statistics from a BSseqTstat object

Description

Essentially an accessor function for the statistics of a "BSseqTstat" object.

Usage

Arguments

BSseqTstat	An object of class "BSseqTstat".
regions	An optional "data.frame" or "GenomicRanges" object specifying a number of genomic regions.
column	Which t-statistic column should be obtained.

Value

An object of class data. frame possible restricted to the regions specified.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

BSseqTstat for the "BSseqTstat" class, and getCoverage and getMeth for similar functions, operating on objects of class "BSseq".

Examples

```
if(require(bsseqData)) {
    data(BS.cancer.ex.tstat)
    head(getStats(BS.cancer.ex.tstat))
    reg <- GRanges(seqnames = c("chr22", "chr22"),
        ranges = IRanges(start = c(1, 2*10^7), end = c(2*10^7 +1, 4*10^7)))
    head(getStats(BS.cancer.ex.tstat, regions = reg))
}</pre>
```

GoodnessOfFit	Binomial and poisson	n goodness of fit statistics	for BSSeq objects

Description

Binomial and poisson goodness of fit statistics for BSSeq objects, including plotting capability.

Usage

```
poissonGoodnessOfFit(BSseq, nQuantiles = 10^5)
binomialGoodnessOfFit(BSseq, method = c("MLE"), nQuantiles = 10^5)
## S3 method for class 'chisqGoodnessOfFit'
print(x, ...)
## S3 method for class 'chisqGoodnessOfFit'
plot(x, type = c("chisq", "pvalue"), plotCol = TRUE, qqline = TRUE,
    pch = 16, cex = 0.75, ...)
```

Arguments

BSseq	An object of class "BSseq".
х	$A\ chisq Goodness Of Fit\ object\ (as\ produced\ by\ poisson {\tt Goodness} Of Fit\ or\ binomial {\tt Goodness} Of Fit).$
nQuantiles	The number of (evenly-spaced) quantiles stored in the return object.
method	How is the parameter estimated.
type	Are the chisq or the p-values being plotted.
plotCol	Should the extreme quantiles be colored.
qqline	Add a gqline.
pch, cex	Plotting symbols and size.
	Additional arguments being passed to qqplot (for plot) or ignored (for print).

18

hasGRanges-class

Details

These functions compute and plot goodness of fit statistics for "BSseq" objects. For each methylation loci, the Poisson goodness of fit statistic tests whether the coverage (at that loci) is independent and identically Poisson distributed across the samples. In a similar fashion, the Binomial goodness of fit statistic tests whether the number of reads supporting methylation are independent and identically binomial distributed across samples (with different size parameters given by the coverage vector).

These functions do not handle NA values.

Value

The plotting method is invoked for its side effect. Both poissonGoodnessOfFit and binomialGoodnessOfFit returns an object of class "chisqGoodnessOfFit" which is a list with components

chisq	a vector of Chisq values.
quantiles	a vector of quantiles (of the chisq values).
df	degress of freedom

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

For the plotting method, see qqplot.

Examples

```
if(require(bsseqData)) {
  gof <- poissonGoodnessOfFit(BS.cancer.ex)
  plot(gof)
}</pre>
```

hasGRanges-class Class hasGRanges

Description

A class with a GRanges slot, used as a building block for other classes. Provides basic accessor functions etc.

Objects from the Class

Objects can be created by calls of the form new("hasGRanges", ...).

Slots

gr: Object of class "GRanges".

Methods

"[" Subsets a single dimension.

granges Get the GRanges object representing genomic locations.

start,start<-,end,end<-,width,width<- Start, end and width for the genomic locations of the object, also replacement functions. This accessor functions operate directly on the gr slot.

strand, strand <- Getting and setting the strand of the genomic locations (the gr slot).

seqlengths,seqlengths<- Getting and setting the seqlengths of the genomic locations (the gr slot).

seqlevels, seqlevels -- Getting and setting the seqlevels of the genomic locations (the gr slot).

seqnames, seqnames - Getting and setting the seqnames of the genomic locations (the gr slot).

- show The show method.
- findOverlaps (query = "hasGRanges", subject = "hasGRanges"): finds overlaps between
 the granges() of the two objects.
- findOverlaps (query = "GenomicRanges", subject = "hasGRanges"): finds overlaps between
 query and the granges() of the subject.
- findOverlaps (query = "hasGRanges", subject = "GenomicRanges"): finds overlaps between
 the granges() of the query and the subject.
- subsetByOverlaps (query = "hasGRanges", subject = "hasGRanges"): Subset the query, keeping the genomic locations that overlaps the subject.
- subsetByOverlaps (query = "hasGRanges", subject = "GenomicRanges"): Subset the query, keeping the genomic locations that overlaps the subject.
- subsetByOverlaps (query = "GenomicRanges", subject = "hasGRanges"): Subset the query, keeping the genomic locations that overlaps the subject.

Note

If you extend the hasGRanges class, you should consider writing a subset method ([), and a show method. If the new class supports single index subsetting, the subsetByOverlaps methods show extend without problems.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

Examples

```
showClass("hasGRanges")
```

plotRegion

Description

Functions for plotting BSmooth methylation estimates. Typically used to display differentially methylated regions.

Usage

```
plotRegion(BSseq, region = NULL, extend = 0, main = "",
  addRegions = NULL, annoTrack = NULL, col = NULL, lty = NULL,
  lwd = NULL, BSseqTstat = NULL, mainWithWidth = TRUE,
  regionCol = alpha("red", 0.1), addTicks = TRUE,
  addPoints = FALSE, pointsMinCov = 5, highlightMain = FALSE)
plotManyRegions(BSseq, regions = NULL, extend = 0, main = "",
  addRegions = NULL, annoTrack = NULL, col = NULL, lty = NULL,
  lwd = NULL, BSseqTstat = NULL, mainWithWidth = TRUE,
  regionCol = alpha("red", 0.1), addTicks = TRUE,
  addPoints = FALSE, pointsMinCov = 5, highlightMain = FALSE,
  verbose = TRUE)
```

Arguments

BSseq	An object of class "BSseq".
region	A "data.frame" (with start, end and chr columns) with 1 row or "GRanges" of length 1. If region is NULL the entire BSseq argument is plotted.
regions	A "data.frame" (with start, end and chr columns) or "GRanges".
extend	Describes how much the plotting region should be extended in either direction. The total width of the plot is equal to the width of the region plus twice extend.
main	The plot title. The default is to construct a title with information about which genomic region is being plotted.
addRegions	A set of additional regions to be highlighted on the plots. As the regions argument.
annoTrack	A named list of "GRanges" objects. Each component is a track and the names of the list are the track names. Each track will be plotted as solid bars, and we routinely display information such as CpG islands, exons, etc.
col	The color of the methylation estimates, see details.
lty	The line type of the methylation estimates, see details.
lwd	The line width of the methylation estimates, see details.
BSseqTstat	An object of class "BSseqTstat". If present, a new panel will be shown with the t-statistics.
mainWithWidth	Should the default title include information about width of the plot region.

regionCol	The color used for highlighting the region.
addTicks	Should tick marks showing the location of methylation loci, be added?
addPoints	Should the individual unsmoothed methylation estimates be plotted. This usually leads to a very confusing plot, but may be useful for diagnostic purposes.
pointsMinCov	The minimum coverage a methylation loci need in order for the raw methylation estimates to be plotted. Useful for filtering out low coverage loci. Only used if addPoints = TRUE.
highlightMain	Should the plot region be highlighted?
verbose	Should the function be verbose?

Details

The correct choice of aspect ratio depends on the width of the plotting region. We tend to use width = 10, height = 5.

plotManyRegions is used to plot many regions (hundreds or thousands), and is substantially quicker than repeated calls to plotRegion.

This function has grown to be rather complicated over time. For custom plotting, it is sometimes useful to use the function definition as a skeleton and directly modify the code.

Value

This function is invoked for its side effect: producing a plot.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

The package vignette has an extended example.

read.bismark

Parsing output from the Bismark alignment suite

Description

Parsing output from the Bismark alignment suite.

Usage

```
read.bismark(files, sampleNames, rmZeroCov = FALSE, verbose = TRUE)
```

read.bismark

Arguments

files	Input files. Each sample is in a different file. Input files are created by running Bismark's methylation_extractor; see Note for details.
sampleNames	sample names, based on the order of files.
rmZeroCov	Should methylation loci that have zero coverage in all samples be removed. This will result in a much smaller object if the data originates from (targeted) capture bisulfite sequencing.
verbose	Make the function verbose.

Value

An object of class "BSseq".

Note

Input files can either be gzipped or not.

Input files are created by running Bismark's methylation_extractor and genome_methylation_bismark2bedGraph_v4.p scripts over the Bismark alignment file. For example (run from the command line):

methylation_extractor -s --comprehensive test_data.fastq_bismark.sam

genome_methylation_bismark2bedGraph_v4.pl --counts CpG_context_test_data.fastq_bismark.txt >
CpG_context_test_data.fastq_bismark.bedGraph

The --comprehensive argument to methylation_extractor and the --counts argument to genome_methylation_bismar are required.

In this example, the file CpG_context_test_data.fastq_bismark.bedGraph is then the input file to read.bismark.

See http://rpubs.com/PeteHaitch/readBismark for a worked example using Bismark and read.bismark. Please consult the Bismark website for full details of these scripts and the latest versions (http: //www.bioinformatics.babraham.ac.uk/projects/download.html#bismark)

Author(s)

Peter Hickey <peter.hickey@gmail.com>

See Also

read.bsmooth for parsing output from the BSmooth alignment suite. read.umtab for parsing legacy (old) formats from the BSmooth alignment suite. collapseBSseq for collapse (merging or summing) the data in two different directories.

Examples

```
## Not run:
bismarkBedGraph <- system.file("extdata/CpG_context_test_data.fastq_bismark.bedGraph", package = 'bsseq')
bismarkBSseq <- read.bismark(files = bismarkBedGraph, sampleNames = "test_data", rmZeroCov = FALSE, verbose = TRU
bismarkBSseq
```

End(Not run)

read.bsmooth

Description

Parsing output from the BSmooth alignment suite.

Usage

```
read.bsmooth(dirs, sampleNames = NULL, seqnames = NULL,
returnRaw = FALSE, qualityCutoff = 20, rmZeroCov = FALSE,
verbose = TRUE)
```

Arguments

dirs	Input directories. Usually each sample is in a different directory, or perhaps each (sample, lane) is a different directory.
sampleNames	sample names, based on the order of dirs. If NULL either set to basename(dirs) (if unique) or dirs.
seqnames	The default is to read all BSmooth output files in dirs. Using this argument, it is possible to restrict this to only files with names in seqnames (apart from .cpg.tsv and optionally .gz).
returnRaw	Should the function return the complete information in the output files?
qualityCutoff	Only use evidence (methylated and unmethylated evidence) for a given methy- lation loci, if the base in the read has a quality greater than this cutoff.
rmZeroCov	Should methylation loci that have zero coverage in all samples be removed. This will result in a much smaller object if the data originates from (targeted) capture bisulfite sequencing.
verbose	Make the function verbose.

Value

Either an object of class "BSseq" (if returnRaw = FALSE) or a list of "GRanges" which each component coming from a directory.

Note

Input files can either be gzipped or not. Gzipping the input files results in much greater speed of reading (and saves space), so it is recommended.

We are working on making this function faster and less memory hungry.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

read.umtab

See Also

read.umtab for parsing legacy (old) formats from the BSmooth alignment suite. collapseBSseq for collapse (merging or summing) the data in two different directories.

Parsing UM tab files (legacy output) containing output from the BSmooth aligner.

Description

Parsing UM tab files containing output from the bisulfite aligner Merman. This is two different legacy formats, which we keep around. These functions are likely to be deprecated in the future.

Usage

```
read.umtab(dirs, sampleNames = NULL, rmZeroCov = FALSE,
    pattern = NULL, keepU = c("U10", "U20", "U30", "U40"),
    keepM = c("M10", "M20", "M30", "M40"), verbose = TRUE)
read.umtab2(dirs, sampleNames = NULL, rmZeroCov = FALSE,
    readCycle = FALSE, keepFilt = FALSE,
```

pattern = NULL, keepU, keepM, verbose = TRUE)

Arguments

dirs	Input directories. Usually each sample is in a different directory.
pattern	An optional pattern, see list.files in the base package.
sampleNames	sample names, based on the order of dirs.
rmZeroCov	Should methylation loci that have zero coverage in all samples be removed. This will result in a much smaller object if the data originates from (targeted) capture bisulfite sequencing.
keepU	A vector of U columns which are kept.
keepM	A vector of M columns which are kept.
readCycle	Should the cycle columns be returned?
keepFilt	Should the filter columns be returned?
verbose	Make the function verbose.

Details

read.umtab2 is newer than read.umtab and both process output from older versions of the BSmooth alignment suite (versions older than 0.6.1). These functions are likely to be deprecated in the future. Newer output from the BSmooth alignment suite can be parsed using read.bsmooth.

A script using this function can be found in the bsseqData package, in the file 'scripts/create_BS.cancer.R'.

Value

Both functions returns lists, the components are

BSdata	An object of class "BSseq" containing the methylation evidence.
GC	A vector of local GC content values.
Мар	A vector of local mapability values.
Мсу	A matrix of the number of unique M cycles.
Ucy	A matrix of the number of unique U cycles.
chr	A vector of chromosome names.
pos	A vector of genomic positions.
М	A matrix representing methylation evidence.
U	A matrix representing un-methylation evidence.
csums	Description of 'comp2'

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

read.bsmooth.

Examples

```
## Not run:
require(bsseqData)
umDir <- system.file("umtab", package = "bsseqData")
sampleNames <- list.files(umDir)
dirs <- file.path(umDir, sampleNames, "umtab")
umData <- read.umtab(dirs, sampleNames)</pre>
```

End(Not run)

Index

*Topic classes BSseq-class, 7 BSseqTstat-class, 9 hasGRanges-class, 19 *Topic datasets BS.chr22, 2 [,BSseq-method (BSseq-class), 7 [,BSseqTstat-method (BSseqTstat-class), 9 [, hasGRanges-method (hasGRanges-class), 19 binomialGoodnessOfFit (GoodnessOfFit), 18 BS.cancer.ex.tstat, 10, 13 BS.chr22, 2 BSmooth, 3, 5, 9, 17 BSmooth.tstat, 4, 10, 13 BSseq, 4, 5, 6, 7, 9, 15, 17 BSseq-class, 7 BSseqTstat, 5, 13, 18 BSseqTstat (BSseqTstat-class), 9 BSseqTstat-class, 9 chisqGoodnessOfFit (GoodnessOfFit), 18 chrSelectBSseq (BSseq-class), 7 collapseBSseq, 23, 25

collapseBSseq, 25, 25 collapseBSseq (BSseq-class), 7 combine, BSseq, BSseq-method (BSseq-class), 7 combineList (BSseq-class), 7

data.frame2GRanges, 11
dim,BSseq-method(BSseq-class), 7
dmrFinder, 5, 10, 12

end, hasGRanges-method (hasGRanges-class), 19 end<-, hasGRanges-method (hasGRanges-class), 19 findOverlaps,GenomicRanges,hasGRanges-method
 (hasGRanges-class), 19
findOverlaps,hasGRanges,GenomicRanges-method
 (hasGRanges-class), 19
findOverlaps,hasGRanges,hasGRanges-method
 (hasGRanges-class), 19
fisher.test, 14
fisherTests, 13

getBSseq, 9 getBSseq (BSseq-class), 7 getCoverage, 9, 15, 18 getMeth, 9, 16, 18 getStats, 17 GoodnessOfFit, 18 granges, hasGRanges-method (hasGRanges-class), 19

hasBeenSmoothed (BSseq-class), 7 hasGRanges, 9, 10 hasGRanges-class, 19

```
length, hasGRanges-method
      (hasGRanges-class), 19
locfit, 4
```

```
mclapply, 14
```

ncol,BSseq-method(BSseq-class),7
nrow,BSseq-method(BSseq-class),7

orderBSseq (BSseq-class), 7

```
plotManyRegions (plotRegion), 21
plotRegion, 21
poissonGoodnessOfFit (GoodnessOfFit), 18
print.chisqGoodnessOfFit
        (GoodnessOfFit), 18
read.bismark, 22
read.bsmooth, 23, 24, 26
read.umtab, 23, 25, 25
read.umtab2(read.umtab), 25
sampleNames,BSseq-method(BSseq-class),
        7
sampleNames<-,BSseq,ANY-method</pre>
        (BSseq-class), 7
seqlengths,hasGRanges-method
        (hasGRanges-class), 19
seqlengths<-,hasGRanges-method</pre>
        (hasGRanges-class), 19
seqlevels,hasGRanges-method
        (hasGRanges-class), 19
seqlevels<-,hasGRanges-method</pre>
        (hasGRanges-class), 19
seqnames, hasGRanges-method
        (hasGRanges-class), 19
seqnames<-,hasGRanges-method</pre>
        (hasGRanges-class), 19
show,BSseq-method(BSseq-class),7
show,BSseqTstat-method
        (BSseqTstat-class), 9
start, hasGRanges-method
        (hasGRanges-class), 19
start<-,hasGRanges-method</pre>
        (hasGRanges-class), 19
strand, hasGRanges-method
        (hasGRanges-class), 19
strand<-,hasGRanges-method</pre>
        (hasGRanges-class), 19
subsetByOverlaps,GenomicRanges,hasGRanges-method
        (hasGRanges-class), 19
subsetByOverlaps,hasGRanges,GenomicRanges-method
        (hasGRanges-class), 19
subsetByOverlaps, hasGRanges, hasGRanges-method
        (hasGRanges-class), 19
width, hasGRanges-method
        (hasGRanges-class), 19
width<-,hasGRanges-method
```

```
(hasGRanges-class), 19
```

28