
Package ‘SANTA’
October 9, 2013

Type Package

Title Spatial Analysis of Network Associations

Version 1.0.0

Date 24 March 2013

Author Alex Cornish and Florian Markowetz

Maintainer Alex Cornish <a.cornish12@imperial.ac.uk>

Imports msm

Depends R (>= 2.14), igraph, snow

Suggests RUnit, BiocGenerics, org.Sc.sgd.db

Description This package provides methods for measuring the strength of association between a net-
work and a phenotype. It does this by measuring clustering of the phenotype across the net-
work. Vertices can also be individually ranked by their strength of association with high-
weight vertices.

License Artistic-2.0

biocViews NetworkAnalysis, NetworkEnrichment, Clustering

LazyLoad yes

R topics documented:
CheckAttributes . 2
CreateGraph . 3
CreateGrid . 6
data-treated.dataframe . 7
data-untreated.dataframe . 7
DistGraph . 8
GraphDiffusion . 10
GraphMFPT . 11

1

2 CheckAttributes

Knet . 12
Knode . 15
MarkovCentrality . 18
plot.Knet . 19
SpreadHits . 21

Index 23

CheckAttributes Check that a graph is associated with the correct vertex and edge at-
tributes and can be passed to the Knet and Knode function.

Description

In order for the Knet and Knode functions to operate correctly when applied to a graph, the graph
must be associated with vertex and edge attributes that represent the weight of the vertices and the
distances along the edges. This function ensures that an igraph object contains these attributes and
converts them to the correct format if required.

Usage

CheckAttributes(g, vertex.attr = "pheno", edge.attr = "distance")

Arguments

g An igraph object, the graph to work on.
vertex.attr A character vector, containing the one or more names of the vertex attributes

under which vertex weights to be tested are stored.
edge.attr A string, containing the name of the edge attribute to be used as distances along

the edges. If no edge distances are associated with the graph, then each edge is
assigned a distance of 1 and these distances saved under this attribute name.

Details

In order for the Knet and Knode functions to work correctly, one or more vertex attributes represent-
ing vertex weights and one edge attribute representing the distances along edges need to be present
within the igraph object. CheckAttributes checks that these attributes are present and in a suitable
format. If no edge distances are associated with the graph, then each edge is assigned a distance of
1 by the function.
This function is included within the Knet and Knode functions and does not need to be run sepa-
rately.
If vertex weights are not present under any of the attribute names in vertex.attr, an error message
is returned.
If edge distances are not present under the attribute name edge.attr, then each edge is assigned a
distance of 1 under this attribute name.
If the vertex weights or edge distances are not numeric, then they are converted to numerals. If they
cannot be converted, an error message is returned.
If any of the vertex weights or edge distances are negative, an error message is returned.

CreateGraph 3

Value

An igraph object, the input graph with any required modifications.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

See Also

Knet, Knode

Examples

Create a graph, assign vertex weights and use the CheckAttributes function
to check that the vertex weights are in the correct format and assign edge
distances
g1 <- CreateGraph(10, gen.vertex.weights=FALSE)
g1 <- set.vertex.attribute(g1, name="weights", value=runif(vcount(g1)))
g1 <- CheckAttributes(g1, vertex.attr="weights", edge.attr="distances")
get.vertex.attribute(g1, name="weights")
get.edge.attribute(g1, name="distances")

CreateGraph Generate a simple undirected graph, with or without vertex weights
and edge distances.

Description

Generate a simple and undirected graph containing a specified number of vertices, with or without
vertex weights and edge distances. Vertex weights added to the graph can be binary or continuous,
randomly distributed or grouped into one or more clusters of high-weight vertices (hits).

Usage

CreateGraph(n=100, type="barabasi", m=2, p.or.m=(2*n-2*floor(sqrt(n))), vertex.weights=NULL, edge.distances=NULL, gen.vertex.weights=FALSE, nclusters=1, lambda=1, nlinks=ceiling(n/5), nhits=ceiling(n/10), binary.pheno=TRUE, dist.method="shortest.paths", mean.hit=1, sd.hit=0.05, mean.miss=0, sd.miss=0.05)

Arguments

n An integer value, the number of vertices to be included.

type A string, the algorithm to be used to build the graph. Can either be barabasi,
erdos.renyi or grid.

m An integer value, the number of edges to be added in each step of the barabasi
algorithm, if used.

p.or.m An integer value, the number of edges to be included within the graph, if the
erdos.renyi algorithm is used.

4 CreateGraph

vertex.weights A numeric vector, containing vertex weights to be added to the graph. The
length of the vector must equal n. If the graph contains nhits hits, then the
nhits-highest vertex weights are randomly assigned to the hit vertices. The
remaining weights are randomly assigned to the remaining vertices (the misses).
The vertex weights are added under a vertex attribute pheno.

edge.distances A numeric vector, containing edge distances to be added to the graph. The length
of the vector must equal the number of edges in the graph. The edge distances
are randomly assigned to the edges under an edge attribute distance.

gen.vertex.weights

A logical constant, denoting whether vertex weights should be generated. If
TRUE and vertex.weights=NULL, then vertex weights for hits and misses are
generated and added under the vertex attribute pheno.

nclusters An integer value, the number of clusters that the hits are grouped into.

lambda A numeric value, the strength of the hit clustering. If lambda=0, then the hits are
randomly distributed. The greater the value of lambda, the greater the strength
of hit clustering. Hits are only added if gen.vertex.weights=TRUE and/or
vertex.weights!=NULL.

nlinks An integer value, the number of linking edges to be added between clusters.

nhits An integer value, the number of hits to be added to the graph. Hits are only
added if gen.vertex.weights=TRUE and/or vertex.weights!=NULL.

binary.pheno A logical value, denoting whether generated vertex weights should be binary or
continuous. If TRUE, then hit and miss vertices are assigned weights of 1 and 0
under the vertex attribute pheno. If FALSE, then weights are generated using two
truncated normal distributions with parameters mean.hit, sd.hit, mean.miss
and sd.miss. These continuous weights also range between 0 and 1.

dist.method A string, the method used to calculate the distance between each vertex and the
start vertex. Can either be shortest.paths, diffusion or mfpt.

mean.hit A numeric value, the mean parameter in the truncated normal distribution used
to generate the vertex weight of the hits.

sd.hit A numeric value, the standard deviation parameter in the truncated normal dis-
tribution used to generate the vertex weight of the hits.

mean.miss A numeric value, the mean parameter in the truncated normal distribution used
to generate the vertex weight of the misses.

sd.miss A numeric value, the standard deviation parameter in the truncated normal dis-
tribution used to generate the vertex weight of the misses.

Details

This function creates simple, undirected graphs, with or without associated vertex weights and edge
distances.

1 of 3 different algorithms can be used to build the graph. The barabasi algorithm builds a scale-
free graph through preferencial attachment of vertices. The erdos.renyi algorithm builds a ran-
dom graph with a fixed number of edges. The grid algorithm builds a graph with a grid-like
structure. The graph produced is always simple, meaning that it contains no loops and no multiple
edges.

CreateGraph 5

Vertex weights can be added to the graph as a vertex attribute under the name pheno. Larger vertex
weights indicate that the vertex is more strongly associated with a certain phenotype or function.
The number of vertex weights input must equal the number of vertices present within the graph.
Larger vertex weights are randomly assigned to the hit vertices and smaller vertex weights are
randomly assigned to the misses.

Edge distances can be added to the graph as an edge attribute under the name distance. Smaller
edge distances indicate that two vertices are more strongly connected. The number of edge dis-
tances input must equal the number of edges present in the graph. The edge distances are randomly
assigned to the different edges.

If vertex.weights!=NULL and/or gen.vertex.weights=TRUE, then hits are added across the graph.
lambda shapes the probability distribution under which the hits are added. If lambda=0, then hits
are added to each vertex with equal probability. If lambda>0, then the hits become clustered around
one or more random vertices on the graph. The greater the value of lambda, the greater the strength
of the clustering. The probability of vertex i being a hit is proportional to

P [i] ∼ lambda ∗ exp−lambda∗d[start,i]

where d[start, i] is the distance between the start vertex and vertex i, according to the shortest paths
distance measure.

If binary.pheno=TRUE, then hits and misses are assigned weights of 1 and 0 respectively. Other-
wise, vertex weights ranging between 0 and 1 are generated using 2 truncated normal probability
distributions - one distribution for the hits and another for the misses. The shape of these distribu-
tions are set using the mean.hit, sd.hit, mean.miss and sd.miss parameters.

Multiple clusters of hits can be added to the graph. These clusters are created by adding hits to
multiple graphs. These graphs are then connected through the addition of nlinks linking edges.

Value

A igraph object. If vertex weights are added, then whether the vertex is a hit or a miss is specified
under the vertex attribute hits, the cluster from which the hit is from under the vertex attribute
hits.cluster and the vertex weight under the vertex attribute pheno. A vertex attribute named
color is also added to allow for the identification of hits when the graph is plotted using plot.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

References

Barabasi, A.L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286:
509-512.

Erdos, P. and Renyi, A. (1959). On random graphs. Publicationes Mathematicae 6: 290-297.

See Also

CreateGrid, barabasi.game, erdos.renyi.game

6 CreateGrid

Examples

Create a 30-vertex graph with a scale-free structure and no vertex weights
g1 <- CreateGraph(n=30, type="barabasi", gen.vertex.weights=FALSE)
plot(g1, layout=layout.fruchterman.reingold)

Create a 30-vertex graph with a random structure and 2 clusters of high-weight vertices
g2 <- CreateGraph(n=30, type="erdos.renyi", gen.vertex.weights=TRUE, nhits=8, nclusters=2,
lambda=10, binary.pheno=TRUE)
plot(g2, layout=layout.fruchterman.reingold)

Create a 36-vertex grid-shaped graph with 6 randomly-distributed high-weight vertices
g3 <- CreateGraph(n=36, type="grid", gen.vertex.weights=TRUE, nhits=6, lambda=0,
binary.pheno=FALSE)
plot(g3, layout=layout.fruchterman.reingold)

CreateGrid Generate a grid-like graph.

Description

Generate a graph with a grid-like arrangement of edges.

Usage

CreateGrid(n = 100)

Arguments

n An integer value, the number of vertices to be included.

Details

This is a simple algorithm that creates a grid-like graph. Vertices are arranged in the largest square
lattice possible. Vertices not included within this square are added as an additional row. Vertices
are connected by edges to their closest neighbours.

Value

An igraph object.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

See Also

CreateGraph

data-treated.dataframe 7

Examples

Generate and plot a grid-like graph containing 100 vertices.
g <- CreateGrid(n = 100)
plot(g, layout=layout.fruchterman.reingold)

data-treated.dataframe

Edges from the genetic interaction network created by Bandyopadhyay
et al. (2010) using yeast treated with the DNA-damaging agent methyl
methanesulfonate (MMS)

Description

It has been demonstrated that some genetic interactions (GIs) are condition-dependant. This data
frame contains a filtered set of the interactions identified in yeast when exposed to DNA-damaging
conditions. The data frame contains 415 genes linked by 4428 positive and negative GIs. GIs with
a score between -1.75 and 1.75 have been removed.

The data frame contains 3 columns, two containing the binding partners and one containing the GI
scores.

References

Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M. K., Chuang, R., Jaehnig, E. J., Bodenmiller, B.,
Licon, K., Copeland, W., Shales, M., Fiedler, D., Dutkowski, J., Guenole, A., Attikum, H., Shokat,
K. M., Kolodner, R. D., Huh, W. K., Aebersold, R., Keogh, M. C., Krogan, N. and Ideker, T. (2010)
Rewiring of genetic networks in response to DNA damage Science, 330: 1385-1389.

Examples

Load the data frame, create the network and display the number of vertices and edges
contained within.
data(treated.dataframe)
g.treated <- graph.data.frame(treated.dataframe, directed=FALSE)
vcount(g.treated)
ecount(g.treated)

data-untreated.dataframe

Edges from the genetic interaction network created by Bandyopadhyay
et al. (2010) using yeast under normal laboratory conditions.

8 DistGraph

Description

It has been demonstrated that some genetic interactions (GIs) are condition-dependant. This data
frame contains a filtered set of the interactions identified in yeast when exposed to normal laboratory
conditions. The data frame contains 411 genes linked by 3197 positive and negative GIs. GIs with
a score between -1.75 and 1.75 have been removed.

The data frame contains 3 columns, two containing the binding partners and one containing the GI
scores.

References

Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M. K., Chuang, R., Jaehnig, E. J., Bodenmiller, B.,
Licon, K., Copeland, W., Shales, M., Fiedler, D., Dutkowski, J., Guenole, A., Attikum, H., Shokat,
K. M., Kolodner, R. D., Huh, W. K., Aebersold, R., Keogh, M. C., Krogan, N. and Ideker, T. (2010)
Rewiring of genetic networks in response to DNA damage Science, 330: 1385-1389.

Examples

Load the data frame, create the network and display the number of vertices and edges
contained within.
data(untreated.dataframe)
g.untreated <- graph.data.frame(untreated.dataframe, directed=FALSE)
vcount(g.untreated)
ecount(g.untreated)

DistGraph Compute the vertex pair distance matrix of a graph.

Description

Compute the distances between pairs of vertices in a graph, using a shortest path, diffusion kernel,
or mean first-passage time-based measure.

Usage

DistGraph(g, v = V(g), edge.attr = NULL,
dist.method = c("shortest.paths", "diffusion", "mfpt"), correct.inf = TRUE, correct.factor=1)

Arguments

g An igraph object, the graph to work on.

v An igraph object or numeric vector, the vertices from which each distance is
calculated.

edge.attr A string, containing the name of the edge attribute to be used as distances along
the edges. If left equal to NULL, then each edge is assumed to have a distance of
1.

dist.method A string, the method used to calculate the distance between each vertex pair.
Can either be shortest.paths, diffusion or mfpt.

DistGraph 9

correct.inf A logical value. If TRUE, then infinite vertex pair distances are replaced with dis-
tances equal to the maximum distance measured across the network, multiplied
by correct.factor. If FALSE, then these distances are returned as Inf.

correct.factor A numeric value, the factor by which the maximum measured distance is multi-
plied.

Details

This function calculates a distance matrix for a graph. Different methods can be used to calculate
the distance between each pair of vertices. By specifying a set of vertices, a smaller distance matrix
containing only the rows of the input vertices can be returned.

Value

A numeric matrix, containing the distances between vertex pairs.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

References

Kondor, R.I. and Lafferty, J. (2002). Diffusion Kernels on Graph and Other Discrete Structures.
Proc. Intl. Conf. Machine Learning.

White, S. and Smyth, P. (2003). Algorithms for Estimating Relative Importance in Networks. Tech-
nical Report UCI-ICS 04-25.

See Also

GraphDiffusion, GraphMFPT, shortest.paths

Examples

Create a graph and calculate the distance matrix using the shortest paths measure
g1 <- CreateGraph(n=6, type="barabasi")
DistGraph(g1, dist.method="shortest.paths")
plot(g1, layout=layout.fruchterman.reingold)

Create a graph, assign edge distances and calculate the distance matrix using the
diffusion kernel-based measure
g2 <- CreateGraph(n=6, type="erdos.renyi")
g2 <- set.edge.attribute(g2, name="distance", value=runif(ecount(g2)))
DistGraph(g2, dist.method="diffusion", edge.attr="distance")
plot(g2, layout=layout.fruchterman.reingold)

10 GraphDiffusion

GraphDiffusion Compute the distances between vertex pairs using a diffusion kernel-
based method.

Description

Using a diffusion kernel-based algorithm, compute the distance between vertex pairs in an undi-
rected graph, with or without edge distances. This algorithm provides an alternative to the shortest.paths
and mfpt measures of vertex pair distance.

Usage

GraphDiffusion(g, v=V(g), edge.attr=NULL, beta=1, correct.factor=1, correct.neg=TRUE)

Arguments

g An igraph object, the graph to work on.

v An igraph object or numeric vector, the vertices from which each distance is
calculated.

edge.attr A string, the names of the edge attribute to be used as distances along the edges.
If left equal to NULL, then each edge is assumed to have a distance of 1.

beta A numeric value, the probability that the lazy random walk will take each of the
edges emanating from a vertex.

correct.factor A numeric value, the factor by which the maximum measured distance is multi-
plied.

correct.neg A logical value. If TRUE, then negative edge distances are set to 0.

Details

Diffusion across a graph follows a process similar to a random walk. This provides a method of
measuring the distance between vertex pairs that does not simply take into account a single path
(like the shortest.paths algorithm) but instead incorporates multiple paths. This function uses a
diffusion kernel-based approach to calculate distances. The algorithm implemented is detailed in
the referenced paper.

The distance from vertex a to vertex a is always 0.

Value

A numeric matrix, containing the diffusion kernel-derived vertex pair distance between each vertex
in v and every vertex in g.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

GraphMFPT 11

References

Kondor, R.I. and Lafferty, J. (2002). Diffusion Kernels on Graph and Other Discrete Structures.
Proc. Intl. Conf. Machine Learning.

See Also

GraphMFPT, shortest.paths

Examples

Create a graph and calculate the diffusion kernel-derived vertex pair distance matrix
g <- CreateGraph(n=6, type="barabasi")
GraphDiffusion(g)
plot(g, layout=layout.fruchterman.reingold)

GraphMFPT Compute the distances between vertex pairs using a mean first-
passage time-based method.

Description

Using the mean first-passage time algorithm, compute the distance between vertex pairs in an
undirected graph, with or without edge distances. This algorithm provides an alternative to the
shortest.paths and diffusion measures of vertex pair distance.

Usage

GraphMFPT(g, v = V(g), edge.attr = NULL, average.distances = TRUE)

Arguments

g An igraph object, the graph to work on.

v An igraph object or numeric vector, the vertices from which each distance is
calculated.

edge.attr A string, the name of the edge attribute to be used as distances along the edges.
If left equal to NULL, then each edge is assumed to have a distance of 1.

average.distances

A logical value. If TRUE, then the distance from vertex A to B and the distance
from vertex B to A are averaged to give a single distance. Otherwise, two dif-
ferent distances may be returned.

12 Knet

Details

The mean first-passage time from vertex a to vertex b is defined as the expected number of steps
taken on a random walk from vertex a until the first arrival at vertex b. This provides a method of
measuring the distance between pairs of vertices that does not simply take into account the distance
along the shortest path, but rather incorporates how well the two vertices are connected across
multiple paths.

The mean first-passage time from vertex a to vertex b is not necessarily the same as the mean
first-passage time from vertex b to vertex a. If a symmetric distance matrix is required, reciprocal
distances can be averaged to give a single value for each vertex pair.

If a vertex pair is unconnected, then the distance between the vertices is Inf.

The distance from vertex a to vertex a is always 0.

Value

A numeric matrix, containing the mean first-passage time-derived vertex pair distance between each
vertex in v and every vertex in g.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

References

White, S. and Smyth, P. (2003). Algorithms for Estimating Relative Importance in Networks. Tech-
nical Report UCI-ICS 04-25.

See Also

GraphDiffusion, shortest.paths

Examples

Create a graph and calculate the mean first-passage time-based vertex pair distance matrix
g <- CreateGraph(n=6, type="erdos.renyi")
GraphMFPT(g)
plot(g, layout=layout.fruchterman.reingold)

Knet Measure the strength of association between a phenotype and a net-
work by computing the strength of hit clustering on the network.

Description

Compute the strength of clustering of high-weight vertices (hits) on a graph using a modified version
of Ripley’s K-statistic. This method can be used to measure the strength of association between a
phenotype or function and a network.

Knet 13

Usage

Knet(g, nperm = 100, dist.method = "shortest.paths", vertex.attr = "pheno",
edge.attr = "distance", correct.factor=1, nsteps = 1000,
prob = c(0, 0.05, 0.5, 0.95, 1), parallel = NULL)

Arguments

g An igraph object, the graph to work on.

nperm An integer value, the number of permutations to be completed. In each permu-
tation, the vertex weights are randomly redistributed across the graph and the
Knet function recalculated. The permuted Knet-function results are then com-
pared to the observed Knet function result in order to derive a p-value for the
significance of the hit clustering.

dist.method A string, the method used to calculate the distance between each hit and every
other vertex in the graph. Can either be shortest.paths, diffusion or mfpt.

vertex.attr A character vector, containing the name of the vertex attributes under which
the vertex weights to be tested are stored. The vector can contain one or more
elements. If more than one set of vertex weights are tested, then results for each
set of weights are returned as a list. Vertex weights should be greater or equal
that zero or equal to NA if the weight is missing. Vertices with missing weights
are still included within the graph. However, their weights do not contribute to
the final Knet statistics.

edge.attr A string, containing the name of the edge attribute to be used as distances along
the edges. If an edge attribute with this name is not found, then each edge is
assumed to have a distance of 1.

correct.factor A numeric value, the value by which the maximum measured vertex pair dis-
tance is multiplied when used to replace infinite distances. Infinite vertex pair
distances can arrise when either the shortest.paths or mfpt distance measures
are used and not all vertices within the graph are connected.

nsteps An integer value, the number of bins into which the vertex pairs are put accord-
ing to distance before the Knet function is calculated. Greater values of nsteps
result in greater accuracy and greater run times.

prob A numeric vector, containing the quantiles to be calculated for the Knet permu-
tations.

parallel A numeric value or NULL. If parallel computing is possible, parallel can be
used to split permutations over multiple cores. The snow package is used to
manage the parallel computing. If parallel=NULL or parallel computing is not
possible, then only one core is used. If a positive integer is input and parallel
computing is possible, then the permutations are split over up to this many cores.

Details

The SANTA method uses the ’guilt-by-association’ principle to measure the strength of association
between a network and a phenotype. It does this by measuring the strength of clustering of the phe-
notype scores across the network. The stronger the clustering, the greater the association between
the network and the phenotype.

14 Knet

The SANTA method applies Ripley’s K-function, a well-established approach to spatial statistics
that measures the strength of clustering of points on a plane, and extends it in a number of ways.
First, a Knet function is defined by adapting the approach for graphs using vertex pair distance
measures. Second, vertex weights are incorporated into Knet and the importance of vertices made
relative to their own associated weight. Third, the mean vertex weight is subtracted from each
individual vertex weight when calculating the Knet function. This means that the Knet function
measures the degree of vertex weight clustering relative to a random distribution of vertex weights.
The Knet function is defined as

Knet[s] =
2

p2

∑
i

pi
∑
j

(pj − p̄)I(dg[i, j] <= s)

where pi is the weight of vertex i, p̄ is the mean vertex weight across all vertices, and I(dg[i, j] <=
s) is an identity function, equaling 1 if vertex i and vertex j are within distance s and 0 otherwise.

In order to derive a p-value and quantify the significance of the observed distribution of weights,
the observed Knet-curve is compared to Knet-curves obtained using the same graph but randomly
permuted vertex weights. The area under the Knet-curve (AUK) is calculated for the observed graph
and each of the permuted graphs and a z-score derived. From this, a p-value can be produced. This
p-value indicates the probability an observed AUK at least this high is seen given the null hypothesis
that the vertex weights are randomly distributed.

Ripley’s K-function has previously been applied to geographical networks (such as road networks)
in order to identify the clustering of objects along these networks (Okabe and Yamada 2001).
However, key differences between the previous implementation and the implementation of the K-
function used in this package allows for the function to be applied to numerous biological networks.

Value

If one vertex attribute is input, Knet is run on the single set of vertex weights and a list containing
the statistics below is returned. If more than one vertex attribute is input, then Knet is run on each
set of vertex weights and a list containing an element for each vertex attribute is returned. Each
element contains a sub-list containing the statistics below for the relavent vertex attribute.

K.obs The Knet-function curve for the observed vertex weights.

AUK.obs The area under the Knet-function curve (AUK) for the observed vertex weights.

K.perm The Knet-function curve for each permutation of vertex weights. Equals NA if
no permutations are completed.

AUK.perm The area under the Knet-function curve (AUK) for each permutation of vertex
weights. Equals NA if no permutations are completed.

K.quan The quantiles for the permuted Knet-function curves. Equals NA if no permuta-
tions are completed.

nodeK The Knode-function curve for each of the vertices using the observed set of
vertex weights.

nodeAUK The area under the Knode-function curve (AUK) for each of the vertices using
the observed set of vertex weights.

pval The p-value, calculated from a z-score derived from the observed and permuted
AUKs. Equals NA if no permutations are completed.

Knode 15

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk> and Florian Markowetz

References

Paper in preparation.

Okabe, A. and Yamada, I. (2001). The K-function method on a network and its computational
implementation Geographical Analysis. 33(3): 271-290.

See Also

Knode

Examples

Apply Knet to a graph with hit clustering
g.clustered <- CreateGraph(n=50, type="barabasi", gen.vertex.weights=TRUE,
lambda=10, nhits=10, binary.pheno=FALSE)
res.clustered <- Knet(g.clustered, nperm=100)
res.clustered$pval
plot(res.clustered)

Apply Knet to a graph without hit clustering
g.unclustered <- CreateGraph(n=50, type="barabasi", gen.vertex.weights=TRUE,
lambda=0, nhits=10, binary.pheno=FALSE)
res.unclustered <- Knet(g.unclustered, nperm=100)
res.unclustered$pval
plot(res.unclustered)

Knode Rank vertices by their strength of association with high-weight ver-
tices.

Description

Rank vertices by their strength of association with high-weight vertices using a modified version of
Ripley’s K-statistic. Vertex weights can either be binary or positive and continuous.

Usage

Knode(g, dist.method="shortest.paths", vertex.attr="pheno", edge.attr="distance",
correct.factor=1, nsteps=1000, only.Knode=TRUE, vertex.weight=TRUE, cluster.id=FALSE,
vertex.degree=TRUE, boncich.power=FALSE, markov.centr=FALSE)

16 Knode

Arguments

g An igraph object, the graph to work on.

dist.method A string, the method used to calculate the distance between each vertex. Can
either be shortest.paths, diffusion or mfpt.

vertex.attr A character vector, containing the name of the vertex attributes under which
the vertex weights to be tested are stored. The vector can contain one or more
elements. If more than one set of vertex weights are tested, then results for each
set of weights are returned in a list. Vertex weights should be greater than or
equal to 0, or equal to NA if the weight is missing. The Knode statistic is still
counted for nodes with missing weights. However, the weight of these nodes is
excluded in the calculation of other node’s Knode statistics.

edge.attr A string, containing the name of the edge attribute to be used as distances along
the edges. If an edge attribute with this name is not found, then each edge is
assumed to have a distance of 1.

correct.factor A numeric value, the value by which the maximum measured vertex pair is
multiplied when used to replace infinite distances. Infinite vertex pair distances
can arrise when either the shortest.paths or mfpt distance measures are used
and not all vertices within the graph are connected.

nsteps An integer value, the number of bins into which the vertex pairs are put ac-
cording to distance before the Knode function is calculated. Greater values of
nsteps result in greater accuracy and greater run times.

only.Knode A logical value. If TRUE, only the Knode AUK for each vertex is calculated. If
FALSE, then other centrality scores are also calculated. These scores can include
cluster ID, vertex degree, vertex betweenness score, Boncich power centrality,
Burt’s constraint, eigenvector centrality, Google PageRank, Kleinberg’s hub and
authority scores and the Markov centrality score. The calculation of some of
these scores can be switched on or off using the parameters below.

vertex.weight A logical value. If vertex.weight==TRUE and only.Knode==FALSE, then the
weight of each vertex is returned.

cluster.id A logical value. If cluster.id==TRUE and only.Knode==FALSE and the graph
contains a hit.cluster vertex attribute, then the cluster ID for each hit (each
vertex with a non-zero weight) is returned. The hit.cluster attribute is added
by the CreateGraph function.

vertex.degree A logical value. If vertex.degree==TRUE and only.Knode==FALSE, then the
degree of each vertex is returned. The degree of a vertex is the number of adja-
cent edges.

boncich.power A logical value. If boncich.power==TRUE and only.Knode==FALSE, then the
Boncick power centrality of each vertex is returned.

markov.centr A logical value. If markov.centr==TRUE and only.Knode==FALSE, then the
Markov centrality score of each vertex is returned.

Details

Using the inner sum of the Knet equation, it becomes possible to prioritise vertices by how well
they are connected, or associated, with high-weight vertices. The inner sum of the Knet equation is

Knode 17

Knode
i [s] =

2

p

∑
j

(pj − p̄)I(dg(i, j) <= s)

where pj is the weight of vertex j, p̄ is the mean vertex weight across all vertices, and I(dg[i, j] <=
s) is an identity function, equaling 1 if vertex i and vertex j are within distance s and 0 otherwise.

The Knode function can also be used to return a number of other centrality measures, including
cluster ID, vertex degree, vertex betweenness score, Boncich power centrality, Burt’s constraint,
eigenvector centrality, Google PageRank, Kleinberg’s hub and authority scores and the Markov
centrality score. If the name of each vertex is stored within a vertex attribute called name, then these
names are applied to the rows of the returned data frame. Otherwise, the rows are named with the
vertex number.

Value

A sorted data frame containing the Knode AUK for each vertex and any other centrality scores.

If one vertex attribute is input, then the Knode AUK and other centrality scores are calculated and
a single sorted data frame containing these scores is returned. If more than one vertex attribute is
input, then a list of data frames, one for each set of vertex weights, is returned.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk> and Florian Markowetz

References

Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology.
92: 1170-1182.

Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Proceedings of the 7th World-Wide Web Conference, Bisbane, Australia.

Burt, R.S. (2004). Structural holes and good ideas. American Journal of Sociology. 110: 349-399.

Kleinberg, J. (1997). Authoritative sources in hyperlinked environment. Proc. 9th. ACM-SIAM
Symposium on Discrete Algorithms.

Ulrik Brandes. (2001). A Faster Algorithm for Betweenness Centrality. Journal of Mathematical
Sociology. 25 (2): 163-177.

White, S. and Smyth, P. (2003). Algorithms for Estimating Relative Importance in Networks. Tech-
nical Report: UCI-ICS 04-25.

See Also

Knet

18 MarkovCentrality

Examples

Create a graph with a single cluster of high-weight vertices. Rank all vertices
by their stength of association with the high-weight vertices.
g1 <- CreateGraph(n=15, gen.vertex.weights=TRUE, lambda=10, nhits=3, binary.pheno=TRUE)
Knode(g1, only.Knode=FALSE)
plot(g1)

Create a graph with two clusters of high-weight vertices. Rank all vertices by
their strength of association with the high-weight vertices.
g2 <- CreateGraph(n=15, gen.vertex.weights=TRUE, lambda=10, nhits=6, nclusters=2,
binary.pheno=FALSE)
Knode(g2, only.Knode=FALSE, cluster.id=TRUE)
plot(g2)

MarkovCentrality Compute the Markov centrality score for each vertex in a graph.

Description

The Markov centrality score uses the concept of a random walk through the graph to calculate the
centrality of each vertex. The method uses the mean first-passage time from every vertex to every
other vertex to produce a score for each vertex. These scores can be used as a ranking of centrality
within the graph.

Usage

MarkovCentrality(g, edge.attr = NULL)

Arguments

g An igraph object, the graph to work on.

edge.attr A string, the name of the edge attribute to be used as distances along the edges.
If left equal to NULL, then each edge is assumed to have a distance of 1.

Details

The mean first-passage time can be used as a measure of how closely each vertex is connected to
every other vertex in a graph. The mean first-passage time from vertex a to vertex b is the mean
number of steps a random walk emanating from vertex a takes to reach vertex b for the first time.
Random walks are more likely to reach well-connected vertices quicker and therefore this method
can be used to measure distance.

In order to calculate the Markov centrality of each vertex in a graph, the inverse of the mean distance
between each vertex and every other vertex is taken. Vertices with smaller average distances to all
other vertices have higher Markov centrality scores, indicating that they occupy a more central
position within the graph. These values can be used to rank the vertices.

plot.Knet 19

Value

A numeric vector, containing the Markov centrality score of each vertex.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

References

White, S. and Smyth, P. (2003). Algorithms for Estimating Relative Importance in Networks. Tech-
nical Report UCI-ICS 04-25.

See Also

GraphMFPT

Examples

Create a graph and compute the Markov centrality score for each vertex
g <- CreateGraph(n=6, type="barabasi")
MarkovCentrality(g)
plot(g, layout=layout.fruchterman.reingold)

plot.Knet Plot the results of the Knet function.

Description

Plot the observed Knet curve against the quantiles of the permuted Knet curves and the observed
AUK against the permuted AUKs.

Usage

S3 method for class ’Knet’
plot(x, sequential = FALSE, ...)

Arguments

x The results from the Knet function. If no permutations are contained within
these results, then only the observed Knet curve and observed AUK are plotted.

sequential A logical value. If TRUE, then the plots are sequential. Otherwise, the two plots
are plotted alongside each other.

... Additional arguements to be passed to plot.

20 plot.Knet

Details

If the high-weight vertices are clustered, then the observed Knet curve and AUK will be high rel-
ative to the permuted Knet curves and AUKs. The greater the degree of clustering, the greater the
difference between the observed and permuted statistics. If the degree of clustering is low, then the
observed and permuted curves and AUKs will likely overlap.

The first plot displays the the observed curve in red and the quantiles of the permuted curves in
yellow. The quantile boundaries are displayed as grey lines. These boundaries are specified in the
Knet function. The second plot displays the observed AUK as a red line and the distribution of
permuted AUKs in grey.

Value

Two plots. The first showing the observed Knet curves against the quantiles of the permuted Knet
curves. The second showing the observed AUK against the distribution of permuted AUKs.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk> and Florian Markowetz

References

Paper in preparation.

See Also

Knet

Examples

Plot results with hit clustering
g.clustered <- CreateGraph(n=100, type="barabasi", gen.vertex.weights=TRUE, lambda=10,
nhits=10, binary.pheno=FALSE)
res.clustered <- Knet(g.clustered, nperm=10)
res.clustered$pval
plot(res.clustered)

Plot results without hit clustering
g.unclustered <- CreateGraph(n=100, type="barabasi", gen.vertex.weights=TRUE, lambda=0,
nhits=10, binary.pheno=FALSE)
res.unclustered <- Knet(g.unclustered, nperm=10)
res.unclustered$pval
plot(res.unclustered)

SpreadHits 21

SpreadHits Spread hits across a graph.

Description

Spread hits across a graph using an exponential probability distribution related to the distance of
each vertex from the start vertex.

Usage

SpreadHits(g, h = 10, lambda = 1, dist.method = "shortest.paths",
edge.attr = NULL, start.vertex = NULL, hit.color = "red", D = NULL)

Arguments

g An igraph object, the graph to work on.

h An integer value, the number of hits to be added to the graph.

lambda A numeric value, the strength of hit clustering. If lambda=0, then the hits are
randomly distributed. If lambda>0, then the hits are clustered. The greater the
value of lambda, the greater the strength of the hit clustering.

dist.method A string, the method used to calculate the distance between each vertex and the
start vertex. Can either be shortest.paths, diffusion or mfpt.

edge.attr A string, containing the name of the edge attribute to be used as distances along
the edges. If left equal to NULL, then each edge is assumed to have a distance of
1.

start.vertex An igraph object, containing the start vertex.

hit.color A string, the colour that hits will be if the graph is plotted using plot().

D A pre-calculated numeric distance matrix.

Details

SpreadHits can be used to add hits to a graph without hits, or replace hits on a graph with hits. The
probability of a vertex being labelled as a hit depends on the distance it is from the starting vertex.
The value of lambda denotes the shape of the probability distribution used to spread the hits. The
greater the value of lambda, the greater the strength of hit clustering. The probability that vertex i
is labelled a hit is proportional to:

P [i] ∼ lambda ∗ exp−lambda∗d[start,i]

where d[start, i] is the distance between the start vertex and vertex i.

Hits are denoted as 1 under the vertex attributes hits and pheno, while misses are denoted as 0. A
color can also be chosen to highlight the hits when the graph is plotted. Misses are automatically
coloured grey.

22 SpreadHits

Value

A modified version of the input igraph object. Whether a vertex is a hit or miss is given under the
vertex attributes hits and pheno.

Author(s)

Alex Cornish <a.cornish12@imperial.ac.uk>

See Also

CreateGraph

Examples

Create a graph and add 5 clustered hits
g1 <- CreateGraph(n=30, gen.vertex.weights=FALSE)
g1 <- SpreadHits(g1, h=5, lambda=10)
plot(g1, layout=layout.fruchterman.reingold)

Create a graph and add 5 unclustered hits
g2 <- CreateGraph(n=30, gen.vertex.weights=FALSE)
g2 <- SpreadHits(g2, h=5, lambda=0)
plot(g2, layout=layout.fruchterman.reingold)

Index

barabasi.game, 5

CheckAttributes, 2
CreateGraph, 3, 6, 22
CreateGrid, 5, 6

data-treated.dataframe, 7
data-untreated.dataframe, 7
DistGraph, 8

erdos.renyi.game, 5

GraphDiffusion, 9, 10, 12
GraphMFPT, 9, 11, 11, 19

Knet, 3, 12, 17, 20
Knode, 3, 15, 15

MarkovCentrality, 18

plot.Knet, 19

shortest.paths, 9, 11, 12
SpreadHits, 21

treated.dataframe
(data-treated.dataframe), 7

untreated.dataframe
(data-untreated.dataframe), 7

23

	CheckAttributes
	CreateGraph
	CreateGrid
	data-treated.dataframe
	data-untreated.dataframe
	DistGraph
	GraphDiffusion
	GraphMFPT
	Knet
	Knode
	MarkovCentrality
	plot.Knet
	SpreadHits
	Index

