
Package ‘GWASTools’
October 9, 2013

Version 1.6.5

Type Package

Title Tools for Genome Wide Association Studies

Description Classes for storing very large GWAS data sets and annotation, and func-
tions for GWAS data cleaning and analysis.

Author Stephanie M. Gogarten, Cathy Laurie, Tushar Bhangale, Matthew P. Conomos, Cecelia Lau-
rie, Caitlin McHugh, Ian Painter, Xiuwen Zheng, Jess Shen, Rohit Swarnkar

Maintainer Stephanie M. Gogarten <sdmorris@u.washington.edu>

Depends Biobase, ncdf, gdsfmt, sandwich

Imports methods, DBI, RSQLite, GWASExactHW, DNAcopy, survival, lmtest,quantsmooth

Suggests GWASdata, BiocGenerics, RUnit, SNPRelate, snpStats,VariantAnnotation

License Artistic-2.0

LazyData yes

biocViews SNP, GeneticVariability, QualityControl, Microarray

Collate utils.R AllGenerics.R AllClasses.R genotypeToCharacter.R
Methods-ScanAnnotationDataFrame.R
Methods-SnpAnnotationDataFrame.R Methods-ScanAnnotationSQLite.R
Methods-SnpAnnotationSQLite.R Methods-NcdfReader.R
Methods-NcdfGenotypeReader.R Methods-NcdfIntensityReader.R
Methods-GdsReader.R Methods-GdsGenotypeReader.R
Methods-MatrixGenotypeReader.R Methods-GenotypeData.R
Methods-IntensityData.R ncdfAddData.R ncdfAddIntensity.R
ncdfCheckIntensity.R ncdfCheckGenotype.R ncdfCreate.R
ncdfSubset.R ncdfSubsetCheck.R BAFfromClusterMeans.R
BAFfromGenotypes.R sdByScanChromWindow.R
medianSdOverAutosomes.R meanSdByChromWindow.R findBAFvariance.R
anomSegmentBAF.R anomFilterBAF.R anomDetectBAF.R LOHfind.R
LOHselectAnoms.R anomDetectLOH.R anomSegStats.R anomStatsPlot.R

1

2 R topics documented:

anomIdentifyLowQuality.R ncdfSetMissingGenotypes.R
alleleFrequency.R apartSnpSelection.R assocTestCPH.R
assocTestFisherExact.R assocTestRegression.R batchChisqTest.R
batchFisherTest.R chromIntensityPlot.R duplicateDiscordance.R
plinkUtils.R snpStats.R duplicateDiscordanceAcrossDatasets.R
duplicateDiscordanceProbability.R genoClusterPlot.R
genoClusterPlotByBatch.R gwasExactHW.R hetByScanChrom.R
hetBySnpSex.R intensityOutliersPlot.R manhattanPlot.R
mendelErr.R meanIntensityByScanChrom.R
missingGenotypeByScanChrom.R missingGenotypeBySnpSex.R
pseudoautoIntensityPlot.R qqPlot.R qualityScoreByScan.R
qualityScoreBySnp.R snpCorrelationPlot.R ibdAreasDraw.R
ibdAssignRelatedness.R ibdPlot.R findRelationsMeanVar.R
pedigreeCheck.R pedigreeClean.R pedigreeDeleteDuplicates.R
pedigreeFindDuplicates.R pedigreePairwiseRelatedness.R
pedigreeMaxUnrelated.R convertNcdfGds.R convertVcfGds.R
ncdfImputedDosage.R simulateGenotypeMatrix.R simulateIntensityMatrix.R

R topics documented:
GWASTools-package . 4
alleleFrequency . 5
allequal . 6
anomDetectBAF . 7
anomDetectLOH . 11
anomIdentifyLowQuality . 16
anomSegStats . 19
apartSnpSelection . 24
asSnpMatrix . 25
assocTestCPH . 26
assocTestFisherExact . 30
assocTestRegression . 32
BAFfromClusterMeans . 40
BAFfromGenotypes . 42
batchTest . 44
centromeres . 47
chromIntensityPlot . 47
convertNcdfGds . 49
convertVcfGds . 51
duplicateDiscordance . 52
duplicateDiscordanceAcrossDatasets . 54
duplicateDiscordanceProbability . 57
findBAFvariance . 59
GdsGenotypeReader . 61
GdsReader . 64
genoClusterPlot . 65
GenotypeData-class . 67
genotypeToCharacter . 71

R topics documented: 3

getobj . 72
getVariable . 73
gwasExactHW . 75
GWASTools-deprecated . 77
hetByScanChrom . 77
hetBySnpSex . 78
HLA . 79
ibdPlot . 80
IntensityData-class . 82
intensityOutliersPlot . 85
manhattanPlot . 86
MatrixGenotypeReader . 87
meanIntensityByScanChrom . 89
mendelErr . 91
mendelList . 94
missingGenotypeByScanChrom . 95
missingGenotypeBySnpSex . 97
ncdfAddData . 98
ncdfCreate . 104
NcdfGenotypeReader . 105
ncdfImputedDosage . 107
NcdfIntensityReader . 109
NcdfReader . 112
ncdfSetMissingGenotypes . 114
ncdfSubset . 115
pcaSnpFilters . 116
pedigreeCheck . 117
pedigreeClean . 120
pedigreeFindDuplicates . 121
pedigreeMaxUnrelated . 123
pedigreePairwiseRelatedness . 125
plinkToNcdf . 127
plinkUtils . 129
pseudoautoIntensityPlot . 132
pseudoautosomal . 133
qqPlot . 134
qualityScoreByScan . 135
qualityScoreBySnp . 136
readWriteFirst . 137
relationsMeanVar . 138
saveas . 139
ScanAnnotationDataFrame . 140
ScanAnnotationSQLite . 142
simulateGenotypeMatrix . 144
simulateIntensityMatrix . 145
SnpAnnotationDataFrame . 147
SnpAnnotationSQLite . 150
snpCorrelationPlot . 152

4 GWASTools-package

Index 154

GWASTools-package Tools for Genome Wide Association Studies

Description

This package contains tools for facilitating cleaning (quality control and quality assurance) and
analysis of GWAS data.

Details

GWASTools provides a set of classes for storing data and annotation from Genome Wide Associa-
tion studies, and a set of functions for data cleaning and analysis that operate on those classes.

Genotype and intensity data are stored in NetCDF files, so it is possible to analyze data sets that
are too large to be contained in memory. The NcdfReader class provides a generic interface to the
NetCDF files (utilizing the ncdf package), and the NcdfGenotypeReader and NcdfIntensityReader
classes provide specific methods to access genotype and intensity data.

Two sets of classes for annotation are provided. SnpAnnotationDataFrame and ScanAnnotationDataFrame
extend AnnotatedDataFrame and provide in-memory containers for SNP and scan annotation and
metadata. SnpAnnotationSQLite and ScanAnnotationSQLite provide interfaces to SNP and scan
annotation and metadata stored in SQLite databases.

The GenotypeData and IntensityData classes combine genotype or intensity data with SNP and
scan annotation, ensuring that the data in the NetCDF files is consistent with annotation through
unique SNP and scan IDs. A majority of the functions in the GWASTools package take GenotypeData
and/or IntensityData objects as arguments.

Author(s)

Stephanie M. Gogarten, Cathy Laurie, Tushar Bhangale, Matthew P. Conomos, Cecelia Laurie,
Caitlin McHugh, Ian Painter, Xiuwen Zheng, Jess Shen, Rohit Swarnkar

Maintainer: Stephanie M. Gogarten <sdmorris@u.washington.edu>

References

Laurie, C. C., Doheny, K. F., Mirel, D. B., Pugh, E. W., Bierut, L. J., Bhangale, T., Boehm, F., Ca-
poraso, N. E., Cornelis, M. C., Edenberg, H. J., Gabriel, S. B., Harris, E. L., Hu, F. B., Jacobs, K. B.,
Kraft, P., Landi, M. T., Lumley, T., Manolio, T. A., McHugh, C., Painter, I., Paschall, J., Rice, J. P.,
Rice, K. M., Zheng, X., and Weir, B. S., for the GENEVA Investigators (2010), Quality control and
quality assurance in genotypic data for genome-wide association studies. Genetic Epidemiology,
34: 591-602. doi: 10.1002/gepi.20516

alleleFrequency 5

alleleFrequency Allelic frequency

Description

Calculates the frequency of the A allele over the specifed scans.

Usage

alleleFrequency(genoData, scan.exclude,
verbose = TRUE)

Arguments

genoData GenotypeData object.
scan.exclude Integer vector with IDs of scans to exclude.
verbose Logical value specifying whether to show progress information.

Details

Counts male heterozygotes on the X and Y chromosomes as missing values, and any genotype for
females on the Y chromosome as missing values. A "sex" variable must be present in the scan
annotation slot of genoData.

Value

A matrix of allelic frequencies with snps as rows and 4 columns ("M" for males, "F" for females,
"all" for all scans, "MAF" for minor allele frequency over all scans).

Author(s)

Cathy Laurie

See Also

GenotypeData

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affyScanADF)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

afreq <- alleleFrequency(genoData, scan.exclude=(affyScanADF$race != "CEU"))
close(genoData)

6 allequal

allequal Test if two objects have the same elements

Description

allequal tests if two objects have all the same elements, including whether they have NAs in the
same place.

Usage

allequal(x, y)

Arguments

x first object to compare

y second object to compare

Details

Unlike all(x == y), allequal will return FALSE if either object is NULL. Does not check class
types, so allequal will return TRUE in some cases where identical will return FALSE (e.g. if two
objects are identical when coerced to the same class). allequal always retuns a logical value, so it
can be used safely in if expressions.

Value

Returns TRUE if x and y exist and all elements are equal, FALSE if some elements are unequal. If
there are NA values, returns TRUE if is.na(x) == is.na(y) and all other elements are equal. Returns
FALSE if is.na(x) != is.na(y). Retuns FALSE if x or y (but not both) is NULL.

Author(s)

Stephanie Gogarten

See Also

identical, all, all.equal

Examples

x <- c(1,2,NA,4); y <- c(1,2,NA,4);
allequal(x, y) ## TRUE
allequal(1, as.integer(1)) ## TRUE
allequal(1, "1") ## TRUE

anomDetectBAF 7

anomDetectBAF BAF Method for Chromosome Anomaly Detection

Description

anomSegmentBAF for each sample and chromosome, breaks the chromosome up into segments
marked by change points of a metric based on B Allele Frequency (BAF) values.

anomFilterBAF selects segments which are likely to be anomalous.

anomDetectBAF is a wrapper to run anomSegmentBAF and anomFilterBAF in one step.

Usage

anomSegmentBAF(intenData, genoData, scan.ids, chrom.ids, snp.ids,
smooth = 50, min.width = 5, nperm = 10000, alpha = 0.001,
verbose = TRUE)

anomFilterBAF(intenData, genoData, segments, snp.ids, centromere,
low.qual.ids = NULL, num.mark.thresh = 15, long.num.mark.thresh = 200,
sd.reg = 2, sd.long = 1, low.frac.used = 0.1, run.size = 10,
inter.size = 2, low.frac.used.num.mark = 30, very.low.frac.used = 0.01,
low.qual.frac.num.mark = 150, lrr.cut = -2, ct.thresh = 10,
frac.thresh = 0.1, verbose=TRUE)

anomDetectBAF(intenData, genoData, scan.ids, chrom.ids, snp.ids,
centromere, low.qual.ids = NULL, ...)

Arguments

intenData An IntensityData object containing the B Allele Frequency. The order of the
rows of intenData and the snp annotation are expected to be by chromosome and
then by position within chromosome. The scan annotation should contain sex,
coded as "M" for male and "F" for female.

genoData A GenotypeData object. The order of the rows of genoData and the snp anno-
tation are expected to be by chromosome and then by position within chromo-
some.

scan.ids vector of scan ids (sample numbers) to process

chrom.ids vector of (unique) chromosomes to process. Should correspond to integer chro-
mosome codes in intenData. Recommended to include all autosomes, and
optionally X (males will be ignored) and the pseudoautosomal (XY) region.

snp.ids vector of eligible snp ids. Usually exclude failed and intensity-only SNPs. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
X chromosome. See HLA and pseudoautosomal. If there are SNPs annotated in
the centromere gap, exclude these as well (see centromeres).

smooth number of markers for smoothing region. See smooth.CNA in the DNAcopy
package.

8 anomDetectBAF

min.width minimum number of markers for a segment. See segment in the DNAcopy
package.

nperm number of permutations for deciding significance in segmentation. See segment
in the DNAcopy package.

alpha significance level. See segment in the DNAcopy package.

verbose logical indicator whether to print information about the scan id currently being
processed. anomSegmentBAF prints each scan id; anomFilterBAF prints a mes-
sage after every 10 samples: "processing ith scan id out of n" where "ith" with
be 10, 10, etc. and "n" is the total number of samples

segments data.frame of segments from anomSegmentBAF. Names must include "scanID",
"chromosome", "num.mark", "left.index", "right.index", "seg.mean". Here "left.index"
and "right.index" are row indices of intenData. Left and right refer to start and
end of anomaly,respectively, in position order.

centromere data.frame with centromere position information. Names must include "chrom",
"left.base", "right.base". Valid values for "chrom" are 1:22, "X", "Y", "XY".
Here "left.base" and "right.base" are base positions of start and end of cen-
tromere location in position order. Centromere data tables are provided in centromeres.

low.qual.ids scan ids determined to be low quality for which some segments are filtered
based on more stringent criteria. Default is NULL. Usual choice are scan ids
for which median BAF across autosomes > 0.05. See sdByScanChromWindow
and medianSdOverAutosomes.

num.mark.thresh

minimum number of SNP markers in a segment to be considered for anomaly
long.num.mark.thresh

min number of markers for "long" segment to be considered for anomaly for
which significance threshold criterion is allowed to be less stringent

sd.reg number of baseline standard deviations of segment mean from a baseline mean
for "normal" needed to declare segment anomalous. This number is given by
abs(mean of segment - baseline mean)/(baseline standard deviation)

sd.long same meaning as sd.reg but applied to "long" segments

low.frac.used if fraction of heterozygous or missing SNP markers compared with number of
eligible SNP markers in segment is below this, more stringent criteria are applied
to declare them anomalous.

run.size min length of run of missing or heterozygous SNP markers for possible deter-
mination of homozygous deletions

inter.size number of homozygotes allowed to "interrupt" run for possible determination of
homozygous deletions

low.frac.used.num.mark

number of markers threshold for low.frac.used segments (which are not de-
clared homozygous deletions

very.low.frac.used

any segments with (num.mark)/(number of markers in interval) less than this are
filtered out since they tend to be false positives

anomDetectBAF 9

low.qual.frac.num.mark

minimum num.mark threshold for low quality scans (low.qual.ids) for seg-
ments that are also below low.frac.used threshold

lrr.cut look for runs of LRR values below lrr.cut to adjust homozygous deletion
endpoints

ct.thresh minimum number of LRR values below lrr.cut needed in order to adjust

frac.thresh investigate interval for homozygous deletion only if lrr.cut and ct.thresh
thresholds met and (# LRR values below lrr.cut)/(# eligible SNPs in segment)
> frac.thresh

... arguments to pass to anomFilterBAF

Details

anomSegmentBAF uses the function segment from the DNAcopy package to perform circular bi-
nary segmentation on a metric based on BAF values. The metric for a given sample/chromosome
is sqrt(min(BAF,1-BAF,abs(BAF-median(BAF))) where the median is across BAF values on the
chromosome. Only BAF values for heterozygous or missing SNPs are used.

anomFilterBAF determines anomalous segments based on a combination of thresholds for number
of SNP markers in the segment and on deviation from a "normal" baseline. (See num.mark.thresh,long.num.mark.thresh,
sd.reg, and sd.long.) The "normal" baseline metric mean and standard deviation are found across
all autosomes not segmented by anomSegmentBAF. This is why it is recommended to include all
autosomes for the argument chrom.ids to ensure a more accurate baseline.

Some initial filtering is done, including possible merging of consecutive segments meeting sd.reg
threshold along with other criteria (such as not spanning the centromere) and adjustment for ac-
curate break points for possible homozygous deletions (see lrr.cut, ct.thresh, frac.thresh,
run.size, and inter.size). Male samples for X chromosome are not processed.

More stringent criteria are applied to some segments (see low.frac.used,low.frac.used.num.mark,
very.low.frac.used, low.qual.ids, and low.qual.frac.num.mark).

anomDetectBAF runs anomSegmentBAF with default values and then runs anomFilterBAF. Addi-
tional parameters for anomFilterBAF may be passed as arguments.

Value

anomSegmentBAF returns a data.frame with the following elements: Left and right refer to start and
end of anomaly, respectively, in position order.

scanID integer id of scan

chromosome chromosome as integer code

left.index row index of intenData indicating left endpoint of segment

right.index row index of intenData indicating right endpoint of segment

num.mark number of heterozygous or missing SNPs in the segment

seg.mean mean of the BAF metric over the segment

anomFilterBAF and anomDetectBAF return a list with the following elements:

10 anomDetectBAF

raw data.frame of raw segmentation data, with same output as anomSegmentBAF as
well as:

• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• sex: sex of scan.id coded as "M" or "F"
• sd.fac: measure of deviation from baseline equal to abs(mean of segment

- baseline mean)/(baseline standard deviation); used in determining anoma-
lous segments

filtered data.frame of the segments identified as anomalies, with the same columns as
raw as well as:

• merge: TRUE if segment was a result of merging. Consecutive segments
from output of anomSegmentBAF that meet certain criteria are merged.

• homodel.adjust: TRUE if original segment was adjusted to narrow in on
a homozygous deletion

• frac.used: fraction of (eligible) heterozygous or missing SNP markers
compared with total number of eligible SNP markers in segment

base.info data frame with columns:

• scanID: integer id of scan
• base.mean: mean of non-anomalous baseline. This is the mean of the BAF

metric for heterozygous and missing SNPs over all unsegmented autosomes
that were considered.

• base.sd: standard deviation of non-anomalous baseline
• chr.ct: number of unsegmented chromosomes used in determining the

non-anomalous baseline

seg.info data frame with columns:

• scanID: integer id of scan
• chromosome: chromosome as integer
• num.segs: number of segments produced by anomSegmentBAF

Note

It is recommended to include all autosomes as input. This ensures a more accurate determination
of baseline information.

Author(s)

Cecelia Laurie

References

See references in segment in the package DNAcopy. The BAF metric used is modified from It-
sara,A., et.al (2009) Population Analysis of Large Copy Number Variants and Hotspots of Human
Genetic Disease. American Journal of Human Genetics, 84, 148–161.

anomDetectLOH 11

See Also

segment and smooth.CNA in the package DNAcopy, also findBAFvariance, anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF)
data(illuminaSnpADF)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

segment BAF
scan.ids <- illuminaScanADF$scanID[1:2]
chrom.ids <- unique(illuminaSnpADF$chromosome)
snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]
seg <- anomSegmentBAF(blData, genoData, scan.ids=scan.ids,

chrom.ids=chrom.ids, snp.ids=snp.ids)

filter segments to detect anomalies
data(centromeres.hg18)
filt <- anomFilterBAF(blData, genoData, segments=seg, snp.ids=snp.ids,

centromere=centromeres.hg18)

alternatively, run both steps at once
anom <- anomDetectBAF(blData, genoData, scan.ids=scan.ids, chrom.ids=chrom.ids,

snp.ids=snp.ids, centromere=centromeres.hg18)

anomDetectLOH LOH Method for Chromosome Anomaly Detection

Description

anomDetectLOH breaks a chromosome up into segments of homozygous runs of SNP markers de-
termined by change points in Log R Ratio and selects segments which are likely to be anomalous.

Usage

anomDetectLOH(intenData, genoData, scan.ids, chrom.ids, snp.ids,
known.anoms, smooth = 50, min.width = 5, nperm = 10000, alpha = 0.001,
run.size = 50, inter.size = 4, homodel.min.num = 10, homodel.thresh = 10,
small.num = 20, small.thresh = 2.25, medium.num = 50, medium.thresh = 2,
long.num = 100, long.thresh = 1.5, small.na.thresh = 2.5,
length.factor = 5, merge.fac = 0.85, min.lrr.num = 20, verbose = TRUE)

12 anomDetectLOH

Arguments

intenData An IntensityData object containing the Log R Ratio. The order of the rows
of intenData and the snp annotation are expected to be by chromosome and then
by position within chromosome. The scan annotation should contain sex, coded
as "M" for male and "F" for female.

genoData A GenotypeData object. The order of the rows of genoData and the snp anno-
tation are expected to be by chromosome and then by position within chromo-
some.

scan.ids vector of scan ids (sample numbers) to process

chrom.ids vector of (unique) chromosomes to process. Should correspond to integer chro-
mosome codes in intenData. Recommended for use with autosomes, X (males
will be ignored), and the pseudoautosomal (XY) region.

snp.ids vector of eligible snp ids. Usually exclude failed and intensity-only snps. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
X chromosome. See HLA and pseudoautosomal. If there are SNPs annotated in
the centromere gap, exclude these as well (see centromeres).

known.anoms data.frame of known anomalies (usually from anomDetectBAF); must have "scanID","chromosome","left.index","right.index".
Here "left.index" and "right.index" are row indices of intenData. Left and right
refer to start and end of anomaly, respectively, in position order.

smooth number of markers for smoothing region. See smooth.CNA in the DNAcopy
package.

min.width minimum number of markers for segmenting. See segment in the DNAcopy
package.

nperm number of permutations. See segment in the DNAcopy package.

alpha significance level. See segment in the DNAcopy package.

run.size number of markers to declare a ’homozygous’ run (here ’homozygous’ includes
homozygous and missing)

inter.size number of consecutive heterozygous markers allowed to interrupt a ’homozy-
gous’ run

homodel.min.num

minimum number of markers to detect extreme difference in lrr (for homozy-
gous deletion)

homodel.thresh threshold for measure of deviation from non-anomalous needed to declare seg-
ment a homozygous deletion.

small.num minimum number of SNP markers to declare segment as an anomaly (other than
homozygous deletion)

small.thresh threshold for measure of deviation from non-anomalous to declare segment
anomalous if number of SNP markers is between small.num and medium.num.

medium.num threshold for number of SNP markers to identify ’medium’ size segment

medium.thresh threshold for measure of deviation from non-anomalous needed to declare seg-
ment anomalous if number of SNP markers is between medium.num and long.num.

long.num threshold for number of SNP markers to identify ’long’ size segment

anomDetectLOH 13

long.thresh threshold for measure of deviation from non-anomalous when number of mark-
ers is bigger than long.num

small.na.thresh

threshold measure of deviation from non-anomalous when number of markers
is between small.num and medium.num and ’local mad.fac’ is NA. See Details
section for definition of ’local mad.fac’.

length.factor window around anomaly defined as length.factor*(no. of markers in seg-
ment) on either side of the given segment. Used in determining ’local mad.fac’.
See Details section.

merge.fac threshold for ’sd.fac’= number of baseline standard deviations of segment mean
from baseline mean; consecutive segments with ’sd.fac’ above threshold are
merged

min.lrr.num if any ’non-anomalous’ interval has fewer markers than min.lrr.num, interval
is ignored in finding non-anomalous baseline unless it’s the only piece left

verbose logical indicator whether to print the scan id currently being processed

Details

Detection of anomalies with loss of heterozygosity accompanied by change in Log R Ratio. Male
samples for X chromosome are not processed.

Circular binary segmentation (CBS) (using the R-package DNAcopy) is applied to LRR values and,
in parallel, runs of homozygous or missing genotypes of a certain minimal size (run.size) (and
allowing for some interruptions by no more than inter.size heterozygous SNPs) are identified.
Intervals from known.anoms are excluded from the identification of runs. After some possible
merging of consecutive CBS segments (based on satisfying a threshold merge.fac for deviation
from non-anomalous baseline), the homozygous runs are intersected with the segments from CBS.

Determination of anomalous segments is based on a combination of number-of-marker thresh-
olds and deviation from a non-anomalous baseline. Segments are declared anomalous if devia-
tion from non-anomalous is above corresponding thresholds. (See small.num, small.thresh,
medium.num,medium.thresh, long.num,long.thresh,and small.na.thresh.) Non-anomalous
median and MAD are defined for each sample-chromosome combination. Intervals from known.anoms
and the homozygous runs identified are excluded; remaining regions are the non-anomalous base-
line.

Deviation from non-anomalous is measured by a combination of a chromosome-wide ’mad.fac’
and a ’local mad.fac’ (both the average and the minimum of these two measures are used). Here
’mad.fac’ is (segment median-non-anomalous median)/(non-anomalous MAD) and ’local mad.fac’
is the same definition except the non-anomalous median and MAD are computed over a window
including the segment (see length.factor). Median and MADare found for eligible LRR values.

Value

A list with the following elements:

raw raw homozygous run data, not including any regions present in known.anoms.
A data.frame with the following columns: Left and right refer to start and end
of anomaly, respectively, in position order.

• left.index: row index of intenData indicating left endpoint of segment

14 anomDetectLOH

• right.index: row index of intenData indicating right endpoint of segment
• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• scanID: integer id of scan
• chromosome: chromosome as integer code

raw.adjusted data.frame of runs after merging and intersecting with CBS segments, with the
following columns: Left and right refer to start and end of anomaly, respectively,
in position order.

• scanID: integer id of scan
• chromosome: chromosome as integer code
• left.index: row index of intenData indicating left endpoint of segment
• right.index: row index of intenData indicating right endpoint of segment
• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• num.mark: number of eligible SNP markers in segment
• seg.median: median of eligible LRR values in segment
• seg.mean: mean of eligible LRR values in segment
• mad.fac: measure of deviation from non-anomalous baseline, equal to

abs(median of segment - baseline median)/(baseline MAD); used in de-
termining anomalous segments

• sd.fac: measure of deviation from non-anomalous baseline, equal to abs(mean
of segment - baseline mean)/(baseline standard deviation); used in deter-
mining whether to merge

• local: measure of deviation from non-anomalous baseline used equal to
abs(median of segment - local baseline median)/(local baseline MAD); lo-
cal baseline consists of eligible LRR values in a window around segment;
used in determining anomalous segments

• num.segs: number of segments found by CBS for the given chromosome
• chrom.nonanom.mad: MAD of eligible LRR values in non-anomalous re-

gions across the chromosome
• chrom.nonanom.median: median of eligible LRR values in non-anomalous

regions across the chromosome
• chrom.nonanom.mean: mean of eligible LRR values in non-anomalous re-

gions across the chromosome
• chrom.nonanom.sd: standard deviation of eligible LRR values in non-

anomalous regions across the chromosome
• sex: sex of the scan id coded as "M" or "F"

filtered data.frame of the segments identified as anomalies. Columns are the same as in
raw.adjusted.

base.info data.frame with columns:

• chrom.nonanom.mad: MAD of eligible LRR values in non-anomalous re-
gions across the chromosome

• chrom.nonanom.median: median of eligible LRR values in non-anomalous
regions across the chromosome

anomDetectLOH 15

• chrom.nonanom.mean: mean of eligible LRR values in non-anomalous re-
gions across the chromosome

• chrom.nonanom.sd: standard deviation of eligible LRR values in non-
anomalous regions across the chromosome

• sex: sex of the scan id coded as "M" or "F"
• num.runs: number of original homozygous runs found for given scan/chromosome
• num.segs: number of segments for given scan/chromosome produced by

CBS
• scanID: integer id of scan
• chromosome: chromosome as integer code
• sex: sex of the scan id coded as "M" or "F"

segments data.frame of the segmentation found by CBS with columns:

• scanID: integer id of scan
• chromosome: chromosome as integer code
• left.index: row index of intenData indicating left endpoint of segment
• right.index: row index of intenData indicating right endpoint of segment
• left.base: base position of left endpoint of segment
• right.base: base position of right endpoint of segment
• num.mark: number of eligible SNP markers in the segment
• seg.mean: mean of eligible LRR values in the segment
• sd.fac: measure of deviation from baseline equal to abs(mean of segment

- baseline mean)/(baseline standard deviation) where the baseline is over
non-anomalous regions

merge data.frame of scan id/chromosome pairs for which merging occurred.

• scanID: integer id of scan
• chromosome: chromosome as integer code

Author(s)

Cecelia Laurie

References

See references in segment in the package DNAcopy.

See Also

segment and smooth.CNA in the package DNAcopy, also findBAFvariance, anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF)
data(illuminaSnpADF)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")

16 anomIdentifyLowQuality

blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

scan.ids <- illuminaScanADF$scanID[1:2]
chrom.ids <- unique(illuminaSnpADF$chromosome)
snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]

example for known.anoms, would get this from anomDetectBAF
known.anoms <- data.frame("scanID"=scan.ids[1],"chromosome"=21,

"left.index"=100,"right.index"=200)

LOH.anom <- anomDetectLOH(blData, genoData, scan.ids=scan.ids,
chrom.ids=chrom.ids, snp.ids=snp.ids, known.anoms=known.anoms)

anomIdentifyLowQuality

Identify low quality samples

Description

Identify low quality samples for which false positive rate for anomaly detection is likely to be high.
Measures of noise (high variance) and high segmentation are used.

Usage

anomIdentifyLowQuality(snp.annot, med.sd, seg.info,
sd.thresh, sng.seg.thresh, auto.seg.thresh)

Arguments

snp.annot SnpAnnotationDataFrame with column "eligible", where "eligible" is a logical
vector indicating whether a SNP is eligible for consideration in anomaly detec-
tion (usually FALSE for HLA and XTR regions, failed SNPs, and intensity-only
SNPs). See HLA and pseudoautosomal.

med.sd data.frame of median standard deviation of BAlleleFrequency (BAF) or LogR-
Ratio (LRR) values across autosomes for each scan, with columns "scanID" and
"med.sd". Usually the result of medianSdOverAutosomes. Usually only eligible
SNPs are used in these computations. In addition, for BAF, homozygous SNPS
are excluded.

seg.info data.frame with segmentation information from anomDetectBAF or anomDetectLOH.
Columns must include "scanID", "chromosome", and "num.segs". (For anomDetectBAF,
segmentation information is found in $seg.info from output. For anomDetectLOH,
segmentation information is found in $base.info from output.)

anomIdentifyLowQuality 17

sd.thresh Threshold for med.sd above which scan is identified as low quality. Suggested
values are 0.1 for BAF and 0.25 for LOH.

sng.seg.thresh Threshold for segmentation factor for a given chromosome, above which the
chromosome is said to be highly segmented. See Details. Suggested values are
0.0008 for BAF and 0.0048 for LOH.

auto.seg.thresh

Threshold for segmentation factor across autosome, above which the scan is said
to be highly segmented. See Details. Suggested values are 0.0001 for BAF and
0.0006 for LOH.

Details

Low quality samples are determined separately with regard to each of the two methods of segmen-
tation, anomDetectBAF and anomDetectLOH. BAF anomalies (respectively LOH anomalies) found
for samples identified as low quality for BAF (respectively LOH) tend to have a high false positive
rate.

A scan is identified as low quality due to high variance (noise), i.e. if med.sd is above a certain
threshold sd.thresh.

High segmentation is often an indication of artifactual patterns in the B Allele Frequency (BAF)
or Log R Ratio values (LRR) that are not always captured by high variance. Here segmentation
information is determined by anomDetectBAF or anomDetectLOH which use circular binary seg-
mentation implemented by the R-package DNAcopy. The measure for high segmentation is a
"segmentation factor" = (number of segments)/(number of eligible SNPS). A single chromosome
segmentation factor uses information for one chromosome. A segmentation factor across autosomes
uses the total number of segments and eligible SNPs across all autosomes. See med.sd, sd.thresh,
sng.seg.thresh, and auto.seg.thresh.

Value

A data.frame with the following columns:

scanID integer id for the scan

chrX.num.segs number of segments for chromosome X

chrX.fac segmentation factor for chromosome X

max.autosome autosome with highest single segmentation factor

max.auto.fac segmentation factor for chromosome = max.autosome

max.auto.num.segs

number of segments for chromosome = max.autosome

num.ch.segd number of chromosomes segmented, i.e. for which change points were found

fac.all.auto segmentation factor across all autosomes

med.sd median standard deviation of BAF (or LRR values) across autosomes. See
med.sd in Arguments section.

type one of the following, indicating reason for identification as low quality:

• auto.seg: segmentation factor fac.all.auto above auto.seg.thresh
but med.sd acceptable

18 anomIdentifyLowQuality

• sd: standard deviation factor med.sd above sd.thresh but fac.all.auto
acceptable

• both.sd.seg: both high variance and high segmentation factors, fac.all.auto
and med.sd, are above respective thresholds

• sng.seg: segmentation factor max.auto.fac is above sng.seg.thresh
but other measures acceptable

• sng.seg.X: segmentation factor chrX.fac is above sng.seg.thresh but
other measures acceptable

Author(s)

Cecelia Laurie

See Also

findBAFvariance, anomDetectBAF, anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF, illuminaSnpADF)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

initial scan for low quality with median SD
baf.sd <- sdByScanChromWindow(blData, genoData)
med.baf.sd <- medianSdOverAutosomes(baf.sd)
low.qual.ids <- med.baf.sd$scanID[med.baf.sd$med.sd > 0.05]

segment and filter BAF
scan.ids <- illuminaScanADF$scanID[1:2]
chrom.ids <- unique(illuminaSnpADF$chromosome)
snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]
data(centromeres.hg18)
anom <- anomDetectBAF(blData, genoData, scan.ids=scan.ids, chrom.ids=chrom.ids,

snp.ids=snp.ids, centromere=centromeres.hg18, low.qual.ids=low.qual.ids)

further screen for low quality scans
snp.annot <- illuminaSnpADF
snp.annot$eligible <- snp.annot$missing.n1 < 1
low.qual <- anomIdentifyLowQuality(snp.annot, med.baf.sd, anom$seg.info,

sd.thresh=0.1, sng.seg.thresh=0.0008, auto.seg.thresh=0.0001)

close(blData)
close(genoData)

anomSegStats 19

anomSegStats Calculate LRR and BAF statistics for anomalous segments

Description

Calculate LRR and BAF statistics for anomalous segments and plot results

Usage

anomSegStats(intenData, genoData, snp.ids, anom, centromere,
lrr.cut = -2, verbose = TRUE)

anomStatsPlot(intenData, genoData, anom.stats, snp.ineligible,
plot.ineligible = FALSE, centromere = NULL,
brackets = c("none", "bases", "markers"), brkpt.pct = 10,
whole.chrom = FALSE, win = 5, win.calc = FALSE, win.fixed = 1,
zoom = c("both", "left", "right"), main = NULL, info = NULL,
ideogram = TRUE, ideo.zoom = FALSE, ideo.rect = TRUE,
mult.anom = FALSE, cex = 0.5, cex.leg = 1.5, ...)

Arguments

intenData An IntensityData object containing BAlleleFreq and LogRRatio. The order of
the rows of intenData and the snp annotation are expected to be by chromosome
and then by position within chromosome.

genoData A GenotypeData object. The order of the rows of intenData and the snp anno-
tation are expected to be by chromosome and then by position within chromo-
some.

snp.ids vector of eligible SNP ids. Usually exclude failed and intensity-only SNPS. Also
recommended to exclude an HLA region on chromosome 6 and XTR region on
X chromosome. See HLA and pseudoautosomal. If there are SNPs annotated in
the centromere gap, exclude these as well (see centromeres). x

anom data.frame of detected chromosome anomalies. Names must include "scanID",
"chromosome", "left.index", "right.index", "sex", "method", "anom.id". Valid
values for "method" are "BAF" or "LOH" referring to whether the anomaly was
detected by BAF method (anomDetectBAF) or by LOH method (anomDetectLOH).
Here "left.index" and "right.index" are row indices of intenData with left.index
< right.index.

centromere data.frame with centromere position info. Names must include "chrom", "left.base",
"right.base". Valid values for "chrom" are 1:22, "X", "Y", "XY". Here "left.base"
and "right.base" are start and end base positions of the centromere location, re-
spectively. Centromere data tables are provided in centromeres.

lrr.cut count the number of eligible LRR values less than lrr.cut

verbose whether to print the scan id currently being processed

20 anomSegStats

anom.stats data.frame of chromosome anomalies with statistics, usually the output of anomSegStats.
Names must include "anom.id", "scanID", "chromosome", "left.index", "right.index",
"method", "nmark.all", "nmark.elig", "left.base", "right.base", "nbase", "non.anom.baf.med",
"non.anom.lrr.med", "anom.baf.dev.med", "anom.baf.dev.5", "anom.lrr.med", "nmark.baf",
"nmark.lrr". Left and right refer to start and end, respectively, of the anomaly,
in position order.

snp.ineligible vector of ineligible snp ids (e.g., intensity-only, failed snps, XTR and HLA re-
gions). See HLA and pseudoautosomal.

plot.ineligible

whether or not to include ineligible points in the plot for LogRRatio

brackets type of brackets to plot around breakpoints - none, use base length, use number
of markers (note that using markers give asymmetric brackets); could be used,
along with brkpt.pct, to assess general accuracy of end points of the anomaly

brkpt.pct percent of anomaly length in bases (or number of markers) for width of brackets

whole.chrom logical to plot the whole chromosome or not (overrides win and zoom)

win size of the window (a multiple of anomaly length) surrounding the anomaly to
plot

win.calc logical to calculate window size from anomaly length; overrides win and gives
window of fixed length given by win.fixed

win.fixed number of megabases for window size when win.calc=TRUE

zoom indicates whether plot includes the whole anomaly ("both") or zooms on just the
left or right breakpoint; "both" is default

main Vector of titles for upper (LRR) plots. If NULL, titles will include anom.id,
scanID, sex, chromosome, and detection method.

info character vector of extra information to include in the main title of the upper
(LRR) plot

ideogram logical for whether to plot a chromosome ideogram under the BAF and LRR
plots.

ideo.zoom logical for whether to zoom in on the ideogram to match the range of the BAF/LRR
plots

ideo.rect logical for whether to draw a rectangle on the ideogram indicating the range of
the BAF/LRR plots

mult.anom logical for whether to plot multiple anomalies from the same scan-chromosome
pair on a single plot. If FALSE (default), each anomaly is shown on a separate
plot.

cex cex value for points on the plots

cex.leg cex value for the ideogram legend

... Other parameters to be passed directly to plot.

Details

anomSegStats computes various statistics of the input anomalies. Some of these are basic statistics
for the characteristics of the anomaly and for measuring deviation of LRR or BAF from expected.

anomSegStats 21

Other statistics are used in downstrean quality control analysis, including detecting terminal anoma-
lies and investigating centromere-spanning anomalies.

anomStatsPlot produces separate png images of each anomaly in anom.stats. Each image con-
sists of an upper plot of LogRRatio values and a lower plot of BAlleleFrequency values for a zoomed
region around the anomaly or whole chromosome (depending up parameter choices). Each plot
has vertical lines demarcating the anomaly and horizontal lines displaying certain statistics from
anomSegStats. The upper plot title includes sample number and chromosome. Further plot anno-
tation describes which anomaly statistics are represented.

Value

anomSegStats produces a data.frame with the variables for anom plus the following columns: Left
and right refer to position order with left < right.

nmark.all total number of SNP markers on the array from left.index to right.index inclusive

nmark.elig total number of eligible SNP markers on the array from left.index to right.index,
inclusive. See snp.ids for definition of eligible SNP markers.

left.base base position corresponding to left.index

right.base base position corresponding to right.index

nbase number of bases from left.index to right.index, inclusive
non.anom.baf.med

BAF median of non-anomalous segments on all autosomes for the associated
sample, using eligible heterozygous or missing SNP markers

non.anom.lrr.med

LRR median of non-anomalous segments on all autosomes for the associated
sample, using eligible SNP markers

non.anom.lrr.mad

MAD for LRR of non-anomalous segments on all autosomes for the associated
sample, using eligible SNP markers

anom.baf.dev.med

BAF median of deviations from non.anom.baf.med of points used to detect
anomaly (eligible and heterozygous or missing)

anom.baf.dev.5 median of BAF deviations from 0.5, using eligible heterozygous or missing SNP
markers in anomaly

anom.baf.dev.mean

mean of BAF deviations from non.anom.baf.med, using eligible heterozygous
or missing SNP markers in anomaly

anom.baf.sd standard deviation of BAF deviations from non.anom.baf.med, using eligible
heterozygous or missing SNP markers in anomaly

anom.baf.mad MAD of BAF deviations from non.anom.baf.med, using eligible heterozygous
or missing SNP markers in anomaly

anom.lrr.med LRR median of eligible SNP markers within the anomaly

anom.lrr.sd standard deviation of LRR for eligible SNP markers within the anomaly

anom.lrr.mad MAD of LRR for eligible SNP markers within the anomaly

22 anomSegStats

nmark.baf number of SNP markers within the anomaly eligible for BAF detection (eligible
markers that are heterozygous or missing)

nmark.lrr number of SNP markers within the anomaly eligible for LOH detection (eligible
markers)

cent.rel position relative to centromere - left, right, span

left.most T/F for whether the anomaly is the left-most anomaly for this sample-chromosome,
i.e. no other anomalies with smaller start base position

right.most T/F whether the anomaly is the right-most anomaly for this sample-chromosome,
i.e. no other anomalies with larger end base position

left.last.elig T/F for whether the anomaly contains the last eligible SNP marker going to the
left (decreasing position)

right.last.elig

T/F for whether the anomaly contains the last eligible SNP marker going to the
right (increasing position)

left.term.lrr.med

median of LRR for all eligible SNP markers from left-most eligible marker to
the left telomere (only calculated for the most distal anom)

right.term.lrr.med

median of LRR for all eligible markers from right-most eligible marker to the
right telomere (only calculated for the most distal anom)

left.term.lrr.n

sample size for calculating left.term.lrr.med

right.term.lrr.n

sample size for calculating right.term.lrr.med

cent.span.left.elig.n

number of eligible markers on the left side of centromere-spanning anomalies

cent.span.right.elig.n

number of eligible markers on the right side of centromere-spanning anomalies

cent.span.left.bases

length of anomaly (in bases) covered by eligible markers on the left side of the
centromere

cent.span.right.bases

length of anomaly (in bases) covered by eligible markers on the right side of the
centromere

cent.span.left.index

index of eligible marker left-adjacent to centromere; recall that index refers to
row indices of intenData

cent.span.right.index

index of elig marker right-adjacent to centromere

bafmetric.anom.mean

mean of BAF-metric values within anomaly, using eligible heterozygous or
missing SNP markers BAF-metric values were used in the detection of anoma-
lies. See anomDetectBAF for definition of BAF-metric

anomSegStats 23

bafmetric.non.anom.mean

mean of BAF-metric values within non-anomalous segments across all auto-
somes for the associated sample, using eligible heterozygous or missing SNP
markers

bafmetric.non.anom.sd

standard deviation of BAF-metric values within non-anomalous segments across
all autosomes for the associated sample, using eligible heterozygous or missing
SNP markers

nmark.lrr.low number of eligible markers within anomaly with LRR values less than lrr.cut

Note

The non-anomalous statistics are computed over all autosomes for the sample associated with an
anomaly. Therefore the accuracy of these statistics relies on the input anomaly data.frame including
all autosomal anomalies for a given sample.

Author(s)

Cathy Laurie

See Also

anomDetectBAF, anomDetectLOH

Examples

library(GWASdata)
data(illuminaScanADF)
data(illuminaSnpADF)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

scan.ids <- illuminaScanADF$scanID[1:2]
chrom.ids <- unique(illuminaSnpADF$chromosome)
snp.ids <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 < 1]
snp.failed <- illuminaSnpADF$snpID[illuminaSnpADF$missing.n1 == 1]

example results from anomDetectBAF
baf.anoms <- data.frame("scanID"=rep(scan.ids[1],2), "chromosome"=rep(21,2),

"left.index"=c(100,300), "right.index"=c(200,400), sex=rep("M",2),
method=rep("BAF",2), anom.id=1:2, stringsAsFactors=FALSE)

example results from anomDetectLOH
loh.anoms <- data.frame("scanID"=scan.ids[2],"chromosome"=22,

"left.index"=400,"right.index"=500, sex="F", method="LOH",

24 apartSnpSelection

anom.id=3, stringsAsFactors=FALSE)

anoms <- rbind(baf.anoms, loh.anoms)
data(centromeres.hg18)
stats <- anomSegStats(blData, genoData, snp.ids=snp.ids, anom=anoms,

centromere=centromeres.hg18)

anomStatsPlot(blData, genoData, anom.stats=stats,
snp.ineligible=snp.failed, centromere=centromeres.hg18)

close(blData)
close(genoData)

apartSnpSelection Random selection of SNPs

Description

Randomly selects SNPs for which each pair is at least as far apart as the specified basepair distance.

Usage

apartSnpSelection(chromosome, position, min.dist = 1e+05,
init.sel = NULL, max.n.chromosomes = -1,
verbose = TRUE)

Arguments

chromosome An integer vector containing the chromosome for each SNP. Valid values are
1-26, any other value will be interpreted as missing and not selected.

position A numeric vector of the positions (in basepairs) of the SNPs.

min.dist A numeric value to specify minimum distance required (in basepairs).

init.sel A logical vector indicating the initial SNPs to be included.
max.n.chromosomes

A numeric value specifying the maximum number of SNPs to return per chro-
mosome, "-1" means no number limit.

verbose A logical value specifying whether to show progress information while running.

Details

apartSnpSelection selects SNPs randomly with the condition that they are at least as far apart as
min.dist in basepairs. The starting set of SNPs can be specified with init.sel.

Value

A logical vector indicating which SNPs were selected.

asSnpMatrix 25

Author(s)

Xiuwen Zheng

Examples

library(GWASdata)
data(affy_snp_annot)
pool <- affy_snp_annot$chromosome < 23
rsnp <- apartSnpSelection(affy_snp_annot$chromosome, affy_snp_annot$position,

min.dist=15000, init.sel=pool)

asSnpMatrix Utilities for snpStats

Description

asSnpMatrix converts a GenotypeData object to a SnpMatrix-class object.

Usage

asSnpMatrix(genoData, snpNames="snpID", scanNames="scanID",
snp=c(1,-1), scan=c(1,-1))

Arguments

genoData A GenotypeData object.

snpNames The name of the SNP variable in genoData to use as the column (SNP) names
in the SnpMatrix-class object.

scanNames The name of the scan variable in genoData to use as the row (scan) names in the
SnpMatrix-class object.

snp An integer vector of the form (start, count), where start is the index of the first
data element to read and count is the number of elements to read. A value of
’-1’ for count indicates that all SNPs should be read.

scan An integer vector of the form (start, count), where start is the index of the first
data element to read and count is the number of elements to read. A value of
’-1’ for count indicates that all scans should be read.

Details

The default is to extract all SNPs and scans from genoData, but for a large dataset this may exceed
R’s memory limit. Alternatively, snp and scan may be used to specify (start, count) of
SNPs and scans to extract from genoData.

In the SnpMatrix object, genotypes are stored as 0 = missing, 1 = "A/A", 2= "A/B" or "B/A", and
3 = "B/B". (In a GenotypeData object, 0 = "B/B", 1 = "A/B" or "B/A", and 2 = "A/A".) Columns
are SNPs with names snpNames and rows are scans with names scanNames (the transpose of the
GenotypeData object).

26 assocTestCPH

Value

A SnpMatrix-class object.

Author(s)

Stephanie Gogarten

See Also

SnpMatrix-class, GenotypeData

Examples

library(snpStats)
library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)
data(affySnpADF)
data(affyScanADF)
genoData <- GenotypeData(nc, snpAnnot=affySnpADF, scanAnnot=affyScanADF)
snpmat <- asSnpMatrix(genoData, snpNames="rsID", scanNames="scanID")
snpmat
as(snpmat[1:5, 1:5], "character")
summary(snpmat)

only chromosome 21
chr <- getChromosome(genoData)
c21 <- which(chr == 21)
snpmat <- asSnpMatrix(genoData, snpNames="rsID", scanNames="scanID",

snp=c(c21[1], length(c21)))
snpmat

assocTestCPH Cox proportional hazards

Description

Fits Cox proportional hazards model

Usage

assocTestCPH(genoData, event, time.to.event,
covars, factor.covars = NULL,
scan.chromosome.filter = NULL,
scan.exclude = NULL,
maf.filter = FALSE,
GxE = NULL, strata.vars = NULL,
chromosome.set = NULL, block.size = 5000,
verbose = TRUE,
outfile = NULL)

assocTestCPH 27

Arguments

genoData GenotypeData object, should contain sex and phenotypes in scan annotation

event name of scan variable in genoData for event to analyze

time.to.event name of scan variable in genoData for time to event

covars vector of covariate terms for model (can include interactions as ’a:b’, main ef-
fects correspond to scan variable names in genoData)

factor.covars vector of names of covariates to be converted to factor
scan.chromosome.filter

a logical matrix that can be used to exclude some chromosomes, some scans,
or some specific scan-chromosome pairs. Entries should be TRUE if that scan-
chromosome pair should be included in the analysis, FALSE if not. The number
of rows must be equal to the number of scans in genoData, and the number
of columns must be equal to the largest integer chromosome value in genoData.
The column number must match the chromosome number. e.g. A scan.chromosome.filter
matrix used for an analyis when genoData has SNPs with chromosome=(1-24,
26, 27) (i.e. no Y (25) chromosome SNPs) must have 27 columns (all FALSE
in the 25th column). But a scan.chromosome.filter matrix used for an analysis
genoData has SNPs chromosome=(1-26) (i.e no Unmapped (27) chromosome
SNPs) must have only 26 columns.

scan.exclude an integer vector containing the IDs of entire scans to be excluded.

maf.filter whether to filter results returned using MAF*(1-MAF) > 75/(2*n) where MAF
= minor allele frequency and n = number of events

GxE name of the covariate to use for E if genotype-by-environment (i.e. SNP:E)
model is to be analyzed, in addition to the main effects (E can be a covariate
interaction)

strata.vars vector of names of variables to stratify on for a stratified analysis (use NULL if
no stratified analysis needed)

chromosome.set integer vector with chromosome(s) to be analyzed. Use 23, 24, 25, 26, 27 for X,
XY, Y, M, Unmapped respectively.

block.size number of SNPs from a given chromosome to read in one block from genoData

verbose Logical value specifying whether to show progress information.

outfile a character string to append in front of ".chr.i_k.RData" for naming the output
data-frames; where i is the first chromosome, and k is the last chromosome used
in that call to the function. "chr.i_k." will be omitted if chromosome.set=NULL.

Details

This function performs Cox proportional hazards regression of a survival object (using the Surv
function) on SNP genotype and other covariates. It uses the coxph function from the R survival
library.

Individual samples can be included or excluded from the analysis using the scan.exclude pa-
rameter. Individual chromosomes can be included or excluded by specifying the indices of the
chromosomes to be included in the chromosome.set parameter. Specific chromosomes for specific
samples can be included or excluded using the scan.chromosome.filter parameter.

28 assocTestCPH

Both scan.chromosome.filter and scan.exclude may be used together. If a scan is excluded
in EITHER, then it will be excluded from the analysis, but it does NOT need to be excluded
in both. This design allows for easy filtering of anomalous scan-chromosome pairs using the
scan.chromosome.filter matrix, but still allows easy exclusion of a specific group of scans (e.g.
males or Caucasians) using scan.exclude.

The argument maf.filter indicates whether to filter results returned using 2 * MAF * (1-MAF) * n > 75
where MAF = minor allele frequency and n = number of events. This filter was suggested by Ken Rice
and Thomas Lumley, who found that without this requirement, at threshold levels of significance
for genome-wide studies, Cox regression p-values based on standard asymptotic approximations
can be notably anti-conservative.

Value

If outfile=NULL (default), all results are returned as a data.frame. If outfile is specified, no
data is returned but the function saves a data.frame with the naming convention as described by the
argument outfile. Columns for the main effects model are:

index snp index
snpID unique integer ID for SNP
chr chromosome
maf minor allele frequency calculated as appropriate for autosomal loci
mafx minor allele frequency calculated as appropriate for X-linked loci
beta regression coefficient returned by the coxph function
se standard error of the regression coefficient returned by the coxph function
z z statistic returned by the coxph function
pval p-value for the z-statistic returned by the coxph function
warned TRUE if a warning was issued
n.events number of events in complete cases for the given SNP

If GxE is not NULL, another data.frame is returned with the results of the genotype-by-environment
model. If outfile=NULL, the function returns a list with names (main, GxE); otherwise the GxE
data.frame is saved as a separate output file. Columns are:

index snp index
snpID unique integer ID for SNP
chr chromosome
maf minor allele frequency calculated as appropriate for autosomal loci
mafx minor allele frequency calculated as appropriate for X-linked loci
warned TRUE if a warning was issued
n.events number of events in complete cases for the given SNP
ge.lrtest Likelihood ratio test statistic for the GxE interaction
ge.pval p-value for the likelihood ratio test statistic

Warnings:

If outfile is not NULL, another file will be saved with the name "outfile.chr.i_k.warnings.RData"
that contains any warnings generated by the function.

assocTestCPH 29

Author(s)

Cathy Laurie

See Also

GenotypeData, coxph

Examples

an example of a scan chromosome matrix
desiged to eliminate duplicated individuals
and scans with missing values of sex
library(GWASdata)
data(affyScanADF)
samp.chr.matrix <- matrix(TRUE,nrow(affyScanADF),26)
dup <- duplicated(affyScanADF$subjectID)
samp.chr.matrix[dup | is.na(affyScanADF$sex),] <- FALSE
samp.chr.matrix[affyScanADF$sex=="F", 25] <- FALSE

additionally, exclude YRI subjects
scan.exclude <- affyScanADF$scanID[affyScanADF$race == "YRI"]

create some variables for the scans
affyScanADF$age <- rnorm(nrow(affyScanADF),mean=40, sd=10)
affyScanADF$event <- rbinom(nrow(affyScanADF),1,0.4)
affyScanADF$ttoe <- rnorm(nrow(affyScanADF),mean=100,sd=10)

create data object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

variables
event <- "event"
time.to.event <- "ttoe"
covars <- c("sex", "age")
factor.covars <- "sex"

chr.set <- 21

res <- assocTestCPH(genoData,
event="event", time.to.event="ttoe",
covars=c("sex", "age"), factor.covars="sex",
scan.chromosome.filter=samp.chr.matrix,
scan.exclude=scan.exclude,
chromosome.set=chr.set)

close(genoData)

30 assocTestFisherExact

assocTestFisherExact Association tests

Description

This function performs Fisher’s Exact Test using allele counts for cases and controls. It takes the
output from assocTestRegression as its input.

Usage

assocTestFisherExact(dat, outfile = NULL)

Arguments

dat a data.frame of output from assocTestRegression run with model.type = "logistic"
(a case/control test). It should contain all columns of the output and only the
rows (SNPs) that the user wishes to perform Fisher’s Exact Test on.

outfile a character string to append in front of "FisherExact.Rdata" for naming the out-
put data-frame. If set to NULL (default), then the results are returned to the R
console.

Details

This function performs a basic Fisher’s Exact Test to test for differences in allele frequencies be-
tween cases and controls; it compares the "A" and "B" allele frequencies between cases and controls.

This function uses the output from assocTestRegression run with model.type = "logistic"
as its input. It uses the output genotype counts for cases and controls, converts them to allele counts
and performs the Fisher’s Exact Test to calculate an allelic odds ratio (the odds of being a case for
the minor allele compared to the major allele), a 95% confidence interval, and a p-value.

One suggested use of this function is to perform significance tests on SNPs that are monomorphic
in either cases or controls, as a standard logistic regression test is not well-defined in this case. The
assocTestRegression function will return an error for these SNPs; see its help page for more
detail.

Value

If outfile=NULL (default), all results are returned as a data.frame. If outfile is specified, no data
is returned but the function saves a data-frame with the naming convention as described by the
variable outfile.

The first five columns of the data-frame are taken from dat:

snpID snpID of the SNP

n sample size for the regression

MAF minor allele frequency. Note that calculation of allele frequency for the X chro-
mosome is different than that for the autosomes and the XY (pseudo-autosomal)
region.

assocTestFisherExact 31

minor.allele the minor allele. Takes values "A" or "B".
regression.warningOrError

report of different possible warnings or errors from the regression test: 0 if con-
trols are monomorphic (logistic regression only), 1 if cases are monomorphic
(logistic refression only), 2 if all samples are monomorphic, 9 if a warning or
error occured during model fitting, NA if none

Fisher.OR odds ratio from the Fisher’s Exact test of allele counts. It is the odds of being a
case for the minor allele compared to the major allele.

Fisher.OR_L95 lower 95% confidence limit for the odds ratio.

Fisher.OR_U95 upper 95% confidence limit for the odds ratio.

Fisher.pval Fisher’s Exact test p-value.

nA.cc0 number of A alleles among samples with outcome coded as 0

nB.cc0 number of B alleles among samples with outcome coded as 0

nA.cc1 number of A alleles among samples with outcome coded as 1

nB.cc1 number of B alleles among samples with outcome coded as 1

Author(s)

Matthew P. Conomos

See Also

assocTestRegression

Examples

The following example would take the output from association tests run on chromosome 22 using assocTestRegression
and perform the Fisher’s Exact Test on those that were monomorphic in either the cases or the controls.
The output would be saved as "chr22test.FisherExact.RData"

run assocTestRegression
library(GWASdata)
data(affyScanADF)
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)
mydat <- assocTestRegression(genoData, outcome="status",

model.type="logistic", chromosome.set=22)

subset rows of those SNPs that are monomorphic in cases or controls; keep all columns
mono.dat <- mydat[which(mydat$model.1.additive.warningOrError == 0 |

mydat$model.1.additive.warningOrError ==1),]

perform the Fisher’s Exact Test
assocTestFisherExact(dat = mono.dat, outfile = "chr22test")

load the output
outfile <- "chr22test.FisherExact.RData"
fisher.res <- getobj(outfile)

32 assocTestRegression

head(fisher.res)
unlink(outfile)

assocTestRegression Association tests

Description

This function performs regression based and likelihood ratio based association tests for both geno-
type main effects as well as interaction effects. It also computes genotype counts for association
tests.

Usage

assocTestRegression(genoData, outcome, model.type,
covar.list = NULL, ivar.list = NULL,
gene.action.list = NULL, dosage = FALSE,
scan.chromosome.filter = NULL,
scan.exclude = NULL, CI = 0.95,
robust = FALSE, LRtest = TRUE,
chromosome.set = NULL, block.set = NULL,
block.size = 5000, verbose = TRUE,
outfile = NULL)

Arguments

genoData GenotypeData object, should contain phenotypes and covariates in scan anno-
tation

outcome Vector (of length equal to the number of models) of names of the outcome vari-
ables for each model. These names must be in the scan annotation of genoData.
e.g. c("case.cntl.status", "blood.pressure") will use "case.cntl.status" as the out-
come for the first model and "blood pressure" for the second. Outcome variables
must be coded as 0/1 for logistic regression.

model.type vector (of length equal to the number of models) with the types of models to
be fitted. The elements should be one of: "logistic", "linear", or "poisson". e.g.
c("logistic", "linear") will perform two tests: the first using logistic regression,
and the second using linear regression.

covar.list list (of length equal to the number of models) of vectors containing the names of
covariates to be used in the regression model (blank, i.e. "" if none). The default
value is NULL and will include no covariates in any of the models. The covariate
names must be in the scan annotation of genoData. e.g. covar.list() <- list();
covar.list[[1]] <- c("age","sex"); covar.list[[2]] <- c("");
will use both "age" and "sex" as covariates for the first model and no covariates
for the second model (this regresses on only the genotype).

assocTestRegression 33

ivar.list list (of length equal to the number of models) of vectors containing the names
of covariates for which to include an interaction with genotype (blank, i.e. ""
if none). The default value is NULL and will include no interactions in any of
the models. The covariate names must be in the scan annotation of genoData.
e.g. ivar.list() <- list(); ivar.list[[1]] <- c("sex");
ivar.list[[2]] <- c(""); will include a genotype*"sex" interaction term
for the first model and no interactions for the second model.

gene.action.list

a list (of length equal to the number of models) of vectors containing the types
of gene action models to be used in the corresponding regression model. Valid
options are "additive", "dominant", and "recessive", referring to how the mi-
nor allele is treated, as well as "dominance". "additive" coding sets the marker
variable for homozygous minor allele samples = 2, heterozygous samples = 1,
and homozygous major allele samples = 0. "dominant" coding sets the marker
variable for homozygous minor allele samples = 2, heterozygous samples = 2,
and homozygous major allele samples = 0. "recessive" coding sets the marker
variable for homozygous minor allele samples = 2, heterozygous samples = 0,
and homozygous major allele samples = 0. "dominance" coding sets the marker
variable for homozygous minor allele samples = major allele frequency, het-
erozygous samples = 0, and homozygous major allele samples = minor allele
frequency. This coding eliminates the additive component of variance for the
marker variable, leaving only the dominance component of variance. The de-
fault value is NULL, which assumes only an "additive" gene action model for ev-
ery test. e.g. gene.action.list() <- list(); gene.action.list[[1]] <- c("additive");
gene.action.list[[2]] <- c("dominant", "recessive"); will run
the first model using "additive" gene action, and will run the second model using
both "dominant" and "recessive" gene actions.

dosage logical for whether or not the genotype values are imputed dosages. The de-
fault value is FALSE for true genotype calls. When using imputed dosages, the
gene.action must be additive, and genotype counts will not be calculated.

scan.chromosome.filter

a logical matrix that can be used to exclude some chromosomes, some scans,
or some specific scan-chromosome pairs. Entries should be TRUE if that scan-
chromosome pair should be included in the analysis, FALSE if not. The number
of rows must be equal to the number of scans in genoData, and the number
of columns must be equal to the largest integer chromosome value in genoData.
The column number must match the chromosome number. e.g. A scan.chromosome.filter
matrix used for an analyis when genoData has SNPs with chromosome=(1-24,
26, 27) (i.e. no Y (25) chromosome SNPs) must have 27 columns (all FALSE
in the 25th column). But a scan.chromosome.filter matrix used for an analysis
genoData has SNPs chromosome=(1-26) (i.e no Unmapped (27) chromosome
SNPs) must have only 26 columns.

scan.exclude an integer vector containing the IDs of entire scans to be excluded.
CI sets the confidence level for the confidence interval calculations. Confidence

intervals are computed at every SNP; for the odds ratio when using logistic re-
gression, for the linear trend parameter when using linear regression, and for the
rate ratio when using Poisson regression. The default value is 0.95 (i.e. a 95%
confidence interval). The confidence level must be between 0 and 1.

34 assocTestRegression

robust logical for whether to use sandwich-based robust standard errors. The default
value is FALSE, and uses model based standard errors. The standard error esti-
mates are returned and also used for Wald Tests of significance.

LRtest logical for whether to perform Likelihood Ratio Tests. The default value is TRUE,
and performs LR tests in addition to Wald tests (which are always performed).
NOTE: Performing the LR tests adds a noticeable amount of computation time.

chromosome.set integer vector with chromosome(s) to be analyzed. Use 23, 24, 25, 26, 27 for X,
XY, Y, M, Unmapped respectively.

block.set list (of length equal to length(chromosome.set)) of vectors where every vec-
tors contains the indices of the SNP blocks (on that chromosome) to be analyzed.
e.g. chromosome.set <- c(1,2); block.set <- list(); chr.1 <- c(1,2,3);
chr.2 <- c(5,6,7,8); block.set$chr.1 <- chr.1; block.set$chr.2 <- chr.2;
will analyze first three block on chromosome 1 and 5th through 8th blocks on
chromosome 2. The actual number of SNPs analyzed will depend on block.size.
Default value is NULL. If block.set == NULL, all the SNPs on chromosomes in
chromosome.set will be analyzed.

block.size Number of SNPs to be read from genoData at once.
verbose if TRUE (default), will print status updates while the function runs. e.g. it will

print "chr 1 block 1 of 10" etc. in the R console after each block of SNPs is done
being analyzed.

outfile a character string to append in front of ".model.j.gene_action.chr.i_k.RData" for
naming the output data-frames; where j is the model number, gene_action is the
gene.action type, i is the first chromosome, and k is the last chromosome used
in that call to the function. "chr.i_k." will be omitted if chromosome.set=NULL.
If set to NULL (default), then the results are returned to the R console.

Details

When using models without interaction terms, the association tests compare the model including the
covariates and genotype value to the model including only the covariates (a test of genotype effect).
When using a model with interaction terms, the association tests compare the model including all
the interactions, the covariates, and the genotype value to the model with only the covariates and
genotype value (jointly testing for all the interaction effects). All tests and p-values are always
computed using Wald tests with p-values computed from Chi-Squared distribtuions. The option of
using either sandwich based robust standard errors (which make no model assumptions) or using
model based standard errors for the confidence intervals and Wald tests is specified by the robust
parameter. The option of also performing equivalent Likelihood Ratio tests is available and is
specified by the LRtest parameter.

Three types of regression models are available: "logistic", "linear", or "poisson". Multiple models
can be run at the same time by putting multiple arguments in the outcome, model.type, covar.list,
ivar.list, and gene.action.list parameters. For each model, available gene action models are
"additive", "dominant", "recessive", and "dominance." See above for the correct usage of each of
these.

For logistic regression models, if the SNP is monomorphic in either cases or controls, then the
slope parameter is not well-defined. In this situation, an error message will be returned (see
model.N.gene_action.warningOrError in the Value section below for details), and the regres-
sion of this SNP will not be performed. If a test of significance is still desired for these SNPs, we

assocTestRegression 35

suggest performing either a Fisher’s Exact Test using the assocTestFisherExact function pro-
vided in GWASTools or performing a trend test (using model.type = "linear" in this function).

Individual samples can be included or excluded from the analysis using the scan.exclude pa-
rameter. Individual chromosomes can be included or excluded by specifying the indices of the
chromosomes to be included in the chromosome.set parameter. Specific chromosomes for specific
samples can be included or excluded using the scan.chromosome.filter parameter. The inclusion
or exclusion of specific blocks of SNP’s on each chromosome can be specified using the block.set
parameter. Note that the actual SNP’s included or excluded will change according to the value of
block.size.

Both scan.chromosome.filter and scan.exclude may be used together. If a scan is excluded
in EITHER, then it will be excluded from the analysis, but it does NOT need to be excluded
in both. This design allows for easy filtering of anomalous scan-chromosome pairs using the
scan.chromosome.filter matrix, but still allows easy exclusion of a specific group of scans (e.g.
males or Caucasians) using scan.exclude.

This function allows for the usage of imputed dosages in place of genotypes in the additive model.

Value

If outfile=NULL (default), all results are returned as a single data.frame. If outfile is specified,
no data is returned but the function saves a data-frame for each model gene-action pair, with the
naming convention as described by the variable outfile.

The first column of each data-frame is:

snpID snpID (from genoData) of the SNP

After these first three columns, for every model gene-action pair there are the following columns:
Here, "model.M" is the name assigned to the test where M = 1, 2,..., length(model.type), and
"gene_action" is the gene-action type of the test (one of "additive", "dominant", "recessive", or
"dominance").

model.M.n sample size for the regression

For tests that use linear regression (will be NA if using imputed dosages for genotypes):

model.M.nAA number of AA genotypes in samples

model.M.nAB number of AB genotypes in samples

model.M.nBB number of BB genotypes in samples

For tests that use logistic regression (will be NA if using imputed dosages for genotypes):

model.M.nAA.cc0

number of AA genotypes in samples with outcome coded as 0
model.M.nAB.cc0

number of AB genotypes in samples with outcome coded as 0
model.M.nBB.cc0

number of BB genotypes in samples with outcome coded as 0
model.M.nAA.cc1

number of AA genotypes in samples with outcome coded as 1

36 assocTestRegression

model.M.nAB.cc1

number of AB genotypes in samples with outcome coded as 1
model.M.nBB.cc1

number of BB genotypes in samples with outcome coded as 1
model.M.MAF minor allele frequency. Note that calculation of allele frequency for the X chro-

mosome is different than that for the autosomes and the XY (pseudo-autosomal)
region. Hence if chromosome.set includes 23, genoData should provide the sex
of the scan ("M" or "F") i.e. there should be a column named "sex" with "F" for
females and "M" for males.

model.M.minor.allele

the minor allele. Takes values "A" or "B".
model.M.gene_action.warningOrError

report of different possible warnings or errors: 0 if controls are monomorphic
(logistic regression only), 1 if cases are monomorphic (logistic refression only),
2 if all samples are monomorphic, 9 if a warning or error occured during model
fitting, NA if none

model.M.gene_action.Est.G

estimate of the regression coefficient for the genotype term. See the description
in gene.action.list above for interpretation.

model.M.gene_action.SE.G

standard error of the regression coefficient estimate for the genotype term. Could
be either sandwich based (robust) or model based; see description in robust.

For tests with interaction variables: Here, "ivar_name" refers to the name of the interaction variable;
if there are multiple interaction variables, there will be a column with each different "ivar_name".

model.M.gene_action.Est.G.ivar_name

estimate of the regression coefficient for the interaction between genotype and
ivar_name.

model.M.gene_action.SE.G.ivar_name

standard error of the regression coefficient estimate. Could be either sandwich
based (robust) or model based; see description in robust.

For tests that use logistic regression with no interaction variables:

model.M.gene_action.OR.G

odds ratio for the genotype term. This is exp(the regression coefficient). See the
description in "gene.action.list" above for interpretation.

model.M.gene_action.OR_L95.G

lower 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

model.M.gene_action.OR_U95.G

upper 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

For tests that use logistic regression and interaction variables:

model.M.gene_action.OR.G.ivar_name

odds ratio for the genotype*ivar_name interaction term. This is exp(the interac-
tion regression coefficient). A separate odds ratio is calculated for each interac-
tion term. See the description in "gene.action.list" above for interpretation.

assocTestRegression 37

model.M.gene_action.OR_L95.G.ivar_name

lower 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

model.M.gene_action.OR_U95.G.ivar_name

upper 95% confidence limit for the odds ratio (95 will be replaced with whatever
confidence level is chosen in CI).

For tests that use linear regression with no interaction variables:

model.M.gene_action.L95.G

lower 95% confidence limit for the genotype coefficient (95 will be replaced
with whatever confidence level is chosen in CI).

model.M.gene_action.U95.G

upper 95% confidence limit for the genotype coefficient (95 will be replaced
with whatever confidence level is chosen in CI).

For tests that use linear regression and interaction variables:

model.M.gene_action.L95.G.ivar_name

lower 95% confidence limit for the genotype*ivar_name interaction coefficient
(95 will be replaced with whatever confidence level is chosen in CI).

model.M.gene_action.U95.G.ivar_name

upper 95% confidence limit for the genotype*ivar_name interaction coefficient
(95 will be replaced with whatever confidence level is chosen in CI).

For tests that use Poisson regression with no interaction variables:

model.M.gene_action.RR.G

rate ratio for the genotype term. This is exp(the regression coefficient). See the
description in "gene.action.list" above for interpretation.

model.M.gene_action.RR_L95.G

lower 95% confidence limit for the rate ratio (95 will be replaced with whatever
confidence level is chosen in CI).

model.M.gene_action.RR_U95.G

upper 95% confidence limit for the rate ratio (95 will be replaced with whatever
confidence level is chosen in CI).

For tests that use Poisson regression and interaction variables:

model.M.gene_action.RR.G.ivar_name

rate ratio for the genotype*ivar_name interaction term. This is exp(the interac-
tion regression coefficient). A separate odds ratio is calculated for each interac-
tion term. See the description in "gene.action.list" above for interpretation.

model.M.gene_action.RR_L95.G.ivar_name

lower 95% confidence limit for the rate ratio (95 will be replaced with whatever
confidence level is chosen in CI).

model.M.gene_action.RR_U95.G.ivar_name

upper 95% confidence limit for the rate ratio (95 will be replaced with whatever
confidence level is chosen in CI).

For tests with no interaction variables:

38 assocTestRegression

model.M.gene_action.Wald.Stat.G

value of the Wald test statistic for testing the genotype parameter
model.M.gene_action.Wald.pval.G

Wald test p-value, calculated from a Chi-Squared distribution. This can be cal-
culated using either sandwich based robust standard errors or model based stan-
dard errors (see robust).

For tests with interaction variables:
model.M.gene_action.Wald.Stat.GxE

value of the Wald test statistic for jointly testing all genotype interaction param-
eters

model.M.gene_action.Wald.pval.GxE

Wald test p-value for jointly testing all genotype interaction parameters, calcu-
lated from a Chi-Squared distribution. This can be calculated using either sand-
wich based robust standard errors or model based standard errors (see robust).

If LRtest = TRUE, for tests with no interaction variables:

model.M.gene_action.LR.Stat.G

value of the Likelihood Ratio test statistic for testing the genotype parameter
model.M.gene_action.LR.pval.G

Likelihood Ratio test p-value.

If LRtest = TRUE, for tests with interaction variables:

model.M.gene_action.LR.Stat.GxE

value of the Likelihood Ratio test statistic for jointly testing all genotype inter-
action parameters

model.M.gene_action.LR.pval.GxE

Likelihood Ratio test p-value for jointly testing all genotype interaction param-
eters.

Attributes:

There is also an attribute for each output data-frame called "model" that shows the model used for
the test. This can be viewed with the following R command: attr(mod.res, "model") where
mod.res is the output data-frame from the function. The attr() command will return something
like: model.1.additive "case.cntl.status ~ age + sex , logistic regression, additive gene action"

There is another attribute called "SE" that shows if Robust or Model Based standard errors were
used for the test. This can be viewed with the following R command: attr(mod.res, "SE")
where mod.res is the output data-frame from the function.

Warnings:

Another file will be saved with the name "outfile.chr.i_k.warnings.RData" that contains any warn-
ings generated by the function. An example of what would be contained in this file: Warning
messages: 1: Model 1 , Y chromosome tests are confounded with sex and should be run separately
without sex in the model 2: Model 2 , Y chromosome tests are confounded with sex and should be
run separately without sex in the model

Author(s)

Matthew P. Conomos, Tushar Bhangale

assocTestRegression 39

See Also

GenotypeData, lm, glm, vcov, vcovHC, lrtest

Examples

The following example would perform 3 tests (from 2 models):
the first a logistic regression of case.cntl.status on genotype, age, and sex, including an interaction term between genotype and sex, using additive gene action;
the second a linear regression of blood pressure on genotype using dominant gene action,
and the third, a linear regression of blood pressure on genotype again, but this time using recessive gene action.
This test would only use chromosome 21.
It would perform both robust Wald tests using sandwich based robust standard errors as well as Likelihood Ratio tests.

an example of a scan chromosome matrix
desiged to eliminate duplicated individuals
and scans with missing values of sex
library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)
samp.chr.matrix <- matrix(TRUE,nrow(scanAnnot),26)
dup <- duplicated(scanAnnot$subjectID)
samp.chr.matrix[dup | is.na(scanAnnot$sex),] <- FALSE

additionally, exclude YRI subjects
scan.exclude <- scanAnnot$scanID[scanAnnot$race == "YRI"]

create some variables for the scans
scanAnnot$sex <- as.factor(scanAnnot$sex)
scanAnnot$age <- rnorm(nrow(scanAnnot),mean=40, sd=10)
scanAnnot$case.cntl.status <- rbinom(nrow(scanAnnot),1,0.4)
scanAnnot$blood.pressure[scanAnnot$case.cntl.status==1] <- rnorm(sum(scanAnnot$case.cntl.status==1),mean=100,sd=10)
scanAnnot$blood.pressure[scanAnnot$case.cntl.status==0] <- rnorm(sum(scanAnnot$case.cntl.status==0),mean=90,sd=5)

create data object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot)

set regression variables and models
outcome <- c("case.cntl.status","blood.pressure")

covar.list <- list()
covar.list[[1]] <- c("age","sex")
covar.list[[2]] <- c("")

ivar.list <- list();
ivar.list[[1]] <- c("sex");
ivar.list[[2]] <- c("");

model.type <- c("logistic","linear")

gene.action.list <- list()
gene.action.list[[1]] <- c("additive")

40 BAFfromClusterMeans

gene.action.list[[2]] <- c("dominant", "recessive")

chr.set <- 21

outfile <- tempfile()

assocTestRegression(genoData,
outcome = outcome,

model.type = model.type,
covar.list = covar.list,
ivar.list = ivar.list,
gene.action.list = gene.action.list,
scan.chromosome.filter = samp.chr.matrix,
scan.exclude = scan.exclude,
CI = 0.95,
robust = TRUE,

LRtest = TRUE,
chromosome.set = chr.set,
outfile = outfile)

model1 <- getobj(paste(outfile, ".model.1.additive.chr.21_21.RData", sep=""))
model2 <- getobj(paste(outfile, ".model.2.dominant.chr.21_21.RData", sep=""))
model3 <- getobj(paste(outfile, ".model.2.recessive.chr.21_21.RData", sep=""))

close(genoData)
unlink(paste(outfile, "*", sep=""))

In order to run the test on all chromosomes, it is suggested to run the function in parallel.
To run the function in parallel the following unix can be used:
R --vanilla --args 21 22 < assoc.analysis.r >logfile.txt &
where the file assoc.analysis.r will include commands similar to this example
where chromosome.set and/or block.set can be passed to R using --args
Here, tests on chromosomes 21 and 22 are performed; these could be replaced by any set of chromosomes
these values are retrieved in R by putting a
chr.set <- as.numeric(commandArgs(trailingOnly=TRUE))
command in assoc.analysis.r

BAFfromClusterMeans B Allele Frequency & Log R Ratio Calculation

Description

This function calculates the B allele frequency and the log R ratio values from the mean R and
theta values for each cluster. The values are written to a netCDF file which is assumed to exist with
proper variables and size.

Usage

BAFfromClusterMeans(intenData, bl.ncdf.filename,
clusterMeanVars = c("tAA","tAB","tBB","rAA","rAB","rBB"),
verbose = TRUE)

BAFfromClusterMeans 41

Arguments

intenData IntensityData object holding the X and Y intensity data from which the B
allele frequency and log R ratio are calculated.

bl.ncdf.filename

The filepath for a previously created netCDF file to hold the B allele frequency
and log R ratio values.

clusterMeanVars

Character vector indicating the names of the cluster mean columns in the SNP
annotation of intenData. Must be in order (tAA,tAB,tBB,rAA,rAB,rBB).

verbose Logical value specifying whether to show progress information.

Details

Because this function can take a considerable amount of time and space, sufficient attention should
be given to the value used for block.size. The file specified by bl.ncdf.filename is assumed to
have variables ’BAlleleFreq’ and ’LogRRatio’ to which the proper values are written.

Value

The netCDF file stored in the bl.ncdf.filename path is populated with values of B allele fre-
quency and the log R ratio at the completion of this function.

Author(s)

Stephanie Gogarten, Caitlin McHugh

References

Peiffer D.A., Le J.M., Steemers F.J., Chang W., Jenniges T., and et al. High-resolution genomic pro-
filing of chromosomal aberrations using infinium whole-genome genotyping. Genome Research,
16:1136-1148, 2006.

See Also

IntensityData, BAFfromClusterMeans

Examples

create IntensityData object from netCDF
library(GWASdata)
xyfile <- system.file("extdata", "illumina_qxy.nc", package="GWASdata")
xyNC <- NcdfIntensityReader(xyfile)
data(illuminaSnpADF)
xyData <- IntensityData(xyNC, snpAnnot=illuminaSnpADF)
nsamp <- nscan(xyData)

create netCDF file to hold BAF/LRR data
blfile <- tempfile()
ncdfCreate(pData(illuminaSnpADF), blfile, variables=c("BAlleleFreq","LogRRatio"), n.samples=nsamp)

42 BAFfromGenotypes

calculate BAF and LRR
BAFfromClusterMeans(xyData, blfile, verbose=FALSE)

read output
blNC <- NcdfIntensityReader(blfile)
blData <- IntensityData(blNC)
baf <- getBAlleleFreq(blData)
lrr <- getLogRRatio(blData)

close(xyNC)
close(blNC)
file.remove(blfile)

BAFfromGenotypes B Allele Frequency & Log R Ratio Calculation

Description

This function calculates the B allele frequency and the log R ratio values for samples by either plate
or by study. The values are written to a netCDF file which is assumed to exist with proper variables
and size.

Usage

BAFfromGenotypes(intenData, genoData,
bl.ncdf.filename, min.n.genotypes = 2,
call.method = c("by.plate", "by.study"),
plate.name = "plate",
block.size = 5000, verbose = TRUE)

Arguments

intenData IntensityData object holding the X and Y intensity data from which the B
allele frequency and log R ratio are calculated.

genoData GenotypeData object.
bl.ncdf.filename

The filepath for a previously created netCDF file to hold the B allele frequency
and log R ratio values.

min.n.genotypes

The minimum number of samples for each genotype at any SNP in order to have
non-missing B allele freqency and log R ratio. Setting this parameter to 2 or a
similar value is recommended.

call.method If call.method is ’by.plate’, the B allele frequency and log R ratio are calculated
for samples delineated by plates. This is the default method. If call.method is
’by.study’, the calculation uses all samples at once. If a study does not have
plate specifications, ’by.study’ is the call.method that must be used.

BAFfromGenotypes 43

plate.name Character string specifying the name of the plate variable in intenData or gen-
oData. By default, the plate.name is simply ’plate’ but oftentimes there are
variations, such as ’plateID’ or ’plate.num’.

block.size An integer specifying the number of SNPs to be loaded from the netCDF file at
one time. The recommended value is around 1000, but should vary depending
on computing power.

verbose Logical value specifying whether to show progress information.

Details

Because this function can take a considerable amount of time and space, sufficient attention should
be given to the value used for block.size. The file specified by bl.ncdf.filename is assumed to
have variables ’BAlleleFreq’ and ’LogRRatio’ to which the proper values are written.

Value

The netCDF file stored in the bl.ncdf.filename path is populated with values of B allele fre-
quency and the log R ratio at the completion of this function.

Author(s)

Caitlin McHugh

References

Peiffer D.A., Le J.M., Steemers F.J., Chang W., Jenniges T., and et al. High-resolution genomic pro-
filing of chromosomal aberrations using infinium whole-genome genotyping. Genome Research,
16:1136-1148, 2006.

See Also

IntensityData, GenotypeData, chromIntensityPlot, BAFfromClusterMeans

Examples

Not run:
create IntensityData and GenotypeData objects from netCDF
library(GWASdata)
data(affySnpADF)
data(affyScanADF)
nsamp <- nrow(affyScanADF)

xyfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
xyNC <- NcdfIntensityReader(xyfile)
xyData <- IntensityData(xyNC, snpAnnot=affySnpADF, scanAnnot=affyScanADF)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genoNC <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genoNC, snpAnnot=affySnpADF, scanAnnot=affyScanADF)

create netCDF file to hold BAF/LRR data

44 batchTest

blfile <- tempfile()
ncdfCreate(affy_snp_annot, blfile, variables=c("BAlleleFreq","LogRRatio"), n.samples=nsamp)

calculate BAF and LRR
BAFfromGenotypes(xyData, genoData, blfile, min.n.genotypes=2,

call.method="by.plate", plate.name="plate")

blNC <- NcdfIntensityReader(blfile)
baf <- getBAlleleFreq(blNC)
lrr <- getLogRRatio(blNC)

close(xyData)
close(genoData)
close(blNC)
file.remove(blfile)

End(Not run)

batchTest Batch Effects of Genotyping

Description

batchChisqTest calculates Chi-square values for batches from 2-by-2 tables of SNPs, comparing
each batch with the other batches. batchFisherTest calculates Fisher’s exact test values.

Usage

batchChisqTest(genoData, batchVar,
chrom.include = 1:22, sex.include = c("M", "F"),
scan.exclude = NULL, return.by.snp = FALSE,
correct = TRUE, verbose = TRUE,
outfile = NULL)

batchFisherTest(genoData, batchVar,
chrom.include = 1:22, sex.include = c("M", "F"),
scan.exclude = NULL, return.by.snp = FALSE,
conf.int = FALSE, verbose = TRUE,
outfile = NULL)

Arguments

genoData GenotypeData object

batchVar A character string indicating which annotation variable should be used as the
batch.

chrom.include Integer vector with codes for chromosomes to include. Default is 1:22 (auto-
somes). Use 23, 24, 25, 26, 27 for X, XY, Y, M, Unmapped respectively

batchTest 45

sex.include Character vector with sex to include. Default is c("M", "F"). If sex chromo-
somes are present in chrom.include, only one sex is allowed.

scan.exclude An integer vector containing the IDs of scans to be excluded.

return.by.snp Logical value to indicate whether snp-by-batch matrices should be returned.

conf.int Logical value to indicate if a confidence interval should be computed.

correct Logical value to specify whether to apply the Yates continuity correction.

verbose Logical value specifying whether to show progress information.

outfile A character string to append in front of ".RData" for naming the output file.

Details

Because of potential batch effects due to sample processing and genotype calling, batches are an
important experimental design factor.

batchChisqTest calculates the Chi square values from 2-by-2 table for each SNP, comparing each
batch with the other batches.

batchFisherTest calculates Fisher’s Exact Test from 2-by-2 table for each SNP, comparing each
batch with the other batches.

For each SNP and each batch, batch effect is evaluated by a 2-by-2 table: # of A alleles, and # of
B alleles in the batch, versus # of A alleles, and # of B alleles in the other batches. Monomorphic
SNPs are set to NA for all batches.

The default behavior is to combine allele frequencies from males and females and return results
for autosomes only. If results for sex chromosomes (X or Y) are desired, use chrom.include with
values 23 and/or 25 and sex.include="M" or "F".

If there are only two batches, the calculation is only performed once and the values for each batch
will be identical.

Value

If outfile=NULL (default), all results are returned as a list. If outfile is specified, no data is
returned but the list is saved to disk as "outfile.RData."

batchChisqTest returns a list with the following elements:

mean.chisq a vector of mean chi-squared values for each batch.

lambda a vector of genomic inflation factor computed as median(chisq) / 0.456
for each batch.

chisq a matrix of chi-squared values with SNPs as rows and batches as columns. Only
returned if return.by.snp=TRUE.

batchFisherTest returns a list with the following elements:

mean.or a vector of mean odds-ratio values for each batch. mean.or is computed as
1/mean(pmin(or, 1/or)) since the odds ratio is >1 when the batch has a higher
allele frequency than the other batches and <1 for the reverse.

lambda a vector of genomic inflation factor computed as median(-2*log(pval) / 1.39
for each batch.

46 batchTest

Each of the following is a matrix with SNPs as rows and batches as columns, and is only returned
if return.by.snp=TRUE:

pval P value

oddsratio Odds ratio

confint.low Low value of the confidence interval for the odds ratio. Only returned if conf.int=TRUE.

confint.high High value of the confidence interval for the odds ratio. Only returned if conf.int=TRUE.

batchChisqTest and batchFisherTest both also return the following if return.by.snp=TRUE:

allele.counts matrix with total number of A and B alleles over all batches.

min.exp.freq matrix of minimum expected allele frequency with SNPs as rows and batches as
columns.

Warnings:

If outfile is not NULL, another file will be saved with the name "outfile.warnings.RData" that
contains any warnings generated by the function.

Author(s)

Xiuwen Zheng, Stephanie Gogarten

See Also

GenotypeData, chisq.test, fisher.test

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)
data(affyScanADF)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

autosomes only, sexes combined (default)
res.chisq <- batchChisqTest(genoData, batchVar="plate")
res.chisq$mean.chisq
res.chisq$lambda

X chromosome for females
res.chisq <- batchChisqTest(genoData, batchVar="status",

chrom.include=23, sex.include="F", return.by.snp=TRUE)
head(res.chisq$chisq)

Fisher exact test of "status" on X chromosome for females
res.fisher <- batchFisherTest(genoData, batchVar="status",

chrom.include=23, sex.include="F", return.by.snp=TRUE)
qqPlot(res.fisher$pval)

centromeres 47

centromeres Centromere base positions

Description

Centromere base positions from the GRCh36/hg18 and GRCh37/hg19 genome builds.

Usage

data(centromeres.hg18)
data(centromeres.hg19)

Format

A data frame with the following columns.

chrom chromosome (1-22, X, Y)

left.base starting base position of centromere

right.base ending base position of centromere

Note

The UCSC genome browser lists two regions for the Y chromosome centromere in build hg18. We
removed the positions (12208578, 12308578) from the centromere table to avoid problems with
duplicate entries in the code.

Source

UCSC genome browser (http://genome.ucsc.edu).

Examples

data(centromeres.hg18)
data(centromeres.hg19)

chromIntensityPlot Plot B Allele Frequency and/or Log R Ratio, R or Theta values for
samples by probe position on a chromosome

Description

This function creates plots for one or more of the ’B AlleleFreq’, ’Log R Ratio’, ’R’ or ’Theta’
values for given sample by chromosome combinations.

http://genome.ucsc.edu

48 chromIntensityPlot

Usage

chromIntensityPlot(intenData, scan.ids, chrom.ids,
type = c("BAF/LRR", "BAF", "LRR", "R", "Theta", "R/Theta"),
main = NULL, info = NULL, abln = NULL,
horizln = c(1/2, 1/3, 2/3),
colorGenotypes = FALSE, genoData = NULL,
colorBatch = FALSE, batch.column = NULL,
snp.exclude = NULL,
ideogram=TRUE, ideo.zoom=TRUE, ideo.rect=FALSE,
cex=0.5, cex.leg=1.5, ...)

Arguments

intenData IntensityData object, must contain at least one of ’BAlleleFreq’, ’LogRRa-
tio’, ’X’, ’Y’.

scan.ids A vector containing the scan IDs to plot.

chrom.ids A vector containing the chromosomes to plot for each scanID (should have same
length as scan.ids).

type The type of plot to be created. ’BAF/LRR’ creates both ’B Allele Freq’ and
’Log R Ratio’ plots. ’R/Theta’ creates both ’R’ and ’Theta’ plots.

main Vector of plot titles. If NULL then the title will include scanID, sex, and chromo-
some.

info A character vector containing extra information to include in the main title.

abln A vector of values that is of length 2*length(scan.ids). Each pair of entries
specifies where vertical lines will be drawn in each plot. This is especially useful
when drawing the start \& end breakpoints for anomalies, for example. Use -1
as one pair value for plots that warrant only one line. By default, no lines will
be drawn.

horizln A vector containing the y-axis values at which a horizontal line will be drawn in
B Allele Frequency plots.

colorGenotypes A logical value specifying whether to color-code the points by called genotype.
if TRUE, genoData must be given also.

genoData GenotypeData object, required if colorGenotypes=TRUE.

colorBatch A logical value specifying whether to color-code the points by sample batch
(e.g, plate). If TRUE, batch.column must also be specified.

batch.column A character string indicating which annotation variable in intenData should be
used as the batch.

snp.exclude An integer vector giving the IDs of SNPs to exclude from the plot.

ideogram logical for whether to plot a chromosome ideogram under the BAF and LRR
plots.

ideo.zoom logical for whether to zoom in on the ideogram to match the range of the BAF/LRR
plots.

ideo.rect logical for whether to draw a rectangle on the ideogram indicating the range of
the BAF/LRR plots.

convertNcdfGds 49

cex cex value for points on the plots.

cex.leg cex value for the ideogram legend.

... Other parameters to be passed directly to plot.

Details

For all plots, a vertical line is drawn every one eigth of the chromosome. For the Log R Ratio plot,
the y-axis has been given the range of (-2,2).

Author(s)

Caitlin McHugh, Cathy Laurie

See Also

IntensityData, GenotypeData, BAFfromGenotypes

Examples

library(GWASdata)
data(illuminaScanADF)
blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
intenData <- IntensityData(blnc, scanAnnot=illuminaScanADF)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=illuminaScanADF)

scanID <- getScanID(illuminaScanADF, index=1)
chromIntensityPlot(intenData=intenData, scan.ids=scanID,

chrom.ids=22, type="BAF/LRR", info="interesting sample",
colorGenotypes=TRUE, genoData=genoData)

close(genoData)
close(intenData)

convertNcdfGds Convert between NetCDF and GDS format

Description

convertNcdfGds converts a genotype NetCDF file to the GDS format used by the R packages
gdsfmt and SNPRelate.

convertGdsNcdf converts a GDS file to NetCDF format.

checkNcdfGds checks whether a genotype NetCDF file and a GDS file contain identical data.

50 convertNcdfGds

Usage

convertNcdfGds(ncdf.filename, gds.filename,
sample.annot = NULL, snp.annot = NULL,
zipflag = "ZIP.max", verbose = TRUE)

convertGdsNcdf(gds.filename, ncdf.filename, verbose = TRUE)

checkNcdfGds(ncdf.filename, gds.filename, verbose = TRUE)

Arguments

ncdf.filename name of the NetCDF genotype file

gds.filename name of the GDS file

sample.annot a ScanAnnotationDataFrame with sample annotation

snp.annot a SnpAnnotationDataFrame with SNP annotation

zipflag the compression format for the GDS file, one of "", "ZIP", "ZIP.fast", "ZIP.default",
or "ZIP.max"

verbose whether to show progress information

Details

These functions require that the package gdsfmt be installed. convertNcdfGds is needed to convert
the NetCDF genotype files used in this package to the format required by SNPRelate for Principal
Component Analysis, Identity-by-Descent, and Linkage Disequlibrium calculations.

If snp.annot has columns "rsID", "alleleA", "alleleB", these will be stored in the GDS file as
"snp.rs.id" and "snp.allele" (the latter has the format "A/B").

Chromosome codes from snp.annot (for autosomes, X, Y, etc.) will be stored in the GDS file.

Value

checkNcdfGds returns TRUE if the NetCDF and GDS files contain identical data. If the files differ,
it will print a diagnostic message and return FALSE.

Author(s)

Xiuwen Zheng

See Also

gdsfmt, SNPRelate, ncdf, NcdfGenotypeReader,

Examples

library(GWASdata)
ncfile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")

data(illuminaScanADF, illuminaSnpADF)

convertVcfGds 51

gdsfile <- tempfile()
convertNcdfGds(ncfile, gdsfile, sample.annot=illuminaScanADF,

snp.annot=illuminaSnpADF)

checkNcdfGds(ncfile, gdsfile)

Not run:
ncfile2 <- tempfile()
convertGdsNcdf(gdsfile, ncfile2)
file.remove(ncfile2)

End(Not run)

file.remove(gdsfile)

convertVcfGds Conversion from VCF to GDS

Description

Extract SNP data from a VCF file

Usage

convertVcfGds(vcf.filename, gds.filename, nblock=1024, zipflag="ZIP.max",
verbose=TRUE)

Arguments

vcf.filename the file name of VCF format

gds.filename the output gds file

nblock the buffer lines

zipflag the compression format for the GDS file, one of "", "ZIP", "ZIP.fast", "ZIP.default",
or "ZIP.max"

verbose whether to show progress information

Details

convertVcfGds extracts bi-allelic SNP genotypes from a VCF file and stores them in a GDS file.
All VCF rows which do not contain polymorphic, bi-allelic SNPs are ignored. Unique integer IDs
are generated for all samples and SNPs. Sample name, SNP ID, reference and alternate alleles,
chromosome, and position are stored in the GDS file as well.

GDS – Genomic Data Structures, the extended file name used for storing genetic data, and the file
format used in the gdsfmt package.

VCF – The Variant Call Format (VCF), which is a generic format for storing DNA polymorphism
data such as SNPs, insertions, deletions and structural variants, together with rich annotations.

52 duplicateDiscordance

Author(s)

Xiuwen Zheng

References

The variant call format and VCFtools. Danecek P, Auton A, Abecasis G, Albers CA, Banks E,
DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R; 1000 Genomes
Project Analysis Group. Bioinformatics. 2011 Aug 1;27(15):2156-8. Epub 2011 Jun 7.

http://corearray.sourceforge.net/

See Also

GdsGenotypeReader

Examples

The VCF file
vcf.file <- system.file("extdata", "sequence.vcf", package="SNPRelate")
readLines(vcf.file)

gds.file <- tempfile()
convertVcfGds(vcf.file, gds.file)

open GDS file
(gds <- GdsGenotypeReader(gds.file))

getScanID(gds)
getSnpID(gds)
getChromosome(gds)
getPosition(gds)
getVariable(gds, "sample.name")
getVariable(gds, "snp.rs.id")
getVariable(gds, "snp.allele")
getGenotype(gds)

close the genotype file
close(gds)
unlink(gds.file)

duplicateDiscordance Duplicate discordance

Description

A function to compute pair-wise genotype discordances between multiple genotyping instances of
the same subject.

http://corearray.sourceforge.net/

duplicateDiscordance 53

Usage

duplicateDiscordance(genoData, subjName.col,
one.pair.per.subj=TRUE, corr.by.snp=FALSE,
minor.allele.only=FALSE, allele.freq=NULL,
scan.exclude=NULL, snp.exclude=NULL,
verbose=TRUE)

Arguments

genoData GenotypeData object

subjName.col A character string indicating the name of the annotation variable that will be
identical for duplicate scans.

one.pair.per.subj

A logical indicating whether a single pair of scans should be randomly selected
for each subject with more than 2 scans.

corr.by.snp A logical indicating whether correlation by SNP should be computed (may sig-
nificantly increase run time).

minor.allele.only

A logical indicating whether discordance should be calculated only between
pairs of scans in which at least one scan has a genotype with the minor allele
(i.e., exclude major allele homozygotes).

allele.freq A numeric vector with the frequency of the A allele for each SNP in genoData.
Required if minor.allele.only=TRUE.

scan.exclude An integer vector containing the ids of scans to be excluded.

snp.exclude An integer vector containing the ids of SNPs to be excluded.

verbose Logical value specifying whether to show progress information.

Details

duplicateDiscordance calculates discordance metrics both by scan and by SNP. If one.pair.per.subj=TRUE
(the default), each subject with more than two duplicate genotyping instances will have two scans
randomly selected for computing discordance. If one.pair.per.subj=FALSE, discordances will
be calculated pair-wise for all possible pairs for each subject.

Value

A list with the following components:

discordance.by.snp

data frame with 5 columns: 1. snpID, 2. discordant (number of discordant pairs),
3. npair (number of pairs examined), 4. n.disc.subj (number of subjects with at
least one discordance), 5. discord.rate (discordance rate i.e. discordant/npair)

discordance.by.subject

a list of matrices (one for each subject) with the pair-wise discordance between
the different genotyping instances of the subject

54 duplicateDiscordanceAcrossDatasets

correlation.by.subject

a list of matrices (one for each subject) with the pair-wise correlation between
the different genotyping instances of thesubject

If corr.by.snp=TRUE, discordance.by.snp will also have a column "correlation" with the corre-
lation between duplicate subjects. For this calculation, the first two samples per subject are selected.

Author(s)

Tushar Bhangale, Cathy Laurie, Stephanie Gogarten

See Also

GenotypeData, duplicateDiscordanceAcrossDatasets, duplicateDiscordanceProbability,
alleleFrequency

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)
data(affyScanADF)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

disc <- duplicateDiscordance(genoData, subjName.col="subjectID")

minor allele discordance
afreq <- alleleFrequency(genoData)
minor.disc <- duplicateDiscordance(genoData, subjName.col="subjectID",

minor.allele.only=TRUE, allele.freq=afreq[,"all"])

close(genoData)

duplicateDiscordanceAcrossDatasets

Duplicate discordance across datasets

Description

Finds number of discordant genotypes by SNP in pairs of duplicate scans of the same subject across
multiple datasets.

Usage

duplicateDiscordanceAcrossDatasets(genoData1, genoData2,
subjName.cols, snpName.cols,
one.pair.per.subj=TRUE, minor.allele.only=FALSE,
missing.fail=c(FALSE, FALSE),
scan.exclude1=NULL, scan.exclude2=NULL, snp.include=NULL,

duplicateDiscordanceAcrossDatasets 55

verbose=TRUE)

minorAlleleDetectionAccuracy(genoData1, genoData2,
subjName.cols, snpName.cols, missing.fail=TRUE,
scan.exclude1=NULL, scan.exclude2=NULL, snp.include=NULL,
verbose=TRUE)

Arguments

genoData1 GenotypeData object containing the first dataset.

genoData2 GenotypeData object containing the second dataset.

subjName.cols 2-element character vector indicating the names of the annotation variables that
will be identical for duplicate scans in the two datasets.

snpName.cols 2-element character vector indicating the names of the annotation variables that
will be identical for the same SNPs in the two datasets.

one.pair.per.subj

A logical indicating whether a single pair of scans should be randomly selected
for each subject with more than 2 scans.

minor.allele.only

A logical indicating whether discordance should be calculated only between
pairs of scans in which at least one scan has a genotype with the minor allele
(i.e., exclude major allele homozygotes).

missing.fail For duplicateDiscordanceAcrossDatasets, a 2-element logical vector indi-
cating whether missing values in datasets 1 and 2, respectively, will be con-
sidered failures (discordances with called genotypes in the other dataset). For
minorAlleleDetectionAccuracy, a single logical indicating whether missing
values in dataset 2 will be considered false negatives (missing.fail=TRUE) or
ignored (missing.fail=FALSE).

scan.exclude1 An integer vector containing the ids of scans to be excluded from the first
dataset.

scan.exclude2 An integer vector containing the ids of scans to be excluded from the second
dataset.

snp.include List of SNPs to include in the comparison. Should match the contents of the
columns referred to by snpName.cols.

verbose Logical value specifying whether to show progress information.

Details

duplicateDiscordanceAcrossDatasets calculates discordance metrics both by scan and by SNP.
If one.pair.per.subj=TRUE (the default), each subject with more than two duplicate genotyping
instances will have one scan from each dataset randomly selected for computing discordance. If
one.pair.per.subj=FALSE, discordances will be calculated pair-wise for all possible cross-dataset
pairs for each subject.

If minor.allele.only=TRUE, the allele frequency will be calculated in genoData1, using only
samples common to both datasets.

56 duplicateDiscordanceAcrossDatasets

If snp.include=NULL (the default), discordances will be found for all SNPs common to both
datasets.

genoData1 and genoData2 should each have "alleleA" and "alleleB" defined in their SNP annota-
tion. If allele coding cannot be found, the two datasets are assumed to have identical coding.

minorAlleleDetectionAccuracy summarizes the accuracy of minor allele detection in genoData2
with respect to genoData1 (the "gold standard"). TP=number of true positives, TN=number of true
negatives, FP=number of false positives, and FN=number of false negatives. Accuracy is represented
by four metrics:

• sensitivity for each SNP as TP/(TP+FN)

• specificity for each SNP as TN/(TN+FP)

• positive predictive value for each SNP as TP/(TP+FP)

• negative predictive value for each SNP as TN/(TN+FN).

TP, TN, FP, and FN are calculated as follows:

genoData1
mm Mm MM

mm 2TP 1TP + 1FP 2FP
genoData2 Mm 1TP + 1FN 1TN + 1TP 1TN + 1FP

MM 2FN 1FN + 1TN 2TN
– 2FN 1FN

"M" is the major allele and "m" is the minor allele (as calculated in genoData1). "-" is a missing
call in genoData2. Missing calls in genoData1 are ignored. If missing.fail=FALSE, missing calls
in genoData2 (the last row of the table) are also ignored.

Value

duplicateDiscordanceAcrossDatasets returns a list with the following components:

discordance.by.snp

data frame with 4 columns: 1. discordant (number of discordant pairs), 2. npair
(number of pairs examined), 3. n.disc.subj (number of subjects with at least
one discordance), 4. discord.rate (discordance rate i.e. discordant/npair). Row
names are the common snp ID.

discordance.by.subject

a list of matrices (one for each subject) with the pair-wise discordance between
the different genotyping instances of the subject

minorAlleleDetectionAccuracy returns a data.frame with the following columns. Row names
are the common snp ID.

npair number of sample pairs compared (non-missing in genoData1)

sensitivity sensitivity

specificity specificity

duplicateDiscordanceProbability 57

positivePredictiveValue

Positive predictive value
negativePredictiveValue

Negative predictive value

If no duplicate scans or no common SNPs are found, these functions issue a warning message and
return NULL.

Author(s)

Stephanie Gogarten, Jess Shen

See Also

GenotypeData, duplicateDiscordance, duplicateDiscordanceProbability

Examples

library(GWASdata)

dataset 1
file1 <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc1 <- NcdfGenotypeReader(file1)
data(affySnpADF, affyScanADF)
data1 <- GenotypeData(nc1, snpAnnot=affySnpADF, scanAnnot=affyScanADF)

dataset 2
file2 <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
nc2 <- NcdfGenotypeReader(file2)
data(illuminaSnpADF, illuminaScanADF)
make alleleA and alleleB NULL since we don’t have allele coding for
dataset 1 (A/B definitions for both arrays should be the same)
illuminaSnpADF$alleleA <- NULL
illuminaSnpADF$alleleB <- NULL
data2 <- GenotypeData(nc2, snpAnnot=illuminaSnpADF, scanAnnot=illuminaScanADF)

discord <- duplicateDiscordanceAcrossDatasets(data1, data2,
subjName.cols=c("CoriellID", "CoriellID"),
snpName.cols=c("rsID", "rsID"))

minor.acc <- minorAlleleDetectionAccuracy(data1, data2,
subjName.cols=c("CoriellID", "CoriellID"),
snpName.cols=c("rsID", "rsID"))

close(data1)
close(data2)

duplicateDiscordanceProbability

Probability of duplicate discordance

58 duplicateDiscordanceProbability

Description

duplicateDiscordanceProbability calculates the probability of observing discordant genotypes
for duplicate samples.

Usage

duplicateDiscordanceProbability(npair,
error.rate = c(1e-5, 1e-4, 1e-3, 1e-2),
max.disc = 7)

Arguments

npair The number of pairs of duplicate samples.

error.rate A numeric vector of error rates (i.e., the rate at which a genotype will be called
incorrectly).

max.disc The maximum number of discordances for which to compute the probability.

Details

Since there are three possible genotypes, one call is correct and the other two are erroneous, so
theoretically there are two error rates, a and b. The probability that duplicate genotyping instances
of the same subject will give a discordant genotype is 2[(1 - a - b)(a + b) + ab]. When a and b are
very small, this is approximately 2(a + b) or twice the total error rate. This function assumes that a
== b, and the argument error.rate is the total error rate a + b.

Any negative values for the probability (due to precision problems for very small numbers) are set
to 0.

Value

This function returns a matrix of probabilities, where the column names are error rates and the row
names are expected number of discordant genotypes (>0 through >max.disc).

Author(s)

Cathy Laurie

See Also

duplicateDiscordance, duplicateDiscordanceAcrossDatasets

Examples

disc <- duplicateDiscordanceProbability(npair=10, error.rate=c(1e-6, 1e-4))

#probability of observing >0 discordant genotypes given an error rate 1e-6
disc[1,1]

#probability of observing >1 discordant genotypes given an error rate 1e-4
disc[2,2]

findBAFvariance 59

findBAFvariance Find chromosomal areas with high BAlleleFreq (or LogRRatio) stan-
dard deviation

Description

sdByScanChromWindow uses a sliding window algorithm to calculate the standard deviation of the
BAlleleFreq (or LogRRatio) values for a user specified number of bins across each chromosome of
each scan.

medianSdOverAutosomes calculates the median of the BAlleleFreq (or LogRRatio) standard devi-
ation over all autosomes for each scan.

meanSdByChromWindow calculates the mean and standard deviation of the BAlleleFreq standard
deviation in each window in each chromosome over all scans.

findBAFvariance flags chromosomal areas with high BAlleleFreq standard deviation using previ-
ously calculated means and standard deviations over scans, typically results from sdByScanChromWindow.

Usage

sdByScanChromWindow(intenData, genoData=NULL, var="BAlleleFreq", nbins=NULL,
snp.exclude=NULL, return.mean=FALSE, incl.miss=TRUE, incl.het=TRUE, incl.hom=FALSE)

medianSdOverAutosomes(sd.by.scan.chrom.window)

meanSdByChromWindow(sd.by.scan.chrom.window, sex)

findBAFvariance(sd.by.chrom.window, sd.by.scan.chrom.window,
sex, sd.threshold)

Arguments

intenData A IntensityData object

genoData A GenotypeData object. May be omitted if incl.miss, incl.het, and incl.hom
are all TRUE, as there is no need to distinguish between genotype calls in that
case.

var The variable for which to calculate standard deviations, typically "BAlleleFreq"
(the default) or "LogRRatio."

nbins A vector with integers corresponding to the number of bins for each chromo-
some. The values all must be even integers.

snp.exclude An integer vector containing the snpIDs of SNPs to be excluded.

return.mean a logical. If TRUE, return mean as well as standard deviation.

incl.miss a logical. If TRUE, include SNPs with missing genotype calls.

incl.het a logical. If TRUE, include SNPs called as heterozygotes.

incl.hom a logical. If TRUE, include SNPs called as homozygotes. This is typically FALSE
(the default) for BAlleleFreq calculations.

60 findBAFvariance

sd.by.scan.chrom.window

A list of matrices of standard deviation for each chromosome, with dimen-
sions of number of scans x number of windows. This is typically the output
of sdByScanChromWindow.

sd.by.chrom.window

A list of matrices of the standard deviations, as generated by meanSdByChromWindow.
sex A character vector of sex ("M"/"F") for the scans.
sd.threshold A value specifying the threshold for the number of standard deviations above

the mean at which to flag.

Details

sdByScanChromWindow calculates the standard deviation of BAlleleFreq (or LogRRatio) values
across chromosomes 1-22 and chromosome X for a specified number of ’bins’ in each chromosome
as passed to the function in the ’nbins’ argument. The standard deviation is calculated using win-
dows of width equal to 2 bins, and moves along the chromosome by an offset of 1 bin (or half a
window). Thus, there will be a total of nbins-1 windows per chromosome. If nbins=NULL (the
default), there will be 2 bins (one window) for each chromosome.

medianSdOverAutosomes calulates the median over autosomes of BAlleleFreq (or LogRRatio)
standard deviations calculated for sliding windows within each chromosome of each scan. The
standard deviations should be a list with one element for each chromosome, and each element con-
sisting of a matrix with scans as rows.

meanSdByChromWindow calculates the mean and standard deviation over scans of BAlleleFreq stan-
dard deviations calculated for sliding windows within each chromosome of each scan. The BAllele-
Freq standard deviations should be a list with one element for each chromosome, and each element
consisting of a matrix containing the BAlleleFreq standard deviation for the i’th scan in the j’th
bin. This is typically created using the sdByScanChromWindow function. For the X chromosome
the calculations are separated out by sex.

findBAFvariance determines which chromosomes of which scans have regions which are at least
a given number of SDs from the mean, using BAlleleFreq means and standard deviations calculated
from sliding windows over each chromosome by scan.

Value

sdByScanChromWindow returns a list of matrices containing standard deviations. There is a matrix
for each chromosome, with each matrix having dimensions of number of scans x number of win-
dows. If return.mean=TRUE, two lists to matrices are returned, one with standard deviations and
one with means.

medianSdOverAutosomes returns a data frame with colums "scanID" and "med.sd" containing the
median standard deviations over all autosomes for each scan.

meanSdByChromWindow returns a list of matrices, one for each chromosome. Each matrix contains
two columns called "Mean" and "SD", containing the mean and SD of the BAlleleFreq standard
devations over scans for each bin. For the X chromosome the matrix has four columns "Female
Mean", "Male Mean", "Female SD" and "Male SD".

findBAFvariance returns a matrix with columns "scanID", "chromosome", "bin", and "sex" con-
taining those scan by chromosome combinations with BAlleleFreq standard deviations greater than
those specified by sd.threshold.

GdsGenotypeReader 61

Author(s)

Caitlin McHugh, Cathy Laurie

See Also

IntensityData, GenotypeData, BAFfromClusterMeans, BAFfromGenotypes

Examples

library(GWASdata)
data(illuminaScanADF)

blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
blData <- IntensityData(blnc, scanAnnot=illuminaScanADF)

genofile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=illuminaScanADF)

nbins <- rep(8, 3) # need bins for chromosomes 21,22,23
baf.sd <- sdByScanChromWindow(blData, genoData, nbins=nbins)

close(blData)
close(genoData)
med.res <- medianSdOverAutosomes(baf.sd)

sex <- illuminaScanADF$sex
sd.res <- meanSdByChromWindow(baf.sd, sex)

var.res <- findBAFvariance(sd.res, baf.sd, sex, sd.threshold=2)

GdsGenotypeReader Class GdsGenotypeReader

Description

The GdsGenotypeReader class is an extension of the GdsReader class specific to reading genotype
data stored in GDS files.

Extends

GdsReader

62 GdsGenotypeReader

Constructor

GdsGenotypeReader(filename):
filename must be the path to a GDS file. The GDS file must contain the following variables:

• ’snp.id’: a unique integer vector of snp ids
• ’snp.chromosome’: integer chromosome codes
• ’snp.position’: integer position values
• ’sample.id’: a unique integer vector of scan ids
• ’genotype’: a matrix of bytes with dimensions (’snp’,’sample’). The byte values must be

the number of A alleles : 2=AA, 1=AB, 0=BB.

The optional variable "snp.allele" stores the A and B alleles in a character vector with format
"A/B".
Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.
The GdsGenotypeReader constructor creates and returns a GdsGenotypeReader instance point-
ing to this file.

Accessors

In the code snippets below, object is a GdsGenotypeReader object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is read.

See GdsReader for additional methods.

nsnp(object): The number of SNPs in the GDS file.

nscan(object): The number of scans in the GDS file.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a logical
or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional index
is a logical or integer vector specifying elements to extract. If char=FALSE (default), returns an
integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

getPosition(object, index): An integer vector of base pair positions. The optional index is
a logical or integer vector specifying elements to extract.

getAlleleA(object, index): A character vector of A alleles. The optional index is a logical
or integer vector specifying elements to extract.

getAlleleB(object, index): A character vector of B alleles. The optional index is a logical
or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

GdsGenotypeReader 63

getGenotype(object, snp, scan): Extracts genotype values (number of A alleles). The result
is a vector or matrix, depending on the number of dimensions in the returned values. Missing
values are represented as NA.

getVariable(object, varname, snp, scan): Extracts the contents of the variable varname.
The result is a vector or matrix, depending on the number of dimensions in the returned values.
Missing values are represented as NA. If the variable is not found in the GDS file, returns NULL.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

GdsReader, GenotypeData

Examples

library(SNPRelate)
gds <- GdsGenotypeReader(snpgdsExampleFileName())

dimensions
nsnp(gds)
nscan(gds)

get snpID and chromosome
snpID <- getSnpID(gds)
chrom <- getChromosome(gds)

get positions only for chromosome 22
pos22 <- getPosition(gds, index=(chrom == 22))

get all snps for first scan
geno <- getGenotype(gds, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
geno <- getGenotype(gds, snp=c(100,10), scan=c(1,5))

close(gds)

64 GdsReader

GdsReader Class GdsReader

Description

The GdsReader class provides an interface for reading GDS files.

Constructor

GdsReader(filename):
filename must be the path to a GDS file.
The GdsReader constructor creates and returns a GdsReader instance pointing to this file.

Accessors

In the code snippets below, object is a GdsReader object.

getVariable(object, varname, start, count): Returns the contents of the variable varname.

• start is a vector of integers indicating where to start reading values. The length of this
vector must equal the number of dimensions the variable has. If not specified, reading
starts at the beginning of the file (1,1,...).

• count is a vector of integers indicating the count of values to read along each dimension.
The length of this vector must equal the number of dimensions the variable has. If not
specified and the variable does NOT have an unlimited dimension, the entire variable
is read. As a special case, the value "-1" indicates that all entries along that dimension
should be read.

The result is a vector, matrix, or array, depending on the number of dimensions in the returned
values. Missing values (specified by a "missing.value" attribute, see put.attr.gdsn) are
represented as NA. If the variable is not found in the GDS file, returns NULL.

getVariableNames(object): Returns names of variables in the GDS file.

getDimension(object, varname): Returns dimension for GDS variable varname.

getAttribute(object, attname, varname): Returns the attribute attname associated with the
variable varname.

hasVariable(object, varname): Returns TRUE if varname is a variable in the GDS file.

Standard Generic Methods

In the code snippets below, object is a GdsReader object.

open(object): Opens a connection to a GDS file.

close(object): Closes the connection to a GDS file.

show(object): Summarizes the contents of a GDS file.

Author(s)

Stephanie Gogarten

genoClusterPlot 65

See Also

gdsfmt

Examples

library(SNPRelate)
gds <- GdsReader(snpgdsExampleFileName())

getVariableNames(gds)

hasVariable(gds, "genotype")
geno <- getVariable(gds, "genotype", start=c(1,1), count=c(10,10))

close(gds)

genoClusterPlot SNP cluster plots

Description

Generates either X,Y or R,Theta cluster plots for specified SNP’s.

Usage

genoClusterPlot(intenData, genoData, plot.type = c("RTheta", "XY"),
snpID, main.txt = NULL, by.sex = FALSE,
scan.sel = NULL, scan.hilite = NULL,
start.axis.at.0 = FALSE,
verbose = TRUE, ...)

genoClusterPlotByBatch(intenData, genoData, plot.type = c("RTheta", "XY"),
snpID, batchVar, main.txt = NULL, scan.sel = NULL,
verbose = TRUE, ...)

Arguments

intenData IntensityData object containing ’X’ and ’Y’ values.

genoData GenotypeData object

plot.type The type of plots to generate. Possible values are "RTheta" (default) or "XY".

snpID A numerical vector containing the SNP number for each plot.

batchVar A character string indicating which annotation variable should be used as the
batch.

main.txt A character vector containing the title to give to each plot.

by.sex Logical value specifying whether to indicate sex on the plot. If TRUE, sex must
be present in intenData or genoData.

66 genoClusterPlot

scan.sel integer vector of scans to include in the plot. If NULL, all scans will be included.

scan.hilite integer vector of scans to highlight in the plot with different colors. If NULL, all
scans will be plotted with the same colors.

start.axis.at.0

Logical for whether the min value of each axis should be 0.

verbose Logical value specifying whether to show progress.

... Other parameters to be passed directly to plot.

Details

Either ’RTheta’ (default) or ’XY’ plots can be generated. R and Theta values are computed from X
and Y using the formulas r <- x+y and theta <- atan(y/x)*(2/pi).

If by.sex==TRUE, females are indicated with circles and males with crosses.

Author(s)

Caitlin McHugh

See Also

IntensityData, GenotypeData

Examples

create data object
library(GWASdata)
data(affyScanADF)
data(affySnpADF)

xyfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
xync <- NcdfIntensityReader(xyfile)
xyData <- IntensityData(xync, scanAnnot=affyScanADF, snpAnnot=affySnpADF)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=affyScanADF, snpAnnot=affySnpADF)

select first 9 snps
snpID <- affySnpADF$snpID[1:9]
rsID <- affySnpADF$rsID[1:9]

par(mfrow=c(3,3)) # plot 3x3
genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID)

select samples
scan.sel <- affyScanADF$scanID[affyScanADF$race == "CEU"]
genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID,

scan.sel=scan.sel, by.sex=TRUE)

genoClusterPlot(xyData, genoData, snpID=snpID, main.txt=rsID,

GenotypeData-class 67

scan.hilite=scan.sel)

genoClusterPlotByBatch(xyData, genoData, snpID=snpID, main.txt=rsID,
batchVar="plate")

close(xyData)
close(genoData)

GenotypeData-class Class GenotypeData

Description

The GenotypeData class is a container for storing genotype data from a genome-wide association
study together with the metadata associated with the subjects and SNPs involved in the study.

Details

The GenotypeData class consists of three slots: data, snp annotation, and scan annotation. There
may be multiple scans associated with a subject (e.g. duplicate scans for quality control), hence the
use of "scan" as one dimension of the data. Snp and scan annotation are optional, but if included in
the GenotypeData object, their unique integer ids (snpID and scanID) are checked against the ids
stored in the data slot to ensure consistency.

Constructor

GenotypeData(data, snpAnnot=NULL, scanAnnot=NULL):
data must be an NcdfGenotypeReader, GdsGenotypeReader, or MatrixGenotypeReader
object.
snpAnnot, if not NULL, must be a SnpAnnotationDataFrame or SnpAnnotationSQLite ob-
ject.
scanAnnot, if not NULL, must be a ScanAnnotationDataFrame or ScanAnnotationSQLite
object.
The GenotypeData constructor creates and returns a GenotypeData instance, ensuring that
data, snpAnnot, and scanAnnot are internally consistent.

Accessors

In the code snippets below, object is a GenotypeData object. snp and scan indicate which elements
to return along the snp and scan dimensions. They must be integer vectors of the form (start, count),
where start is the index of the first data element to read and count is the number of elements to read.
A value of ’-1’ for count indicates that the entire dimension should be read. If snp and/or is scan
omitted, the entire variable is read.

nsnp(object): The number of SNPs in the data.

nscan(object): The number of scans in the data.

68 GenotypeData-class

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a logical
or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional index
is a logical or integer vector specifying elements to extract. If char=FALSE (default), returns an
integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).

getPosition(object, index): An integer vector of base pair positions. The optional index is
a logical or integer vector specifying elements to extract.

getAlleleA(object, index): A character vector of A alleles. The optional index is a logical
or integer vector specifying elements to extract.

getAlleleB(object, index): A character vector of B alleles. The optional index is a logical
or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

getSex(object, index): A character vector of sex, with values ’M’ or ’F’. The optional index
is a logical or integer vector specifying elements to extract.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

getGenotype(object, snp, scan, char=FALSE, sort=TRUE): Extracts genotype values (num-
ber of A alleles). The result is a vector or matrix, depending on the number of dimensions
in the returned values. Missing values are represented as NA. If char=TRUE, genotypes are
returned as characters of the form "A/B". If sort=TRUE, alleles are lexographically sorted
("G/T" instead of "T/G").

getSnpVariable(object, varname, index): Returns the snp annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

getSnpVariableNames(object): Returns a character vector with the names of the columns in
the snp annotation.

hasSnpVariable(object, varname): Returns TRUE if the variable varname is present in the snp
annotation.

getScanVariable(object, varname, index): Returns the scan annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

getScanVariableNames(object): Returns a character vector with the names of the columns in
the scan annotation.

hasScanVariable(object, varname): Returns TRUE if the variable varname is present in the
scan annotation.

getVariable(object, varname, snp, scan): Extracts the contents of the variable varname
from the data. The result is a vector or matrix, depending on the number of dimensions in
the returned values. Missing values are represented as NA. If the variable is not found, returns
NULL.

hasVariable(object, varname): Returns TRUE if the data contains contains varname, FALSE if
not.

hasSnpAnnotation(object): Returns TRUE if the snp annotation slot is not NULL.

hasScanAnnotation(object): Returns TRUE if the scan annotation slot is not NULL.

open(object): Opens a connection to the data.

GenotypeData-class 69

close(object): Closes the data connection.

autosomeCode(object): Returns the integer codes for the autosomes.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationDataFrame, SnpAnnotationSQLite, ScanAnnotationDataFrame, ScanAnnotationSQLite,
NcdfGenotypeReader, GdsGenotypeReader, MatrixGenotypeReader, IntensityData

Examples

library(GWASdata)
file <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

object without annotation
genoData <- GenotypeData(nc)

object with annotation
data(illuminaSnpADF)
data(illuminaScanADF)
need to rebuild old SNP annotation object to get allele methods
snpAnnot <- SnpAnnotationDataFrame(pData(illuminaSnpADF))
genoData <- GenotypeData(nc, snpAnnot=snpAnnot, scanAnnot=illuminaScanADF)

dimensions
nsnp(genoData)
nscan(genoData)

get snpID and chromosome
snpID <- getSnpID(genoData)
chrom <- getChromosome(genoData)

get positions only for chromosome 22
pos22 <- getPosition(genoData, index=(chrom == 22))

get other annotations
if (hasSex(genoData)) sex <- getSex(genoData)
plate <- getScanVariable(genoData, "plate")
rsID <- getSnpVariable(genoData, "rsID")

get all snps for first scan
geno <- getGenotype(genoData, snp=c(1,-1), scan=c(1,1))

70 GenotypeData-class

starting at snp 100, get 10 snps for the first 5 scans
geno <- getGenotype(genoData, snp=c(100,10), scan=c(1,5))
geno

return genotypes as "A/B" rather than number of A alleles
geno <- getGenotype(genoData, snp=c(100,10), scan=c(1,5), char=TRUE)
geno

close(genoData)

#--------------------------------------
An example using a non-human organism
#--------------------------------------
Chicken has 38 autosomes, Z, and W. Male is ZZ, female is ZW.
Define sex chromosomes as X=Z and Y=W.
ncfile <- tempfile()
simulateGenotypeMatrix(n.snps=10, n.chromosomes=40, n.samples=5,

ncdf.filename=ncfile)
nc <- NcdfGenotypeReader(ncfile, autosomeCode=1:38L,

XchromCode=39L, YchromCode=40L,
XYchromCode=41L, MchromCode=42L)

table(getChromosome(nc))
table(getChromosome(nc, char=TRUE))

SNP annotation
snpdf <- data.frame(snpID=getSnpID(nc),

chromosome=getChromosome(nc),
position=getPosition(nc))

snpAnnot <- SnpAnnotationDataFrame(snpdf, autosomeCode=1:38L,
XchromCode=39L, YchromCode=40L,
XYchromCode=41L, MchromCode=42L)

varMetadata(snpAnnot)[,"labelDescription"] <-
c("unique integer ID",
"chromosome coded as 1:38=autosomes, 39=Z, 40=W",
"base position")

reverse sex coding to get proper counting of sex chromosome SNPs
scandf <- data.frame(scanID=1:5, sex=c("M","M","F","F","F"),

stringsAsFactors=FALSE)
scanAnnot <- ScanAnnotationDataFrame(scandf)
varMetadata(scanAnnot)[,"labelDescription"] <-

c("unique integer ID",
"sex coded as M=female and F=male")

genoData <- GenotypeData(nc, snpAnnot=snpAnnot, scanAnnot=scanAnnot)
afreq <- alleleFrequency(genoData)
frequency of Z chromosome in females ("M") and males ("F")
afreq[snpAnnot$chromosome == 39, c("M","F")]
frequency of W chromosome in females ("M") and males ("F")
afreq[snpAnnot$chromosome == 40, c("M","F")]

close(genoData)

genotypeToCharacter 71

unlink(ncfile)

genotypeToCharacter Convert number of A alleles to character genotypes

Description

Converts a vector or matrix of genotypes encoded as number of A alleles to character strings of the
form "A/B".

Usage

genotypeToCharacter(geno, alleleA=NULL, alleleB=NULL, sort=TRUE)

Arguments

geno Vector or matrix of genotype values, encoded as number of A alleles. If a matrix,
dimensions should be (snp, sample).

alleleA Character vector with allele A.

alleleB Character vector with allele B.

sort Logical for whether to sort alleles lexographically ("G/T" instead of "T/G").

Details

If geno is a vector, alleleA and alleleB should have the same length as geno or length 1 (in the
latter case the values are recycled).

If geno is a matrix, length of alleleA and alleleB should be equal to the number of rows of geno.

If alelleA or alleleB is NULL, returned genotypes will have values "A/A", "A/B", or "B/B".

Value

Character vector or matrix of the same dimensions as geno.

Author(s)

Stephanie Gogarten

See Also

GenotypeData

Examples

geno <- matrix(c(0,1,2,0,1,2,1,NA), nrow=4)
alleleA <- c("A","T","C","T")
alleleB <- c("C","G","G","A")
genotypeToCharacter(geno, alleleA, alleleB)

72 getobj

getobj Get an R object stored in an Rdata file

Description

Returns an R object stored in an Rdata file

Usage

getobj(Rdata)

Arguments

Rdata path to an Rdata file containing a single R object to load

Details

Loads an R object and stores it under a new name without creating a duplicate copy. If multiple
objects are stored in the same file, only the first one will be returned

Value

The R object stored in Rdata.

Author(s)

Stephanie Gogarten

See Also

saveas

Examples

x <- 1:10
file <- tempfile()
save(x, file=file)
y <- getobj(file)
unlink(file)

getVariable 73

getVariable Accessors for variables in GenotypeData and IntensityData classes
and their component classes

Description

These generic functions provide access to variables associated with GWAS data cleaning.

Usage

getScanVariable(object, varname, ...)
getScanVariableNames(object, ...)
getScanID(object, ...)
getSex(object, ...)
getSnpVariable(object, varname, ...)
getSnpVariableNames(object, ...)
getSnpID(object, ...)
getChromosome(object, ...)
getPosition(object, ...)
getAlleleA(object, ...)
getAlleleB(object, ...)

getVariable(object, varname, ...)
getVariableNames(object, ...)
getGenotype(object, ...)
getQuality(object, ...)
getX(object, ...)
getY(object, ...)
getBAlleleFreq(object, ...)
getLogRRatio(object, ...)
getDimension(object, varname, ...)
getAttribute(object, attname, varname, ...)

getAnnotation(object, ...)
getMetadata(object, ...)
getQuery(object, statement, ...)

hasScanAnnotation(object)
hasScanVariable(object, varname)
hasSex(object)
hasSnpAnnotation(object)
hasSnpVariable(object, varname)
hasVariable(object, varname)
hasQuality(object)
hasX(object)
hasY(object)
hasBAlleleFreq(object)

74 getVariable

hasLogRRatio(object)

nsnp(object)
nscan(object)

autosomeCode(object)
XchromCode(object)
XYchromCode(object)
YchromCode(object)
MchromCode(object)

writeAnnotation(object, value, ...)
writeMetadata(object, value, ...)

Arguments

object Object, possibly derived from or containing NcdfReader-class, GdsReader-class,
ScanAnnotationDataFrame-class, SnpAnnotationDataFrame-class, ScanAnnotationSQLite-class,
or SnpAnnotationSQLite-class.

varname Name of the variable (single character string, or a character vector for multiple
variables).

attname Name of an attribute.

statement SQL statement to query ScanAnnotationSQLite-class or SnpAnnotationSQLite-class
objects.

value data.frame with annotation or metadata to write to ScanAnnotationSQLite-class
or SnpAnnotationSQLite-class objects.

... Additional arguments.

Value

get methods return vectors or matrices of the requested variables (with the exception of getQuery,
which returns a data frame).

has methods return TRUE if the requested variable is present in object.

nsnp and nscan return the number of SNPs and scans in the object, repectively.

autosomeCode, XchromCode, XYchromCode, YchromCode, and MchromCode return the integer chro-
mosome codes associated with autosomal, X, pseudoautosomal, Y, and mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

ScanAnnotationDataFrame-class, SnpAnnotationDataFrame-class, ScanAnnotationSQLite-class,
SnpAnnotationSQLite-class, NcdfReader-class, NcdfGenotypeReader-class, NcdfIntensityReader-class,
GdsReader-class, GenotypeData-class, IntensityData-class

gwasExactHW 75

gwasExactHW Hardy-Weinberg Equilibrium testing

Description

This function performs exact Hardy-Weinberg Equilibrium testing (using Fisher’s Test) over a se-
lection of SNPs. It also performs genotype counts, calculates allele frequencies, and calculates
inbreeding coefficients.

Usage

gwasExactHW(genoData,
scan.chromosome.filter = NULL,
scan.exclude = NULL,
geno.counts = TRUE,
chromosome.set = NULL,
block.size = 5000,
verbose = TRUE,
outfile = NULL)

Arguments

genoData GenotypeData object, should contain sex and phenotypes in scan annotation
scan.chromosome.filter

a logical matrix that can be used to exclude some chromosomes, some scans,
or some specific scan-chromosome pairs. Entries should be TRUE if that scan-
chromosome pair should be included in the analysis, FALSE if not. The number
of rows must be equal to the number of scans in genoData, and the number
of columns must be equal to the largest integer chromosome value in genoData.
The column number must match the chromosome number. e.g. A scan.chromosome.filter
matrix used for an analyis when genoData has SNPs with chromosome=(1-24,
26, 27) (i.e. no Y (25) chromosome SNPs) must have 27 columns (all FALSE
in the 25th column). But a scan.chromosome.filter matrix used for an analysis
genoData has SNPs chromosome=(1-26) (i.e no Unmapped (27) chromosome
SNPs) must have only 26 columns.

scan.exclude an integer vector containing the IDs of entire scans to be excluded.
geno.counts if TRUE (default), genotype counts are returned in the output data.frame.
chromosome.set integer vector with chromosome(s) to be analyzed. Use 23, 24, 25, 26, 27 for X,

XY, Y, M, Unmapped respectively.
block.size Number of SNPs to be read from genoData at once.
verbose if TRUE (default), will print status updates while the function runs. e.g. it will

print "chr 1 block 1 of 10" etc. in the R console after each block of SNPs is done
being analyzed.

outfile a character string to append in front of ".chr.i_k.RData" for naming the output
data-frame; where i is the first chromosome, and k is the last chromosome used
in that call to the function. "chr.i_k." will be omitted if chromosome.set=NULL.

76 gwasExactHW

Details

HWE calculations are performed with the HWExact function in the GWASExactHW package.

For the X chromosome, only female samples will be used in all calculations (since males are ex-
cluded from HWE testing on this chromosome). Hence if chromosome.set includes 23, the scan
annotation of genoData should provide the sex of the sample ("M" or "F") i.e. there should be a
column named "sex" with "F" for females and "M" for males.

Y, M, and U (25, 26, and 27) chromsome SNPs are not used in HWE analysis, so all returned values
for these SNPs will be NA.

Value

If outfile=NULL (default), all results are returned as a single data.frame. If outfile is specified,
no data is returned but the function saves a data-frame with the naming convention as described by
the argument outfile.

The first three columns of the data-frame are:

snpID snpID (from the snp annotation) of the SNP

chromosome chromosome (from the snp annotation) of the SNP. The integers 23, 24, 25, 26,
27 are used for X, XY, Y, M, Unmapped respectively.

position position (from the snp annotation) of the SNP

If geno.counts = TRUE:

nAA number of AA genotypes in samples

nAB number of AB genotypes in samples

nBB number of BB genotypes in samples

MAF minor allele frequency.

minor.allele the minor allele. Takes values "A" or "B".

f the inbreeding coefficient.

p.value exact Hardy-Weinberg Equilibrium (using Fisher’s Test) p-value. p.value will
be NA for monomorphic SNPs (MAF == 0).

Warnings:

If outfile is not NULL, another file will be saved with the name "outfile.chr.i_k.warnings.RData"
that contains any warnings generated by the function.

Author(s)

Ian Painter, Matthew P. Conomos

See Also

HWExact

GWASTools-deprecated 77

Examples

The following example would perform exact Hardy-Weinberg equilibrium testing on all chromosomes in this data set. It would also return genotype counts, minor allele frequencies, and inbreeding coefficients.

library(GWASdata)
data(affyScanADF)

run only on YRI subjects
scan.exclude <- affyScanADF$scanID[affyScanADF$race != "YRI"]

create data object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

hwe <- gwasExactHW(genoData, scan.exclude=scan.exclude)

close(genoData)

GWASTools-deprecated Deprecated Functions in Package GWASTools

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Details

pedigreeClean-deprecated

pedigreeFindDuplicates-deprecated

hetByScanChrom Heterozygosity rates by scan and chromosome

Description

This function calculates the fraction of heterozygous genotypes for each chromosome for a set of
scans.

Usage

hetByScanChrom(genoData, snp.exclude = NULL,
verbose = TRUE)

78 hetBySnpSex

Arguments

genoData GenotypeData object

snp.exclude An integer vector containing the id’s of SNPs to be excluded.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the percent of heterozygous and missing genotypes in each chromosome
of each scan given in genoData.

Value

The result is a matrix containing the heterozygosity rates with scans as rows and chromosomes as
columns, including a column "A" for all autosomes.

Author(s)

Cathy Laurie

See Also

GenotypeData, hetBySnpSex

Examples

file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)
genoData <- GenotypeData(nc)
het <- hetByScanChrom(genoData)
close(genoData)

hetBySnpSex Heterozygosity by SNP and sex

Description

This function calculates the percent of heterozygous genotypes for males and females for each SNP.

Usage

hetBySnpSex(genoData, scan.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object

scan.exclude An integer vector containing the id’s of scans to be excluded.

verbose Logical value specifying whether to show progress information.

HLA 79

Details

This function calculates the percent of heterozygous genotypes for males and females for each SNP
given in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

Value

The result is a matrix containing the heterozygosity rates with snps as rows and 2 columns ("M" for
males and "F" for females).

Author(s)

Cathy Laurie

See Also

GenotypeData, hetByScanChrom

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affyScanADF)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

het <- hetBySnpSex(genoData)
close(genoData)

HLA HLA region base positions

Description

HLA region base positions from the GRCh36/hg18 and GRCh37/hg19 genome builds.

Usage

HLA.hg18
HLA.hg19

Format

A data.frame with the following columns.

chrom chromsome

start.base starting base position of region

end.base ending base position of region

80 ibdPlot

Source

UCSC genome browser (http://genome.ucsc.edu).

References

Mehra, Narinder K. and Kaur, Gurvinder (2003), MHC-based vaccination approaches: progress and
perspectives. Expert Reviews in Molecular Medicine, Vol. 5: 24. doi:10.1017/S1462399403005957

Examples

data(HLA.hg18)
data(HLA.hg19)

ibdPlot Plot theoretical and observed identity by descent values and assign
relationships

Description

ibdPlot produces an IBD plot showing observed identity by descent values color coded by expected
relationship. Theoretical boundaries for full-sib, half-sib, and first-cousins are plotted in orange.
ibdAreasDraw overlays relationship areas for IBD analysis on the plot. ibdAssignRelatedness
identifies observed relatives.

Usage

ibdPlot(k0, k1, alpha=0.05, relation=NULL, color=NULL,
rel.lwd=2, rel.draw=c("FS", "HS", "FC"), ...)

ibdAreasDraw(alpha=.05, m=0.04, po.w=0.1, po.h=0.1,
dup.w=0.1, dup.h=0.1, un.w=0.25, un.h=0.25, rel.lwd=2,

xcol=c("cyan","red","blue","lightgreen","magenta","black"))

ibdAssignRelatedness(k0, k1, alpha=0.05, m=0.04, po.w=0.1, po.h=0.1,
dup.w=0.1, dup.h=0.1, un.w=0.25, un.h=0.25)

Arguments

k0 A vector of k0 values.

k1 A vector of k1 values.

alpha significance level - finds 100(1-alpha)% prediction intervals for half-sibs and
first cousins and 100(1-alpha)% prediction ellipse for full-sibs

relation A vector of relationships.

color A vector of colors for (k0,k1) points.

rel.lwd Line width for theoretical full-sib, half-sib, and first-cousin boundaries.

http://genome.ucsc.edu

ibdPlot 81

rel.draw Which theoretical boundaries to plot: one or more of "FS" (full-sib), "HS" (half-
sib), "FC" (first cousins). If NULL, no boundaries are drawn.

... Other graphical parameters to pass to plot and points.

m width of rectangle along diagonal line

po.w width of parent-offspring rectangle

po.h height of parent-offspring rectangle

dup.w width of duplicate rectangle

dup.h height of duplicate rectangle

un.w width of unrelated rectangle

un.h height of unrelated rectangle

xcol colors for parent-offspring, full-sib, half-sib, first cousin, dup & unrelated areas

Details

ibdPlot produces an IBD plot showing observed identity by descent values color coded by ex-
pected relationship, typically as deduced from pedigree data. Points are plotted according to their
corresponding value in the color vector, and the relation vector is used to make the plot legend.

Theoretical boundary for full-sibs is indicated by ellipse and boundaries for half-sib and first cousin
intervals are indicated in orange. For full-sibs, 100(1-alpha)% prediction ellipse is based on as-
suming bivariate normal distribution with known mean and covariance matrix. For half-sibs and
first-cousins, 100(1-alpha)% prediction intervals for k1 are based on assuming normal distribution
with known mean and variance, computed as in Hill and Weir (2011).

ibdAreasDraw overlays relationship areas on the plot to help with analyzing observed relationships.
For full-sibs, 100(1-alpha)% prediction ellipse is based on assuming bivariate normal distribution
with known mean and covariance matrix. For half-sibs and first-cousins, 100(1-alpha)% prediction
intervals for k1 are based on assuming normal distribution with known mean and variance.

ibdAssignRelatedness identifies relatives based on their (k0, k1) coordinates.

Value

ibdAssignRelatedness returns a vector of relationships with values "Dup"=duplicate, "PO"=parent-
offspring, "FS"=full sibling, "HS"=half-sibling-like, "FC"=first cousin, "U"=unrelated, and "Q"=unknown.

Author(s)

Cathy Laurie and Cecelia Laurie

References

Hill, W.G. and B.S. Weir, Variation in actual relationship as a consequence of mendelian sampling
and linkage, Genet. Res. Camb. (2011), 93, 47-64.

See Also

relationsMeanVar

82 IntensityData-class

Examples

k0 <- c(0, 0, 0.25, 0.5, 0.75, 1)
k1 <- c(0, 1, 0.5, 0.5, 0.25, 0)
exp.rel <- c("Dup", "PO", "FS", "HS", "FC", "U")
ibdPlot(k0, k1, relation=exp.rel)
ibdAreasDraw()
obs.rel <- ibdAssignRelatedness(k0, k1)

IntensityData-class Class IntensityData

Description

The IntensityData class is a container for storing intensity data from a genome-wide association
study together with the metadata associated with the subjects and SNPs involved in the study.

Details

The IntensityData class consists of three slots: data, snp annotation, and scan annotation. There
may be multiple scans associated with a subject (e.g. duplicate scans for quality control), hence the
use of "scan" as one dimension of the data. Snp and scan annotation are optional, but if included
in the IntensityData object, their unique integer ids (snpID and scanID) are checked against the ids
stored in the data file to ensure consistency.

Constructor

IntensityData(data, snpAnnot=NULL, scanAnnot=NULL):
data must be an NcdfIntensityReader object.
snpAnnot, if not NULL, must be a SnpAnnotationDataFrame or SnpAnnotationSQLite ob-
ject.
scanAnnot, if not NULL, must be a ScanAnnotationDataFrame or ScanAnnotationSQLite
object.
The IntensityData constructor creates and returns a IntensityData instance, ensuring that
data, snpAnnot, and scanAnnot are internally consistent.

Accessors

In the code snippets below, object is an IntensityData object. snp and scan indicate which ele-
ments to return along the snp and scan dimensions. They must be integer vectors of the form (start,
count), where start is the index of the first data element to read and count is the number of elements
to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp and/or is
scan omitted, the entire variable is read.

nsnp(object): The number of SNPs in the data.

nscan(object): The number of scans in the data.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a logical
or integer vector specifying elements to extract.

IntensityData-class 83

getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional index
is a logical or integer vector specifying elements to extract. If char=FALSE (default), returns an
integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).

getPosition(object, index): An integer vector of base pair positions. The optional index is
a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

getSex(object, index): A character vector of sex, with values ’M’ or ’F’. The optional index
is a logical or integer vector specifying elements to extract.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

getQuality(object, snp, scan): Extracts quality scores. The result is a vector or matrix,
depending on the number of dimensions in the returned values. Missing values are represented
as NA.

getX(object, snp, scan): Extracts X intensity values. The result is a vector or matrix, de-
pending on the number of dimensions in the returned values. Missing values are represented
as NA.

getY(object, snp, scan): Extracts Y intensity values. The result is a vector or matrix, de-
pending on the number of dimensions in the returned values. Missing values are represented
as NA.

getBAlleleFreq(object, snp, scan): Extracts B allele frequency values. The result is a vector
or matrix, depending on the number of dimensions in the returned values. Missing values are
represented as NA.

getLogRRatio(object, snp, scan): Extracts Log R Ratio values. The result is a vector or
matrix, depending on the number of dimensions in the returned values. Missing values are
represented as NA.

getSnpVariable(object, varname, index): Returns the snp annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

getSnpVariableNames(object): Returns a character vector with the names of the columns in
the snp annotation.

hasSnpVariable(object, varname): Returns TRUE if the variable varname is present in the snp
annotation.

getScanVariable(object, varname, index): Returns the scan annotation variable varname.
The optional index is a logical or integer vector specifying elements to extract.

getScanVariableNames(object): Returns a character vector with the names of the columns in
the scan annotation.

hasScanVariable(object, varname): Returns TRUE if the variable varname is present in the
scan annotation.

getVariable(object, varname, snp, scan): Extracts the contents of the variable varname
from the data. The result is a vector or matrix, depending on the number of dimensions in
the returned values. Missing values are represented as NA. If the variable is not found, returns
NULL.

hasVariable(object, varname): Returns TRUE if the data contains contains varname, FALSE if
not.

84 IntensityData-class

hasSnpAnnotation(object): Returns TRUE if the snp annotation slot is not NULL.

hasScanAnnotation(object): Returns TRUE if the scan annotation slot is not NULL.

open(object): Opens a connection to the data.

close(object): Closes the data connection.

autosomeCode(object): Returns the integer codes for the autosomes.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationDataFrame, SnpAnnotationSQLite, ScanAnnotationDataFrame, ScanAnnotationSQLite,
ScanAnnotationDataFrame, NcdfReader, NcdfIntensityReader, GenotypeData

Examples

library(GWASdata)
file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)

object without annotation
intenData <- IntensityData(nc)

object with annotation
data(affySnpADF)
data(affyScanADF)
intenData <- IntensityData(nc, snpAnnot=affySnpADF, scanAnnot=affyScanADF)

dimensions
nsnp(intenData)
nscan(intenData)

get snpID and chromosome
snpID <- getSnpID(intenData)
chrom <- getChromosome(intenData)

get positions only for chromosome 22
pos22 <- getPosition(intenData, index=(chrom == 22))

get other annotations
if (hasSex(intenData)) sex <- getSex(intenData)
plate <- getScanVariable(intenData, "plate")
rsID <- getSnpVariable(intenData, "rsID")

intensityOutliersPlot 85

get all snps for first scan
x <- getX(intenData, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
x <- getX(intenData, snp=c(100,10), scan=c(1,5))

close(intenData)

intensityOutliersPlot Plot mean intensity and highlight outliers

Description

intensityOutliersPlot is a function to plot mean intensity for chromosome i vs mean of inten-
sities for autosomes (excluding i) and highlight outliers

Usage

intensityOutliersPlot(mean.intensities, sex, outliers,
sep = FALSE, label, ...)

Arguments

mean.intensities

scan x chromosome matrix of mean intensities

sex vector with values of "M" or "F" corresponding to scans in the rows of mean.intensities

outliers list of outliers, each member corresponds to a chromosome (member "X" is itself
a list of female and male outliers)

sep plot outliers within a chromosome separately (TRUE) or together (FALSE)

label list of plot labels (to be positioned below X axis) corresponding to list of outliers

... additional arguments to plot

Details

Outliers must be determined in advance and stored as a list, with one element per chromosome. The
X chromosome must be a list of two elements, "M" and "F". Each element should contain a vector
of ids corresponding to the row names of mean.intensities.

If sep=TRUE, labels must also be specified. labels should be a list that corresponds exactly to the
elements of outliers.

Author(s)

Cathy Laurie

See Also

meanIntensityByScanChrom

86 manhattanPlot

Examples

calculate mean intensity
library(GWASdata)
file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)
data(affyScanADF)
intenData <- IntensityData(nc, scanAnnot=affyScanADF)
meanInten <- meanIntensityByScanChrom(intenData)
intenMatrix <- meanInten$mean.intensity

find outliers
outliers <- list()
sex <- affyScanADF$sex
id <- affyScanADF$scanID
allequal(id, rownames(intenMatrix))
for (i in colnames(intenMatrix)) {

if (i != "X") {
imean <- intenMatrix[,i]
imin <- id[imean == min(imean)]
imax <- id[imean == max(imean)]
outliers[[i]] <- c(imin, imax)

} else {
idf <- id[sex == "F"]
fmean <- intenMatrix[sex == "F", i]
fmin <- idf[fmean == min(fmean)]
fmax <- idf[fmean == max(fmean)]
outliers[[i]][["F"]] <- c(fmin, fmax)
idm <- id[sex == "M"]
mmean <- intenMatrix[sex == "M", i]
mmin <- idm[mmean == min(mmean)]
mmax <- idm[mmean == max(mmean)]
outliers[[i]][["M"]] <- c(mmin, mmax)

}
}

par(mfrow=c(2,4))
intensityOutliersPlot(intenMatrix, sex, outliers)

manhattanPlot Manhattan plot for genome wide association tests

Description

Generates a manhattan plot of the results of a genome wide association test.

Usage

manhattanPlot(p, chromosome,
ylim = NULL, trunc.lines = TRUE,
signif = 5e-8, ...)

MatrixGenotypeReader 87

Arguments

p A vector of p-values.

chromosome A vector containing the chromosome for each SNP.

ylim The limits of the y axis. If NULL, the y axis is (0, log10(length(p)) + 4).

trunc.lines Logical value indicating whether to show truncation lines.

signif Genome-wide significance level for plotting horizontal line. If signif=NULL,
no line will be drawn.

... Other parameters to be passed directly to plot.

Details

Plots -log10(p) versus chromosome. Point size is scaled so that smaller p values have larger points.

p must have the same length as chromosome and is assumed to be in order of position on each
chromosome. Values within each chromosome are evenly spaced along the X axis.

Plot limits are determined as follows: if ylim is provided, any points with -log10(p) > ylim[2]
are plotted as triangles at the maximum y value of the plot. A line will be drawn to indicate trunc-
tation (if trunc.lines == TRUE, the default). If ylim == NULL, the maximum y value is defined
as log10(length(p)) + 4).

Author(s)

Cathy Laurie

See Also

snpCorrelationPlot

Examples

n <- 1000
pvals <- sample(-log10((1:n)/n), n, replace=TRUE)
chromosome <- c(rep(1,400), rep(2,350), rep("X",200), rep("Y",50))
manhattanPlot(pvals, chromosome, signif=1e-7)

MatrixGenotypeReader Class MatrixGenotypeReader

Description

The MatrixGenotypeReader class stores a matrix of genotypes as well as SNP and scan IDs, chro-
mosome, and position.

88 MatrixGenotypeReader

Constructor

MatrixGenotypeReader(genotype=genotype, snpID=snpID, chromosome=chromosome, position=position, scanID=scanID):
genotype must be a matrix with dimensions (’snp’,’scan’) containing the number of A alleles
: 2=AA, 1=AB, 0=BB.
snp must be a unique integer vector of SNP ids.
chromosome must be an integer vector of chromosomes. Default values for chromosome
codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The defaults may be changed with
the arguments autosomeCode, XchromCode, XYchromCode, YchromCode, and MchromCode.
position must be an integer vector of base positions
scanID must be a unique integer vector of scan ids .
The MatrixGenotypeReader constructor creates and returns a MatrixGenotypeReader in-
stance.

Accessors

In the code snippets below, object is a MatrixGenotypeReader object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is returned.

See NcdfReader for additional methods.

nsnp(object): The number of SNPs.

nscan(object): The number of scans.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a logical
or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional index
is a logical or integer vector specifying elements to extract. If char=FALSE (default), returns an
integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

getPosition(object, index): An integer vector of base pair positions. The optional index is
a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

getGenotype(object, snp, scan): Extracts genotype values (number of A alleles). The result
is a vector or matrix, depending on the number of dimensions in the returned values. Missing
values are represented as NA.

autosomeCode(object): Returns the integer codes for the autosomes.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

meanIntensityByScanChrom 89

Author(s)

Stephanie Gogarten

See Also

NcdfGenotypeReader, GenotypeData

Examples

snpID <- 1:100
chrom <- rep(1:20, each=5)
pos <- 1001:1100
scanID <- 1:20
geno <- matrix(sample(c(0,1,2,NA), 2000, replace=TRUE), nrow=100, ncol=20)

mgr <- MatrixGenotypeReader(genotype=geno, snpID=snpID,
chromosome=chrom, position=pos, scanID=scanID)

dimensions
nsnp(mgr)
nscan(mgr)

get snpID and chromosome
snpID <- getSnpID(mgr)
chrom <- getChromosome(mgr)

get positions only for chromosome 10
pos10 <- getPosition(mgr, index=(chrom == 10))

get all snps for first scan
geno <- getGenotype(mgr, snp=c(1,-1), scan=c(1,1))

starting at snp 50, get 10 snps for the first 5 scans
geno <- getGenotype(mgr, snp=c(50,10), scan=c(1,5))

meanIntensityByScanChrom

Calculate Means \& Standard Deviations of Intensities

Description

Function to calculate the mean and standard deviation of the intensity for each chromosome for
each scan.

Usage

meanIntensityByScanChrom(intenData, vars = c("X", "Y"),
snp.exclude = NULL, verbose = TRUE)

90 meanIntensityByScanChrom

Arguments

intenData IntensityData object

vars Character vector with the names of one or two intensity variables.

snp.exclude An integer vector containing SNPs to be excluded.

verbose Logical value specifying whether to show progress information.

Details

The names of two intensity variables in intenData may be supplied. If two variables are given, the
mean of their sum is computed as well. The default is to compute the mean and standard deviation
for X and Y intensity.

Value

A list with two components for each variable in "vars": ’mean.var’ and ’sd.var’. If two variables are
given, the first two elements of the list will be mean and sd for the sum of the intensity variables:

mean.intensity

A matrix with one row per scan and one column per chromosome containing the
means of the summed intensity values for each scan and chromosome.

sd.intensity A matrix with one row per scan and one column per chromosome containing the
standard deviations of the summed intensity values for each scan and chromo-
some.

mean.var A matrix with one row per scan and one column per chromosome containing the
means of the intensity values for each scan and chromosome.

sd.var A matrix with one row per scan and one column per chromosome containing the
standard deviations of the intensity values for each scan and chromosome.

Author(s)

Cathy Laurie

See Also

IntensityData, mean, sd

Examples

file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)
intenData <- IntensityData(nc)

meanInten <- meanIntensityByScanChrom(intenData)

mendelErr 91

mendelErr Mendelian Error Checking

Description

Mendelian and mtDNA inheritance tests.

Usage

mendelErr(genoData, mendel.list, snp.exclude=NULL,
error.by.snp=TRUE, error.by.snp.trio=FALSE,
verbose=TRUE, outfile=NULL)

Arguments

genoData GenotypeData object, must have scan variable "sex"

mendel.list A mendelList object, to specify trios.

snp.exclude An integer vector with snpIDs of SNPs to exclude. If NULL (default), all SNPs
are used.

error.by.snp Whether or not to output Mendelian errors per SNP. This will only return the
total number of trios checked and the total number of errors for each SNP. The
default value is TRUE.

error.by.snp.trio

Whether or not to output Mendelian errors per SNP for each trio. This will
return the total number of trios checked and the total number of errors for each
SNP as well as indicators of which SNPs have an error for each trio. The default
value is FALSE. NOTE: error.by.snp must be set to TRUE as well in order to
use this option. NOTE: Using this option causes the output to be very large that
may be slow to load into R.

verbose If TRUE (default), will print status updates while the function runs.

outfile A character string to append in front of ".RData" for naming the output file.

Details

genoData must contain the scan annotation variable "sex". Chromosome index: 1..22 autosomes,
23 X, 24 XY, 25 Y, 26 mtDNA, 27 missing.

Another file will be saved with the name "outfile.warnings.RData" that contains any warnings gen-
erated by the function.

Value

If outfile=NULL (default), mendelErr returns an object of class "mendelClass". If outfile is
specified, no data is returned but mendelErr saves the object to disk as "outfile.RData."

The object contains two data frames: "trios" and "all.trios", and a list: "snp" (if error.by.snp is
specified to be TRUE). If there are no duplicate samples in the dataset, "trios" will be the same as

92 mendelErr

"all.trios". Otherwise, "all.trios" contains the results of all combinations of duplicate samples, and
"trios" only stores the average values of unique trios. i.e: "trios" averages duplicate samples for
each unique subject trio. "trios" and "all.trios" contain the following components:

fam.id Specifying the family ID from the mendel.list object used as input.

child.id Specifying the offspring ID from the mendel.list object used as input.

child.scanID Specifying the offspring scanID from the mendel.list object used as input. (only
in "all.trios")

father.scanID Specifying the father scanID from the mendel.list object used as input. (only in
"all.trios")

mother.scanID Specifying the mother scanID from the mendel.list object used as input. (only
in "all.trios")

Men.err.cnt The number of SNPs with Mendelian errors in this trio.

Men.cnt The total number of SNPs checked for Mendelian errors in this trio. It excludes
those cases where the SNP is missing in the offspring and those cases where it is
missing in both parents. Hence, Mendelian error rate = Men.err.cnt / Men.cnt.

mtDNA.err The number of SNPs with mtDNA inheritance errors in this trio.

mtDNA.cnt The total number of SNPs checked for mtDNA inheritance errors in this trio.
It excludes those cases where the SNP is missing in the offspring and in the
mother. Hence, mtDNA error rate = mtDNA.err / mtDNA.cnt .

chr1, ..., chr25

The number of Mendelian errors in each chromosome for this trio.

"snp" is a list that contains the following components:

check.cnt A vector of integers, indicating the number of trios valid for checking on each
SNP.

error.cnt A vector of integers, indicating the number of trios with errors on each SNP.
familyid.childid

A vector of indicators (0/1) for whether or not any of the duplicate trios for the
unique trio, "familyid.childid", have a Mendelian error on each SNP. (Only if
error.by.snp.trio is specified to be TRUE).

Warnings:

If outfile is not NULL, another file will be saved with the name "outfile.warnings.RData" that
contains any warnings generated by the function.

Author(s)

Xiuwen Zheng, Matthew P. Conomos

See Also

mendelList

mendelErr 93

Examples

library(GWASdata)
data(affyScanADF)

generate trio list
men.list <- mendelList(affyScanADF$family, affyScanADF$subjectID,

affyScanADF$father, affyScanADF$mother, affyScanADF$sex,
affyScanADF$scanID)

create genoData object
ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

Run!
outfile <- tempfile()
mendelErr(genoData, men.list, error.by.snp.trio = TRUE, outfile =
outfile)

Load the output
R <- getobj(paste(outfile, "RData", sep="."))
names(R)
[1] "trios" "all.trios" "snp"

names(R$trios)
[1] "fam.id" "child.id" "Men.err.cnt" "Men.cnt" "mtDNA.err"
[6] "mtDNA.cnt" "chr1" "chr2" "chr3" "chr4"
[11] "chr5" "chr6" "chr7" "chr8" "chr9"
[16] "chr10" "chr11" "chr12" "chr13" "chr14"
[21] "chr15" "chr16" "chr17" "chr18" "chr19"
[26] "chr20" "chr21" "chr22" "chr23" "chr24"
[31] "chr25"

Mendelian error rate = Men.err.cnt / Men.cnt
data.frame(fam.id = R$trios$fam.id, child.id = R$trios$child.id,

Mendel.err.rate = R$trios$Men.err.cnt / R$trios$Men.cnt)

names(R$snp)
summary(Rsnpcheck.cnt)

summary Mendelian error for first family
summary(R$snp[[1]])

check warnings
warnfile <- paste(outfile, "warnings.RData", sep=".")
if (file.exists(warnfile)) warns <- getobj(warnfile)

close(genoData)
unlink(paste(outfile, "*", sep=""))

94 mendelList

mendelList Mendelian Error Checking

Description

mendelList creates a "mendelList" object (a list of trios). mendelListAsDataFrame converts a
"mendelList" object to a data frame.

Usage

mendelList(familyid, offspring, father, mother, sex, scanID)

mendelListAsDataFrame(mendel.list)

Arguments

familyid A vector of family identifiers.

offspring A vector of offspring subject identifiers.

father A vector of father identifiers.

mother A vector of mother identifiers.

sex A vector to specify whether each subject is male "M" or female "F".

scanID A vector of scanIDs indicating unique genotyping instances for the offspring
vector. In the case of duplicate samples, the same offspring identifier may
correspond to multiple scanID values.

mendel.list An object of class "mendelList".

Details

The lengths of familyid, offspring, father, mother, sex, and scanID must all be identical.
These vectors should include all genotyped samples, i.e., samples present in the father and mother
vectors should also appear in the offspring vector if there are genotypes for these samples, and
their unique scan IDs should be given in the scanID vector.

Identifiers may be character strings or integers, but not factors.

The "mendelList" object is required as input for the mendelErr function.

Value

mendelList returns a "mendelList" object. A "mendelList" object is a list of lists. The first level
list is all the families. The second level list is offspring within families who have one or both par-
ents genotyped. Within the second level are data.frame(s) with columns "offspring", "father", and
"mother" which each contain the scanID for each member of the trio (a missing parent is denoted
by -1). When replicates of the same offsping ID occur (duplicate scans for the same subject), this
data.frame has multiple rows representing all combinations of scanIDs for that trio.

mendelListAsDataFrame returns a data.frame with variables "offspring", "father", and "mother"
which each contain the scanID for each member of the trio (a missing parent is denoted by -1). This

missingGenotypeByScanChrom 95

takes every data.frame from the "mendelList" object and puts them all into one large data frame.
This can be easier to work with for certain analyses.

Author(s)

Xiuwen Zheng, Matthew P. Conomos

See Also

mendelErr

Examples

data frame of sample information. No factors!
dat <- data.frame(family=c(1,1,1,1,2,2,2), offspring=c("a","a","b","c","d","e","f"),

father=c("b","b",0,0,"e",0,0), mother=c("c","c",0,0,"f",0,0),
sex=c("M","M","M","F","F","M","F"), scanID=1:7,
stringsAsFactors=FALSE)

dat

men.list <- mendelList(dat$family, dat$offspring, dat$father, dat$mother,
datsex, datscanID)

men.list

If fathers and mothers do not have separate entries in each vector,
mendelList returns a "NULL":
dat <- dat[c(1,5),]
dat
mendelList(dat$family, dat$offspring, dat$father, dat$mother,

datsex, datscanID)

men.df <- mendelListAsDataFrame(men.list)
men.df

missingGenotypeByScanChrom

Missing Counts per Scan per Chromosome

Description

This function tabulates missing genotype calls for each scan for each chromosome.

Usage

missingGenotypeByScanChrom(genoData, snp.exclude = NULL,
verbose = TRUE)

96 missingGenotypeByScanChrom

Arguments

genoData GenotypeData object

snp.exclude A vector of IDs corresponding to the SNPs that should be excluded from the
overall missing count.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the percent of missing genotypes in each chromosome of each scan given
in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

Value

This function returns a list with three components: "missing.counts," "snps.per.chr", and "miss-
ing.fraction."

missing.counts A matrix with rows corresponding to the scans and columns indicating unique
chromosomes containing the number of missing SNP’s for each scan and chro-
mosome.

snps.per.chr A vector containing the number of non-excluded SNPs for each chromosome.

missing.fraction

A vector containing the fraction of missing counts for each scan over all chro-
mosomes, excluding the Y chromosome for females.

Author(s)

Cathy Laurie

See Also

GenotypeData, missingGenotypeBySnpSex

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affyScanADF)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

missingRate <- missingGenotypeByScanChrom(genoData)
close(genoData)

missingGenotypeBySnpSex 97

missingGenotypeBySnpSex

Missing Counts per SNP by Sex

Description

For all SNPs for each sex tabulates missing SNP counts, allele counts and heterozygous counts.

Usage

missingGenotypeBySnpSex(genoData, scan.exclude = NULL,
verbose = TRUE)

Arguments

genoData GenotypeData object.

scan.exclude A vector containing the scan numbers of scans that are to be excluded from the
total scan list.

verbose Logical value specifying whether to show progress information.

Details

This function calculates the fraction of missing genotypes for males and females for each SNP given
in genoData. A "sex" variable must be present in the scan annotation slot of genoData.

Value

This function returns a list with three components: "missing.counts," "scans.per.sex," and "miss-
ing.fraction."

missing.counts A matrix with one row per SNP and one column per sex containing the number
of missing SNP counts for males and females, respectively.

scans.per.sex A vector containing the number of males and females respectively.
missing.fraction

A vector containing the fraction of missing counts for each SNP, with females
excluded for the Y chromosome.

Author(s)

Cathy Laurie, Stephanie Gogarten

See Also

GenotypeData, missingGenotypeByScanChrom

98 ncdfAddData

Examples

library(GWASdata)
file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

need scan annotation with sex
data(affyScanADF)
genoData <- GenotypeData(nc, scanAnnot=affyScanADF)

missingRate <- missingGenotypeBySnpSex(genoData)
close(genoData)

ncdfAddData Write genotypic calls and/or associated metrics to a netCDF file

Description

Genotypic calls and/or associated quantitative variables (e.g. quality score, intensities) are read from
text files and written to an existing netCDF file in which those variables were defined previously.

Usage

ncdfAddData(path = "", ncdf.filename,
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums,
scan.name.in.file, scan.start.index = 1,
diagnostics.filename = "ncdfAddData.diagnostics.RData",
verbose = TRUE)

ncdfAddIntensity(path = "", ncdf.filename,
snp.annotation, scan.annotation,
scan.start.index = 1, n.consecutive.scans = -1,
diagnostics.filename = "ncdfAddIntensity.diagnostics.RData",
verbose = TRUE)

ncdfCheckGenotype(path = "", ncdf.filename,
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums,
scan.name.in.file, check.scan.index, n.scans.loaded,
diagnostics.filename = "ncdfCheckGenotype.diagnostics.RData",
verbose = TRUE)

ncdfCheckIntensity(path = "", intenpath = "", ncdf.filename,
snp.annotation, scan.annotation,
sep.type, skip.num, col.total, col.nums,
scan.name.in.file, check.scan.index,
n.scans.loaded, affy.inten = FALSE,

ncdfAddData 99

diagnostics.filename = "ncdfCheckIntensity.diagnostics.RData",
verbose = TRUE)

Arguments

path Path to the raw text files.

intenpath Path to the raw text files containing intensity, if "inten.file" is given in scan.annotation.

ncdf.filename Name of the netCDF file in which to write the data.

snp.annotation SNP annotation data.frame containing SNPs in the same order as those in the
snp dimension of the netCDF file. Column names must be "snpID" (integer ID)
and "snpName", where snpName matches the snp ids inside the raw genoypic
data files.

scan.annotation

Scan annotation data.frame with columns "scanID" (integer id of scan in the
netCDF file), "scanName", (sample name inside the raw data file) and "file"
(corresponding raw data file name).

sep.type Field separator in the raw text files.

skip.num Number of rows to skip, which should be all rows preceding the genotypic or
quantitative data (including the header).

col.total Total number of columns in the raw text files.

col.nums An integer vector indicating which columns of the raw text file contain variables
for input. names(col.nums) must be a subset of c("snp", "sample", "geno",
"a1", "a2", "qs", "x", "y", "rawx", "rawy", "r", "theta", "ballelefreq", "logrra-
tio"). The element "snp" is the column of SNP ids, "sample" is sample ids,
"geno" is diploid genotype (in AB format), "a1" and "a2" are alleles 1 and 2 (in
AB format), "qs" is quality score, "x" and "y" are normalized intensities, "rawx"
and "rawy" are raw intensities, "r" is the sum of normalized intensities, "theta" is
angular polar coordinate, "ballelefreq" is the B allele frequency, and "logrratio"
is the Log R Ratio.

scan.name.in.file

An indicator for the presence of sample name within the file. A value of 1
indicates a column with repeated values of the sample name (Illumina format),
-1 indicates sample name embedded in a column heading (Affymetrix format)
and 0 indicates no sample name inside the raw data file.

scan.start.index

A numeric value containing the index of the sample dimension of the netCDF
file at which to begin writing.

n.consecutive.scans

The number of consecutive "sampleID" indices for which to write intensity val-
ues, beginning at scan.start.index (which equals the number of "ALLELE_SUMMARY"
files to process). When n.consecutive.scans=-1, all samples from scan.start.index
to the total number will be processed.

check.scan.index

An integer vector containing the indices of the sample dimension of the netCDF
file to check.

n.scans.loaded Number of scans loaded in the netCDF file.

100 ncdfAddData

affy.inten Logical value indicating whether Affy intensities are in separate files from qual-
ity scores. If TRUE, must also specify intenpath.

diagnostics.filename

Name of the output file to save diagnostics.

verbose Logical value specifying whether to show progress information.

Details

These functions read genotypic and associated data from raw text files. The files to be read and
processed are specified in the sample annotation. ncdfAddData expects one file per sample, with
each file having one row of data per SNP probe. The col.nums argument allows the user to select
and identify specific fields for writing to the netCDF file. Illumina text files and Affymetrix ".CHP"
files can be used here (but not Affymetrix "ALLELE_SUMMARY" files).

A SNP annotation data.frame is a pre-requisite for this function. It has the same number of rows
(one per SNP) as the raw text file and a column of SNP names matching those within the raw text
file. It also has a column of integer SNP ids matching the values (in order) of the "snp" dimension
of the netCDF file.

A sample annotation data.frame is also a pre-requisite. It has one row per sample with columns
corresponding to sample name (as it occurs within the raw text file), name of the raw text file for
that sample and an integer sample id (to be written as the "sampleID" variable in the netCDF file).

The genotype calls in the raw text file may be either one column of diploid calls or two columns of
allele calls. The function takes calls in AB format and converts them to a numeric code indicating
the number of "A" alleles in the genotype (i.e. AA=2, AB=1, BB=0 and missing=-1).

While each raw text file is being read, the functions check for errors and irregularities and records
the results in a list of vectors. If any problem is detected, that raw text file is skipped.

ncdfAddIntensity uses scan.start.index and n.consecutive.scans to identify the set of in-
teger sample ids for input (from the netCDF file). It then uses the sample annotation data.frame
to identify the corresponding sample names and "ALLELE_SUMMARY" file names to read. The
"ALLELE_SUMMARY" files have two rows per SNP, one for X (A allele) and one for Y (B allele).
These are reformatted to one row per SNP and and ordered according to the SNP integer id in the
netCDF file. The correspondence between SNP names in the "ALLELE_SUMMARY" file and the
SNP integer ids is made using the SNP annotation data.frame.

ncdfCheckGenotype and ncdfCheckIntensity check the contents of netCDF files against raw text
files.

These functions use the ncdf library, which provides an interface between R and netCDF.

Value

The netCDF file specified in argument ncdf.filename is populated with genotype calls and/or
associated quantitative variables. A list of diagnostics with the following components is returned.
Each vector has one element per raw text file processed.

read.file A vector indicating whether (1) or not (0) each file was read successfully.

row.num A vector of the number of rows read from each file. These should all be the
same and equal to the number of rows in the SNP annotation data.frame.

ncdfAddData 101

samples A list of vectors containing the unique sample names in the sample column of
each raw text file. Each vector should have just one element.

sample.match A vector indicating whether (1) or not (0) the sample name inside the raw text
file matches that in the sample annotation data.frame

missg A list of vectors containing the unique character string(s) for missing genotypes
(i.e. not AA,AB or BB) for each raw text file.

snp.chk A vector indicating whether (1) or not (0) the raw text file has the expected set
of SNP names (i.e. matching those in the SNP annotation data.frame).

chk A vector indicating whether (1) or not (0) all previous checks were successful
and the data were written to the netCDF file.

ncdfCheckGenotypes returns the following additional list items.

snp.order A vector indicating whether (1) or not (0) the snp ids are in the same order in
each file.

geno.chk A vector indicating whether (1) or not (0) the genotypes in the netCDF match
the text file.

ncdfCheckIntensity returns the following additional list items.

qs.chk A vector indicating whether (1) or not (0) the quality scores in the netCDF match
the text file.

read.file.inten

A vector indicating whether (1) or not (0) each intensity file was read success-
fully (if intensity files are separate).

sample.match.inten

A vector indicating whether (1) or not (0) the sample name inside the raw text
file matches that in the sample annotation data.frame (if intensity files are sepa-
rate).

rows.equal A vector indicating whether (1) or not (0) the number of rows read from each file
are the same and equal to the number of rows in the SNP annotation data.frame
(if intensity files are separate).

snp.chk.inten A vector indicating whether (1) or not (0) the raw text file has the expected set of
SNP names (i.e. matching those in the SNP annotation data.frame) (if intensity
files are separate).

inten.chk A vector for each intensity variable indicating whether (1) or not (0) the intensi-
ties in the netCDF match the text file.

Note

These functions were modeled after similar code written by Thomas Lumley.

Author(s)

Cathy Laurie

See Also

ncdf, ncdfCreate, ncdfSubset

102 ncdfAddData

Examples

library(GWASdata)

#############
Illumina - genotype file
#############
first create empty netCDF
data(illumina_snp_annot)
snpAnnot <- illumina_snp_annot
data(illumina_scan_annot)
scanAnnot <- illumina_scan_annot[1:3,] # subset of samples for testing
ncfile <- tempfile()
ncdfCreate(snpAnnot, ncfile, variables="genotype",

n.samples=nrow(scanAnnot))

add data
path <- system.file("extdata", "illumina_raw_data", package="GWASdata")
snpAnnot <- snpAnnot[,c("snpID", "rsID")]
names(snpAnnot) <- c("snpID", "snpName")
scanAnnot <- scanAnnot[,c("scanID", "genoRunID", "file")]
names(scanAnnot) <- c("scanID", "scanName", "file")
col.nums <- as.integer(c(1,2,12,13))
names(col.nums) <- c("snp", "sample", "a1", "a2")
diagfile <- tempfile()
res <- ncdfAddData(path, ncfile, snpAnnot, scanAnnot, sep.type=",",

skip.num=11, col.total=21, col.nums=col.nums,
scan.name.in.file=1, diagnostics.filename=diagfile)

file.remove(diagfile)
file.remove(ncfile)

#############
Affymetrix - genotype file
#############
first create empty netCDF
data(affy_snp_annot)
snpAnnot <- affy_snp_annot
data(affy_scan_annot)
scanAnnot <- affy_scan_annot[1:3,] # subset of samples for testing
ncfile <- tempfile()
ncdfCreate(snpAnnot, ncfile, variables="genotype",

n.samples=nrow(scanAnnot))

add data
path <- system.file("extdata", "affy_raw_data", package="GWASdata")
snpAnnot <- snpAnnot[,c("snpID", "probeID")]
names(snpAnnot) <- c("snpID", "snpName")
scanAnnot <- scanAnnot[,c("scanID", "genoRunID", "chpFile")]
names(scanAnnot) <- c("scanID", "scanName", "file")
col.nums <- as.integer(c(2,3)); names(col.nums) <- c("snp", "geno")
diagfile <- tempfile()
res <- ncdfAddData(path, ncfile, snpAnnot, scanAnnot, sep.type="\t",

ncdfAddData 103

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, diagnostics.filename=diagfile)

file.remove(diagfile)

check
diagfile <- tempfile()
res <- ncdfCheckGenotype(path, ncfile, snpAnnot, scanAnnot, sep.type="\t",

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, check.scan.index=1:3,
n.scans.loaded=3, diagnostics.filename=diagfile)

file.remove(diagfile)
file.remove(ncfile)

#############
Affymetrix - intensity file
#############
first create empty netCDF
snpAnnot <- affy_snp_annot
scanAnnot <- affy_scan_annot[1:3,] # subset of samples for testing
ncfile <- tempfile()
ncdfCreate(snpAnnot, ncfile, variables=c("quality","X","Y"),

n.samples=nrow(scanAnnot))

add sampleID and quality
path <- system.file("extdata", "affy_raw_data", package="GWASdata")
snpAnnot <- snpAnnot[,c("snpID", "probeID")]
names(snpAnnot) <- c("snpID", "snpName")
scanAnnot1 <- scanAnnot[,c("scanID", "genoRunID", "chpFile")]
names(scanAnnot1) <- c("scanID", "scanName", "file")
col.nums <- as.integer(c(2,4)); names(col.nums) <- c("snp", "qs")
diagfile <- tempfile()
res <- ncdfAddData(path, ncfile, snpAnnot, scanAnnot1, sep.type="\t",

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, diagnostics.filename=diagfile)

file.remove(diagfile)

add intensity
scanAnnot2 <- scanAnnot[,c("scanID", "genoRunID", "alleleFile")]
names(scanAnnot2) <- c("scanID", "scanName", "file")
diagfile <- tempfile()
res <- ncdfAddIntensity(path, ncfile, snpAnnot, scanAnnot2,

diagnostics.filename=diagfile)
file.remove(diagfile)

check
intenpath <- system.file("extdata", "affy_raw_data", package="GWASdata")
scanAnnot <- scanAnnot[,c("scanID", "genoRunID", "chpFile", "alleleFile")]
names(scanAnnot) <- c("scanID", "scanName", "file", "inten.file")
diagfile <- tempfile()
res <- ncdfCheckIntensity(path, intenpath, ncfile, snpAnnot, scanAnnot, sep.type="\t",

skip.num=1, col.total=6, col.nums=col.nums,
scan.name.in.file=-1, check.scan.index=1:3,
n.scans.loaded=3, affy.inten=TRUE,

104 ncdfCreate

diagnostics.filename=diagfile)

file.remove(diagfile)
file.remove(ncfile)

ncdfCreate Write genotypic calls and/or associated metrics to a netCDF file.

Description

The function creates a shell netCDF file to which data can subsequently written.

Usage

ncdfCreate(snp.annotation, ncdf.filename, variables = "genotype",
n.samples = 10, precision = "double",
array.name = NULL, genome.build = NULL)

Arguments

snp.annotation Snp annotation dataframe with columns "snpID", "chromosome", and "posi-
tion". snpID should be a unique integer vector, sorted with respect to chromo-
some and position.

ncdf.filename The name of the genotype netCDF file to create

variables A character vector containing the names of the variables to create (must be one
or more of c("genotype", "quality", "X", "Y", "rawX", "rawY", "R", "Theta", "BAlleleFreq", "LogRRatio"))

n.samples The number of samples that will be in the netcdf file.

precision A character value indicating whether floating point numbers should be stored as
"double" or "single" precision.

array.name Name of the array, to be stored as an attribute in the netCDF file.

genome.build Genome build used in determining chromosome and position, to be stored as an
attribute in the netCDF file.

Details

The function creates a shell netCDF file to which data can subsequently written.

Author(s)

Cathy Laurie

See Also

ncdf, ncdfAddData, ncdfSubset

NcdfGenotypeReader 105

Examples

library(GWASdata)
data(affy_snp_annot)
ncfile <- tempfile()
ncdfCreate(affy_snp_annot, ncfile, variables="genotype", n.samples=5)
file.remove(ncfile)

NcdfGenotypeReader Class NcdfGenotypeReader

Description

The NcdfGenotypeReader class is an extension of the NcdfReader class specific to reading genotype
data stored in NetCDF files.

Extends

NcdfReader

Constructor

NcdfGenotypeReader(filename):
filename must be the path to a NetCDF file. The NetCDF file must contain the following
variables:

• ’snp’: a coordinate variable with a unique integer vector of snp ids
• ’chromosome’: integer chromosome codes of dimension ’snp’
• ’position’: integer position values of dimension ’snp’
• ’sampleID’: a unique integer vector of scan ids with dimension ’sample’
• ’genotype’: a matrix of bytes with dimensions (’snp’,’sample’). The byte values must be

the number of A alleles : 2=AA, 1=AB, 0=BB.

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.
The NcdfGenotypeReader constructor creates and returns a NcdfGenotypeReader instance
pointing to this file.

Accessors

In the code snippets below, object is a NcdfGenotypeReader object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is read.

See NcdfReader for additional methods.

nsnp(object): The number of SNPs in the NetCDF file.

106 NcdfGenotypeReader

nscan(object): The number of scans in the NetCDF file.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a logical
or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional index
is a logical or integer vector specifying elements to extract. If char=FALSE (default), returns an
integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

getPosition(object, index): An integer vector of base pair positions. The optional index is
a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

getGenotype(object, snp, scan): Extracts genotype values (number of A alleles). The result
is a vector or matrix, depending on the number of dimensions in the returned values. Missing
values are represented as NA.

getVariable(object, varname, snp, scan): Extracts the contents of the variable varname.
The result is a vector or matrix, depending on the number of dimensions in the returned values.
Missing values are represented as NA. If the variable is not found in the NetCDF file, returns
NULL.

autosomeCode(object): Returns the integer codes for the autosomes.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

NcdfReader, NcdfIntensityReader, GenotypeData, IntensityData

Examples

file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(file)

dimensions
nsnp(nc)
nscan(nc)

get snpID and chromosome
snpID <- getSnpID(nc)
chrom <- getChromosome(nc)

get positions only for chromosome 22

ncdfImputedDosage 107

pos22 <- getPosition(nc, index=(chrom == 22))

get all snps for first scan
geno <- getGenotype(nc, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
geno <- getGenotype(nc, snp=c(100,10), scan=c(1,5))

close(nc)

ncdfImputedDosage Create a NetCDF file with imputed dosages

Description

This function creates a NetCDF file and corresponding annotation for imputed dosages from IM-
PUTE2, BEAGLE, or MaCH.

Usage

ncdfImputedDosage(input.files, ncdf.filename, chromosome,
input.type=c("IMPUTE2", "BEAGLE", "MaCH"),
input.dosage=FALSE, block.size=5000,
snp.annot.filename="dosage.snp.RData",
scan.annot.filename="dosage.scan.RData",
verbose=TRUE)

Arguments

input.files A character vector of input files. The first file should always be genotypes (either
probabilities or dosages). Files for each input type should be as follows:

• IMPUTE2: 1) .gens, 2) .samples
• BEAGLE: 1) .grobs or .dose, 2) .markers
• MaCH: 1) .mlprob or .mldose, 2) .mlinfo, 3) file with columns named

"SNP" and "position" giving base pair position of all SNPs

ncdf.filename Character string with name of output NetCDF file.

chromosome Chromosome corresponding to the SNPs in the genotype file. Character codes
will be mapped to integer values as follows: "X"->23, "XY"->24, "Y"-> 25,
"M","MT"->26.

input.type Format of input files. Accepted file types are "IMPUTE2", "BEAGLE", and
"MaCH".

input.dosage Logical for whether the genotype file (input.files[1]) contains dosages. If
FALSE (default), the genotype file is assumed to contain genotype probabilities.

block.size Number of lines to read at once.
snp.annot.filename

Output .RData file for storing a SnpAnnotationDataFrame.

108 ncdfImputedDosage

scan.annot.filename

Output .RData file for storing a ScanAnnotationDataFrame.

verbose Logical for whether to print progress messages.

Details

Input files can contain either imputed dosages or genotype probabilities, specified by the input.dosage
flag. In either case, the NetCDF file will store dosage of the A allele in the "genotype" variable. All
SNPs are assumed to be on the same chromosome, which is indicated by the chromosome argument.

SNP and scan annotation are created from the input files and stored in RData format in snp.annot.filename
and scan.annot.filename.

Currently supported input file types are IMPUTE2, BEAGLE, and MaCH.

Author(s)

Stephanie Gogarten

References

IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html

BEAGLE: http://faculty.washington.edu/browning/beagle/beagle.html

MaCH: http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html

See Also

ncdfCreate, GenotypeData, assocTestRegression

Examples

ncfile <- tempfile()
snpfile <- tempfile()
scanfile <- tempfile()

IMPUTE2
probfile <- system.file("extdata", "imputation", "IMPUTE2", "example.chr22.study.gens",

package="GWASdata")
sampfile <- system.file("extdata", "imputation", "IMPUTE2", "example.study.samples",

package="GWASdata")
ncdfImputedDosage(input.files=c(probfile, sampfile), ncdf.filename=ncfile, chromosome=22,

input.type="IMPUTE2", input.dosage=FALSE,
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

nc <- NcdfGenotypeReader(ncfile)
scanAnnot <- getobj(scanfile)
snpAnnot <- getobj(snpfile)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)
geno <- getGenotype(genoData)
getVariable(genoData, "alleleA")
getVariable(genoData, "alleleB")

association test with imputed dosages

http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://faculty.washington.edu/browning/beagle/beagle.html
http://www.sph.umich.edu/csg/abecasis/MACH/tour/imputation.html

NcdfIntensityReader 109

scanAnnot$status <- sample(0:1, nrow(scanAnnot), replace=TRUE)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)
assoc <- assocTestRegression(genoData, outcome="status", model.type="logistic",

gene.action.list="additive", dosage=TRUE)
head(assoc)
close(genoData)

BEAGLE - genotype probabilities
probfile <- system.file("extdata", "imputation", "BEAGLE", "example.hapmap.unphased.bgl.gprobs",

package="GWASdata")
markfile <- system.file("extdata", "imputation", "BEAGLE", "hapmap.markers",

package="GWASdata")
ncdfImputedDosage(input.files=c(probfile, markfile), ncdf.filename=ncfile, chromosome=22,

input.type="BEAGLE", input.dosage=FALSE,
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

BEAGLE - dosage
dosefile <- system.file("extdata", "imputation", "BEAGLE", "example.hapmap.unphased.bgl.dose",

package="GWASdata")
ncdfImputedDosage(input.files=c(dosefile, markfile), ncdf.filename=ncfile, chromosome=22,

input.type="BEAGLE", input.dosage=TRUE,
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

MaCH - genotype probabilities
probfile <- system.file("extdata", "imputation", "MaCH", "mach1.out.mlprob",

package="GWASdata")
markfile <- system.file("extdata", "imputation", "MaCH", "mach1.out.mlinfo",

package="GWASdata")
posfile <- system.file("extdata", "imputation", "MaCH", "mach1.snp.position",

package="GWASdata")
ncdfImputedDosage(input.files=c(probfile, markfile, posfile), ncdf.filename=ncfile, chromosome=22,

input.type="MaCH", input.dosage=FALSE,
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

MaCH - dosage
dosefile <- system.file("extdata", "imputation", "MaCH", "mach1.out.mldose",

package="GWASdata")
ncdfImputedDosage(input.files=c(dosefile, markfile, posfile), ncdf.filename=ncfile, chromosome=22,

input.type="MaCH", input.dosage=TRUE,
snp.annot.filename=snpfile, scan.annot.filename=scanfile)

unlink(c(ncfile, snpfile, scanfile))

NcdfIntensityReader Class NcdfIntensityReader

110 NcdfIntensityReader

Description

The NcdfIntensityReader class is an extension of the NcdfReader class specific to reading genotype
data stored in NetCDF files.

Extends

NcdfReader

Constructor

NcdfIntensityReader(filename):
filename must be the path to a NetCDF file. The NetCDF file must contain the following
variables:

• ’snp’: a coordinate variable with a unique integer vector of snp ids
• ’chromosome’: integer chromosome values of dimension ’snp’
• ’position’: integer position values of dimension ’snp’
• ’sampleID’: a unique integer vector of scan ids with dimension ’sample’

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.
The NetCDF file should also contain at least one of the following variables with dimensions
(’snp’,’sample’):

• ’quality’: quality score
• ’X’: X intensity
• ’Y’: Y intensity
• ’BAlleleFreq’: B allele frequency
• ’LogRRatio’: Log R Ratio

The NcdfIntensityReader constructor creates and returns a NcdfIntensityReader instance
pointing to this file.

Accessors

In the code snippets below, object is a NcdfIntensityReader object. snp and scan indicate which
elements to return along the snp and scan dimensions. They must be integer vectors of the form
(start, count), where start is the index of the first data element to read and count is the number of
elements to read. A value of ’-1’ for count indicates that the entire dimension should be read. If snp
and/or is scan omitted, the entire variable is read.

See NcdfReader for additional methods.

nsnp(object): The number of SNPs in the NetCDF file.

nscan(object): The number of scans in the NetCDF file.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a logical
or integer vector specifying elements to extract.

NcdfIntensityReader 111

getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional index
is a logical or integer vector specifying elements to extract. If char=FALSE (default), returns an
integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

getPosition(object, index): An integer vector of base pair positions. The optional index is
a logical or integer vector specifying elements to extract.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

getQuality(object): Extracts quality scores. The result is a vector or matrix, depending on the
number of dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’quality’. hasQuality(object):

getX(object): Extracts X intensity. The result is a vector or matrix, depending on the number of
dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’X’. hasX(object):

getY(object): Extracts Y intensity. The result is a vector or matrix, depending on the number of
dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’Y’. hasY(object):

getBAlleleFreq(object): Extracts B allele frequency. The result is a vector or matrix, depend-
ing on the number of dimensions in the returned values. Missing values are represented as
NA.

Returns TRUE if the NetCDF file contains a variable ’BAlleleFreq’. hasBAlleleFreq(object):

getLogRRatio(object): Extracts Log R Ratio. The result is a vector or matrix, depending on the
number of dimensions in the returned values. Missing values are represented as NA.

Returns TRUE if the NetCDF file contains a variable ’LogRRatio’. hasLogRRatio(object):

getVariable(object, varname, snp, scan): Returns the contents of the variable varname.
The result is a vector or matrix, depending on the number of dimensions in the returned values.
Missing values are represented as NA. If the variable is not found in the NetCDF file, returns
NULL.

autosomeCode(object): Returns the integer codes for the autosomes.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

NcdfReader, NcdfGenotypeReader, GenotypeData, IntensityData

112 NcdfReader

Examples

file <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
nc <- NcdfIntensityReader(file)

dimensions
nsnp(nc)
nscan(nc)

get snpID and chromosome
snpID <- getSnpID(nc)
chrom <- getChromosome(nc)

get positions only for chromosome 22
pos22 <- getPosition(nc, index=(chrom == 22))

get all snps for first scan
x <- getX(nc, snp=c(1,-1), scan=c(1,1))

starting at snp 100, get 10 snps for the first 5 scans
x <- getX(nc, snp=c(100,10), scan=c(1,5))

close(nc)

NcdfReader Class NcdfReader

Description

The NcdfReader class is a wrapper for the ncdf library that provides an interface for reading
NetCDF files.

Constructor

NcdfReader(filename):
filename must be the path to a NetCDF file.
The NcdfReader constructor creates and returns a NcdfReader instance pointing to this file.

Accessors

In the code snippets below, object is a NcdfReader object.

getVariable(object, varname, start, count): Returns the contents of the variable varname.

• start is a vector of integers indicating where to start reading values. The length of this
vector must equal the number of dimensions the variable has. If not specified, reading
starts at the beginning of the file (1,1,...).

NcdfReader 113

• count is a vector of integers indicating the count of values to read along each dimension.
The length of this vector must equal the number of dimensions the variable has. If not
specified and the variable does NOT have an unlimited dimension, the entire variable
is read. As a special case, the value "-1" indicates that all entries along that dimension
should be read.

The result is a vector, matrix, or array, depending on the number of dimensions in the returned
values. Missing values (specified by a "missing_value" attribute, see set.missval.ncdf) are
represented as NA. If the variable is not found in the NetCDF file, returns NULL.

getVariableNames(object): Returns names of variables in the NetCDF file.

getDimension(object, varname): Returns dimension for NetCDF variable varname.

getDimensionNames(object, varname): Returns names of dimensions in the NetCDF file. If
varname is provided, returns dimension names for NetCDF variable varname.

getAttribute(object, attname, varname): Returns the attribute attname associated with the
variable varname. If varname is not specified, attname is assumed to be a global attribute.

hasCoordVariable(object, varname): Returns TRUE if varname is a coordinate variable (a
variable with the same name as a dimension).

hasVariable(object, varname): Returns TRUE if varname is a variable in the NetCDF file
(including coordinate variables).

Standard Generic Methods

In the code snippets below, object is a NcdfReader object.

open(object): Opens a connection to a NetCDF file.

close(object): Closes the connection to a NetCDF file.

show(object): Summarizes the contents of a NetCDF file.

Author(s)

Stephanie Gogarten

See Also

ncdf, NcdfGenotypeReader, NcdfIntensityReader

Examples

file <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfReader(file)

getDimensionNames(nc)
getVariableNames(nc)

hasVariable(nc, "genotype")
geno <- getVariable(nc, "genotype", start=c(1,1), count=c(10,10))

close(nc)

114 ncdfSetMissingGenotypes

ncdfSetMissingGenotypes

Write a new netCDF file, setting certain SNPs to missing

Description

ncdfSetMissingGenotypes copies an existing netCDF genotype file to a new one, setting SNPs in
specified regions to missing.

Usage

ncdfSetMissingGenotypes(parent.ncdf, new.ncdf, regions,
sample.include=NULL, verbose=TRUE)

Arguments

parent.ncdf Name of the parent netCDF file

new.ncdf Name of the new netCDF file

regions Data.frame of chromosome regions with columns "scanID", "chromosome", "left.base", "right.base", "whole.chrom".

sample.include Vector of sampleIDs to include in new.ncdf

verbose Logical value specifying whether to show progress information.

Details

ncdfSetMissingGenotypes removes chromosome regions by setting SNPs that fall within the
anomaly regions to NA (i.e., the missing value in the netCDF file). Optionally, entire samples may be
excluded from the netCDF file as well: if the sample.include argument is given, only the scanIDs
in this vector will be written to the new file, so the sample dimension will be length(sample.include).

For regions with whole.chrom=TRUE, the entire chromosome will be set to NA for that sample. For
other regions, only the region between left.base and right.base will be set to NA.

Author(s)

Stephanie Gogarten

See Also

ncdfSubset, anomSegStats for chromosome anomaly regions

Examples

ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
sample.sel <- getScanID(nc, index=1:10)
close(nc)

regions <- data.frame("scanID"=sample.sel[1:3], "chromosome"=c(21,22,23),

ncdfSubset 115

"left.base"=c(14000000, 30000000, NA), "right.base"=c(28000000, 450000000, NA),
whole.chrom=c(FALSE, FALSE, TRUE))

newnc <- tempfile()
ncdfSetMissingGenotypes(ncfile, newnc, regions, sample.include=sample.sel)
file.remove(newnc)

ncdfSubset Write a subset of data in a netCDF file to a new netCDF file

Description

ncdfSubset takes a subset of data (snps and samples) from a netCDF file and write it to a new
netCDF file. ncdfSubsetCheck checks that a netCDF file is the desired subset of another netCDF
file.

Usage

ncdfSubset(parent.ncdf, sub.ncdf,
sample.include=NULL, snp.include=NULL,
verbose=TRUE)

ncdfSubsetCheck(parent.ncdf, sub.ncdf,
sample.include=NULL, snp.include=NULL,
verbose=TRUE)

Arguments

parent.ncdf Name of the parent netCDF file

sub.ncdf Name of the subset netCDF file

sample.include Vector of sampleIDs to include in sub.ncdf

snp.include Vector of snpIDs to include in sub.ncdf

verbose Logical value specifying whether to show progress information.

Details

ncdfSubset can select a subset of snps for all samples by setting snp.include, a subset of samples
for all snps by setting sample.include, or a subset of snps and samples with both arguments.

Author(s)

Cathy Laurie, Stephanie Gogarten

See Also

ncdf, ncdfCreate, ncdfAddData

116 pcaSnpFilters

Examples

ncfile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
nc <- NcdfGenotypeReader(ncfile)
sample.sel <- getScanID(nc, index=1:10)
snp.sel <- getSnpID(nc, index=1:100)
close(nc)

subnc <- tempfile()
ncdfSubset(ncfile, subnc, sample.include=sample.sel, snp.include=snp.sel)
ncdfSubsetCheck(ncfile, subnc, sample.include=sample.sel, snp.include=snp.sel)
file.remove(subnc)

pcaSnpFilters Regions of SNP-PC correlation to filter for Principal Component
Analysis

Description

Base positions for the LCT (2q21), HLA (including MHC), and inversion (8p23, 17q21.31) regions
from the GRCh36/hg18 and GRCh37/hg19 genome builds.

Usage

pcaSnpFilters.hg18
pcaSnpFilters.hg19

Format

A data.frame with the following columns.

chrom chromsome

start.base starting base position of region

end.base ending base position of region

comment description of the region

Details

These regions result in high SNP-PC correlation if they are included in Principal Component Anal-
ysis (PCA). The pcaSnpFilters datasets can be used to filter SNPs prior to running PCA to avoid
correlations.

Source

UCSC genome browser (http://genome.ucsc.edu).

http://genome.ucsc.edu

pedigreeCheck 117

References

Novembre, John et al. (2008), Genes mirror geography within Europe. Nature, 456: 98-101.
doi:10.1038/nature07331

See Also

snpCorrelationPlot, SNPRelate

Examples

data(pcaSnpFilters.hg18)
data(pcaSnpFilters.hg19)

pedigreeCheck Testing for internal consistency of pedigrees

Description

Find inconsistencies within pedigrees.

Usage

pedigreeCheck(pedigree)

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identifiers of the family, individual, individual’s mother, individual’s fa-
ther and individual’s sex (coded as "M" or "F") . Identifiers can be integer, nu-
meric or character but identifiers for mother and father for founders are assumed
to be 0.

Details

The function pedigreeCheck finds any of a number of possible errors and inconsistencies within
pedigree data. If no problems are encountered, the output is NULL. If problems are encountered,
output contains information for the errors encountered (a sub-list of the output values described
below) and the following message is printed: "All row numbers refer to rows in the full pedigree (not
just within a family). Correct current problems and rerun pedigreeCheck. There may be additional
problems not investigated because of the current problems."

118 pedigreeCheck

Value

The output for pedigreeCheck is NULL or a sub-list of the following:

family.missing.rows

A vector of integers containing the row positions of entries in the full pedigree
where family id’s are missing (NA) or blank

individ.missing_or_0.rows

A vector of integers containing the row positions of entries in the full pedigree
where individual id’s are missing (NA), blank, or 0

father.missing.rows

A vector of integers containing the row positions of entries in the full pedigree
where father id’s are missing (NA) or blank

mother.missing.rows

A vector of integers containing the row positions of entries in the full pedigree
where mother id’s are missing (NA) or blank

sexcode.error.rows

A vector of integers containing the row positions of entries in the full pedigree
where the ’sex’ variable is mis-coded

both.mother.father

A data.frame with the variables ’family’,’parentID’,’mother.row’,and ’father.row’
where ’family’ = family identifier, ’parentID’ = identifier of parent that appears
as both mother and father, ’father.row’ = row positions(s) in full pedigree in
which parent appears as father, and ’mother.row’ = row position(s) in full pedi-
gree in which parent appears as mother (if mutliple rows, row numbers are con-
catenated with separator = ’;’)

parent.no.individ.entry

A data.frame with the variables ’row.num’, ’family’, ’no_individ_entry’, and
’parentID’, where ’row.num’ = row position of entry in the full pedigree where
mother and/or father IDs are not included in the pedigree, ’family’ = family
identifier, ’no_individ_entry’ has values ’father’, ’mother’ or ’both’ indicating
which parent is not in the pedigree, and ’parentID’ = the identifier(s) for indi-
viduals not in the pedigree (if more than one, identifiers are concatenated with
separator =’;’)

unknown.parent.rows

A data.frame with variables ’row.num’ = row position in full pedigree where one
parent is known and one parent is unknown and ’family’ = family identifier.

duplicates A data.frame with variables ’family’ = family identifier, ’individ’ = individual
identifier, ’copies’ = number of copies of individual and ’match’= T/F depending
upon whether all copies have identical pedigree information

one.person.fams

A data.frame identifying singeltons (one person families) with variables ’family’
= family identifier and ’founder’ = T/F depending up whether the singleton is a
founder or not

mismatch.sex A data.frame with variables ’family’ = family identifier and ’individ’ = individ-
ual identifier for individuals that occur as mothers but sex is "M" or occur as
fathers but sex is "F"

pedigreeCheck 119

impossible.related.rows

A list where each entry in the list contains a set of row positions in the full
pedigree which together indicate impossible relationships: where either a child
is mother of self or an individual is both child and mother of the same person.
Names of list entries are associated family identifiers.

subfamilies.ident

A data.frame with variables ’family’ = family identifier, "subfamily" = sub-
family identifier within family, and ’individ’ = individual identifier of members
of identified sub-family.

If no inconsistencies are found, the output is NULL.

Note

All row numbers in output refer to row positions in the full pedigree (not just within family). User
should correct current problems and rerun pedigreeCheck. There may be additional problems not
investigated because of the current problems.

Author(s)

Cecelia Laurie

See Also

pedigreeDeleteDuplicates, pedigreePairwiseRelatedness

Examples

#basic errors
family <- c("a","a","a","b","b","c","")
individ <- c("A","B","C","A","B",0,"")
mother <- c("B","C",0,0,0,NA,0)
father <- c("C","D",0,0,"",0,"D")
sex <- c("F","2","M","F","F","M","F")
samp <- data.frame(family, individ, mother,father,sex,stringsAsFactors=FALSE)
pedigreeCheck(samp)
there are other problems not investigated since
the above are basic problems to be cleared up first

’duplicates’, ’both.mother.father’, ’parent.no.individ.entry’
family <- c("b","b","b","b","c","c",rep("d",5))
individ <- c("A","B","C","A","B","B",1:5)
mother <- c("B",0,0,"D",0,0,0,0,1,2,1)
father <- c("C",0,0,"C",0,0,0,0,2,1,2)
sex <- c("F","F","M","M","F","F","F","M","F","F","M")
samp <- data.frame(family, individ, mother,father,sex,stringsAsFactors=FALSE)
pedigreeCheck(samp)
there are other problems (such as mismatch.sex) but not investigated
directly because already had both.mother.father inconsistency

’parent.no.individ.entry’, ’one.person.fams’, ’unknown.parent.rows’,

120 pedigreeClean

’mismatch.sex’,’impossible.related.rows’
family <- c(1,1,1,2,2,2,3,4,4,4,5,5,5,5,6,6,6)
individ <- c(1,2,3,1,2,3,1,1,3,2,1,2,3,4,1,2,3)
mother <- c(2,0,1,2,1,0,1,2,0,2,2,4,0,0,2,1,0)
father <- c(3,0,3,0,3,0,2,3,1,0,3,1,0,0,3,3,0)
sex <- c("F","F","M","F","F","M","F","F","F","F","M","F","M","F","F","M","F")
samp <- data.frame(family, individ,mother,father,sex,stringsAsFactors=FALSE)
pedigreeCheck(samp)
’mismatch.sex’ and ’impossible.related.rows’ are only investigated
for families where there are no other inconsistencies

’subfamilies.ident’
family <- rep(1,12)
individ <- 1:12
mother <- c(0,0,2,2,0,0,5,0,7,0,0,10)
father <- c(0,0,1,1,0,0,6,0,8,0,0,11)
sex <- c("M",rep("F",4),"M","F","M","M","F","M","M")
samp <- data.frame(family,individ,mother,father,sex,stringsAsFactors=FALSE)
pedigreeCheck(samp)
’subfamilies.ident’ is only investigated for families
where there are no other inconsistencies

pedigreeClean Basic pedigree data checking

Description

This function is deprecated. Use pedigreeCheck instead.

Usage

pedigreeClean(pedigree)

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identifiers of the family, individual, individual’s mother, individual’s fa-
ther and individual’s sex (coded as "M" or "F"). Identifiers can be integer, nu-
meric or character but identifiers for mother and father for founders are assumed
to be 0. Identifier for unknown parent is assumed to be 0.

Details

The function performs a basic check on pedigree data for gross errors, checking for missing (or
blank) id’s, mis-coded sex, individual id’s of 0 and for individuals that appear as both mothers and
fathers.

pedigreeFindDuplicates 121

Value

A list with the following components:

family.missing A vector of integers containing the row positions of entries where family id’s are
missing (NA) or blank

individ.missing

A vector of integers containing the row positions of entries where individual id’s
are missing (NA) or blank

father.missing A vector of integers containing the row positions of entries where father id’s are
missing (NA) or blank

mother.missing A vector of integers containing the row positions of entries where mother id’s
are missing (NA) or blank

sexcode.error A vector of integers containing the row positions of entries with mis-specified
sex

zero.individ A vector of integers containing the row positions with individ (individual id)
equal to 0

both.mother.father

A list where the names of the list are family id’s and the entries of the list are
vectors containing the id’s appearing as both mothers and fathers.

Returns NULL if no errors were found.

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreePairwiseRelatedness

pedigreeFindDuplicates

Remove duplicates from a pedigree

Description

pedigreeDeleteDuplicates removes duplicates from a pedigree.

pedigreeFindDuplicates is deprecated - use pedigreeCheck instead.

Usage

pedigreeFindDuplicates(pedigree, verbose=TRUE)

pedigreeDeleteDuplicates(pedigree, duplicates)

122 pedigreeFindDuplicates

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identifiers of the family, individual, individual’s mother, individual’s fa-
ther and individual’s sex (coded as "M" or "F") .

duplicates dataframe with columns "family" (family id) and "individ" (individual id).

verbose Logical value specifying whether or not to display messages.

Details

The output of pedigreeCheck can be provided to pedigreeDeleteDuplicates in order to generate
a new pedigree with duplicates removed.

Value

The output of pedigreeFindDuplicates is a list containing two dataframes:

dups.mismatch A dataframe containing the family id, individual id and number of copies for
any duplicates with mismatching pedigree data

dups.match A dataframe containing the family id, individual id and number of copies for
any duplicates with matching pedigree data.

The output of pedigreeDeleteDuplicates is a pedigree identical to pedigree, but with duplicates
removed.

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreePairwiseRelatedness

Examples

family <- c(1,1,1,1,2,2,2,2)
individ <- c(1,2,3,3,4,5,6,6)
mother <- c(0,0,1,1,0,0,4,4)
father <- c(0,0,2,2,0,0,5,5)
sex <- c("F","M","F","F","F","F","M","M")
pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
duplicates <- pedigreeCheck(pedigree)$duplicates
pedigree.no.dups <- pedigreeDeleteDuplicates(pedigree, duplicates)

pedigreeMaxUnrelated 123

pedigreeMaxUnrelated Find a maximal set of unrelated individuals in a subset of a pedigree.

Description

Given a full pedigree (with no duplicates and no one-person families), this function finds a maximal
set of unrelated individuals in a specified subset of the pedigree. This is done family by family.
The full pedigree is checked for inconsistencies and an error message is given if inconsistencies are
found (see pedigreeCheck). Maximal sets are not unique; there is an option for the user to identify
preference(s) in the choice of individuals.

Usage

pedigreeMaxUnrelated(pedigree, pref = NULL)

Arguments

pedigree A dataframe containing the full pedigree with columns ’family’, ’individ’, ’mother’,
’father’, ’sex’, and ’selset’. The variables ’family’, ’individ’, ’mother’, ’father’
contain the identifiers for family, individual, individual’s mother and individ-
ual’s father. Identifiers can be integer, numeric or character but identifiers for
mother and father for founders are assumed to be 0. The variable ’sex’ contains
the individual’s sex (coded as "M" or "F"). The varible ’selset’ is coded as 1
= if individual is in the subset of interest and 0 otherwise. The dataframe can
contain an optional variable indicating preferences for choosing individuals. See
the item pref below.

pref pref = the name of the (optional) preference column in samp. Preferences can
be layered. This variable must have integer or numeric values greater than or
equal to 1 where a lower value indicates higher preference. If pref is missing,
the default is to prefer choosing founders.

Details

Commonly used for selecting a maximal unrelated set of genotyped individuals from a pedigree
(’selset’ = 1 if individual is genotyped and 0 otherwise).

An example of the use of a layered preference variable: if one wanted to prefer cases over controls
and then prefer founders, the preference variable would = 1 for cases, 2 = founder, 3 = otherwise.

Value

A dataframe with variables ’family’ = family identifier and ’Individ’ = individual identifier of indi-
viduals in the maximal unrelated set.

124 pedigreeMaxUnrelated

Note

Since pedigreeMaxUnrelated does not accept one-person families included in the input pedigree,
to get a complete maximal set of unrelated individuals from a specified subset of the pedigree,
the user will need to append to the output from the function the one-person family (singleton)
individuals from the specified subset.

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreePairwiseRelatedness

Examples

Example set 1
family <- rep("A",8)
individ <- c("a","b","c","d","e","f","g","h")
mother <- c(0,"a","b",0,"f",0,0,"f")
father <- c(0,"d","e",0,"g",0,0,"g")
sex <- c(rep("F",3),"M","M","F","M","F")
pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)

preference default (i.e. choose founders if possible)
pedigree$selset <- 1 # all selected
pedigreeMaxUnrelated(pedigree) # chose the founders
family Individ
#1 A a
#2 A d
#3 A f
#4 A g

sel <- is.element(pedigree$individ,c("a","f","g"))
pedigree$selset[sel] <- 0 #only one founder ’d’ in desired subset

default preference of founders
pedigreeMaxUnrelated(pedigree)
family Individ
#1 A d #founder
#2 A e

preference choice
pedigree$pref <- 2
sel2 <- is.element(pedigree$individ, c("c","h")) # preferred choices
pedigree$pref[sel2] <- 1
pedigreeMaxUnrelated(pedigree,pref="pref")
family Individ
#1 A h
#2 A b

add preference layer of secondary choice of founders

pedigreePairwiseRelatedness 125

pedigree$pref <- 3
sel2 <- pedigree$mother==0 & pedigree$father==0
sel1 <- is.element(pedigree$individ, c("c","h"))
pedigree$pref[sel2] <- 2
pedigree$pref[sel1] <- 1
pedigreeMaxUnrelated(pedigree,pref="pref")
family Individ
#1 A h #top pref
#2 A d #founder
#Note that the other top preference ’c’ is related to everyone so not chosen

Example Set 2
family <- c(1,1,1,1,2,2,2,2,2)
individ <- c(2,1,3,4,"A5","A6","A7","A8","A9")
mother <- c(3,3,0,0,0,0,"A5","A5",0)
father <- c(4,4,0,0,0,0,"A6","A9",0)
sex <- c("F","M","F","M","F","M","M","M","M")
pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
pedigree$selset <- 1
pedigree$selset[is.element(pedigree$individ, c("A5",4))] <- 0
pedigree$pref <- 2
pedigree$pref[is.element(pedigree$individ,c("A8","A7"))] <- 1
pedigreeMaxUnrelated(pedigree,pref="pref")
family Individ
#1 1 2
#2 2 A6
#3 2 A8
NOTE: in using the pref option there is NO preference for family 1
so will select one unrelated from family 1:
individual 2 is selected since it is first in selset to be listed in pedigree

pedigree$pref <- 2
pedigree$pref[is.element(pedigree$individ,c("A8","A7"))] <- 1
sel <- pedigree$family==1 & pedigree$mother==0 & pedigree$father==0 #founders
pedigree$pref[sel] <- 1
pedigreeMaxUnrelated(pedigree,pref="pref")
family Individ
#1 1 3
#2 2 A6
#3 2 A8

pedigreePairwiseRelatedness

Assign relatedness from pedigree data

Description

This function assigns relationships from pedigree data. Output includes the theoretical pairwise
kinship coefficients.

126 pedigreePairwiseRelatedness

Usage

pedigreePairwiseRelatedness(pedigree)

Arguments

pedigree A dataframe containing the pedigree information for the samples to be examined
with columns labeled "family", "individ", "mother", "father" and "sex" contain-
ing the identifiers for family, individual, individual’s mother, individual’s father
and individual’s sex (coded as "M" or "F") . Identifiers can be integer, numeric or
character but identifiers for mother and father for founders are assumed to be 0.
Error messages are returned for pedigree inconsistencies. See pedigreeCheck

Details

Assigns relationships between individuals in a pedigree, including "U" = unrelated, "PO" = par-
ent/offspring, "FS" = full siblings, "HS" = half siblings, "Av" = avuncular, "GpGc" = grandparent-
grandchild, and "FC" = first cousins, among others).

Relatedness is not calculated for inbred families but kinship coefficients are.

Value

A list with the following components:

inbred.fam A vector of id’s of families with inbreeding (relationships are not assigned).

inbred.KC A dataframe for inbred families with columns "Individ1","Individ2", "kinship"
and "family" containing the id’s of the pair of individuals, kinship coefficient
and family id.

relativeprs A dataframe with columns "Individ1", "Individ2", "relation", "kinship" and "fam-
ily" containing the id’s of the pair of individuals, the relationship between the
individuals if closely related (possible values are "U" = unrelated, "PO" = par-
ent/offspring, "FS" = full siblings, "HS" = half siblings, "Av" = avuncular,
"GpGc" = grandparent-grandchild, and "FC" = first cousins, among others), kin-
ship coefficient and family id.

Author(s)

Cecelia Laurie

See Also

pedigreeCheck, pedigreeMaxUnrelated

Examples

family <- c(1,1,1,1,2,2,2,2,2,2,2)
individ <- c(1,2,3,4,5,6,7,8,9,10,11)
mother <- c(0,0,1,1,0,0,5,5,0,0,10)
father <- c(0,0,2,2,0,0,6,9,0,0,7)
sex <- c("F","M","F","F","F","M","M","M","M","F","F")

plinkToNcdf 127

pedigree <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
pedigreePairwiseRelatedness(pedigree)

inbred family
family <- rep(2,7)
individ <- paste("I",c(1,2,3,4,5,6,7),sep="")
mother <- c(0,0,0,"I1","I1","I3","I5")
father <- c(0,0,0,"I2","I2","I4","I4")
sex <- c("F","M","F","M","F","F","F")
samp2 <- data.frame(family, individ, mother, father, sex, stringsAsFactors=FALSE)
pedigreePairwiseRelatedness(samp2)

plinkToNcdf Create a netCDF file and annotation suitable for use in GWASTools
from PLINK files

Description

plinkToNcdf creates a netCDF file and scan and SNP annotation objects from a set of ped and map
files.

Usage

plinkToNcdf(pedFile, mapFile, nSamples,
ncdfFile, snpAnnotFile, scanAnnotFile,
ncdfXchromCode=23, ncdfXYchromCode=24, ncdfYchromCode=25,
ncdfMchromCode=26, ncdfUchromCode=27,
pedMissingCode=0, verbose=TRUE)

Arguments

pedFile PLINK ped file.

mapFile PLINK map file. Columns should be chromosome, rsID, map distance (not used,
but included in output annotation), and base-pair position. If this is an extended
map file (.bim), columns 5 and 6 will be used to encode allele A and allele B.

nSamples Number of samples in the ped file.

ncdfFile Output netCDF file.

snpAnnotFile Output .RData file for storing a SnpAnnotationDataFrame.

scanAnnotFile Output .RData file for storing a ScanAnnotationDataFrame.

ncdfXchromCode Integer value used to represent the X chromosome in the netCDF file. Values of
"X" or "23" in the map file are converted to this code.

ncdfXYchromCode

Integer value used to represent the pseudoautosomal region of the X and Y
chromsomes in the netCDF file. Values of "XY" or "25" in the map file are
converted to this code.

128 plinkToNcdf

ncdfYchromCode Integer value used to represent the Y chromosome in the netCDF file. Values of
"Y" or "24" in the map file are converted to this code.

ncdfMchromCode Integer value used to represent mitochondrial SNPs in the netCDF file. Values
of "MT" or "26" in the map file are converted to this code.

ncdfUchromCode Integer value used to represent unknown chromosome in the netCDF file. Any
values in the map file not in (1:26, "X", "Y", "XY", "MT") are converted to this
code.

pedMissingCode Missing genotype code in the ped file.

verbose logical for whether to show progress information.

Details

The netCDF file stores genotype data in byte format, so the PLINK genotype is converted to number
of A alleles (0, 1, 2, or missing). The definitions of A and B alleles may be provided in the map file
(column 5=A, column 6=B). Otherwise, A and B definitions will be based on the order alleles are
encountered in the ped file. (Note that converting between ped/map format and bed/bim/fam format
in PLINK will not always preserve the order of chromosomes, so use caution when matching a bim
file to a ped file!)

The first six columns of the ped file will be converted to a ScanAnnotationDataFrame. If the
Individual ID (second column of the ped file) contains unique integers, then this column will be
used for scanID. Otherwise, an integer vector of scanID will be generated as 1:nSamples. This ID
is used to index scans in the netCDF file.

The map file will be converted to a SnpAnnotationDataFrame. This SNP annotation will include
the definitions of A and B alleles in the netCDF file (either as provided or determined from the data
as described above). A unique integer snpID will be generated for each SNP, which is used to index
SNPs in the netCDF file.

Note that the default values of ncdfXYchromCode=24, ncdfYchromCode=25, and ncdfUchromCode=27
correspond to the default chromosome codes for NcdfGenotypeReader and SnpAnnotationDataFrame,
and are different from the values used by PLINK (Y=24, XY=25, U=0). If the netCDF file is created
with different chromosome codes by specifying these arguments, one must also specify the chromo-
some codes when opening the file, e.g. NcdfGenotypeReader(ncdfFile, XYchromCode=25, YchromCode=24).

nSamples is used to allocate space in the netCDF file. A warning will be issued if the number of
lines read in the ped file is different from this number.

Author(s)

Stephanie Gogarten

References

Please see http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped for more infor-
mation on PLINK files.

See Also

plinkWrite, plinkCheck

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped

plinkUtils 129

Examples

library(GWASdata)
pedfile <- system.file("extdata", "illumina_subj.ped", package="GWASdata")
mapfile <- system.file("extdata", "illumina_subj.map", package="GWASdata")
ncfile <- tempfile()
scanfile <- tempfile()
snpfile <- tempfile()
plinkToNcdf(pedfile, mapfile, nSamples=43, ncdfFile=ncfile,

snpAnnotFile=snpfile, scanAnnotFile=scanfile)

nc <- NcdfGenotypeReader(ncfile)
scanAnnot <- getobj(scanfile)
snpAnnot <- getobj(snpfile)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)
prefix <- sub(".ped", "", pedfile, fixed=TRUE)
log <- tempfile()
stopifnot(plinkCheck(genoData, prefix, log))
close(genoData)

provide allele coding with extended map file
.bim might have SNPs in different order than .map
bimfile <- system.file("extdata", "illumina_subj.bim", package="GWASdata")
bim <- read.table(bimfile, as.is=TRUE, header=FALSE)
map <- read.table(mapfile, as.is=TRUE, header=FALSE)
snp.match <- match(map[,2], bim[,2])
map <- cbind(map, bim[snp.match, 5:6])
mapfile.ext <- tempfile()
write.table(map, file=mapfile.ext, quote=FALSE, row.names=FALSE, col.names=FALSE)
use chromosome codes that match PLINK
plinkToNcdf(pedfile, mapfile, nSamples=43, ncdfFile=ncfile,

snpAnnotFile=snpfile, scanAnnotFile=scanfile,
ncdfYchromCode=24, ncdfXYchromCode=25)

must specify different chromosome codes in NcdfGenotypeReader
appending "L" ensures the codes are integers, as required
nc <- NcdfGenotypeReader(ncfile, YchromCode=24L, XYchromCode=25L)
scanAnnot <- getobj(scanfile)
snpAnnot <- getobj(snpfile)
genoData <- GenotypeData(nc, scanAnnot=scanAnnot, snpAnnot=snpAnnot)
stopifnot(plinkCheck(genoData, prefix, log))
close(genoData)

file.remove(ncfile, scanfile, snpfile, log, mapfile.ext)

plinkUtils Utilities to create and check PLINK files

Description

plinkWrite creates ped and map format files (used by PLINK) from a GenotypeData object.
plinkCheck checks whether a set of ped and map files has identical data to a GenotypeData object.

130 plinkUtils

Usage

plinkWrite(genoData, pedFile="testPlink", family.col="family",
individual.col="scanID", father.col="father", mother.col="mother",
phenotype.col=NULL,
rs.col="rsID", mapdist.col=NULL, scan.exclude=NULL,
scan.chromosome.filter=NULL, blockSize=100, verbose=TRUE)

plinkCheck(genoData, pedFile, logFile="plinkCheck.txt", family.col="family",
individual.col="scanID", father.col="father", mother.col="mother",
phenotype.col=NULL,
rs.col="rsID", map.alt=NULL, check.parents=TRUE, check.sex=TRUE,
scan.exclude=NULL, scan.chromosome.filter=NULL, verbose=TRUE)

Arguments

genoData A GenotypeData object with scan and SNP annotation.

pedFile prefix for PLINK files (pedFile.ped, pedFile.map)

logFile Name of the output file to log the results of plinkCheck

family.col name of the column in the scan annotation that contains family ID of the sample

individual.col name of the column in the scan annotation that contains individual ID of the
sample

father.col name of the column in the scan annotation that contains father ID of the sample

mother.col name of the column in the scan annotation that contains mother ID of the sample

phenotype.col name of the column in the scan annotation that contains phenotype variable (e.g.
case control statue) of the sample

rs.col name of the column in the SNP annotation that contains rs ID (or some other
ID) for the SNP

mapdist.col name of the column in the SNP annotation that contains genetic distance in
Morgans for the SNP

map.alt data frame with alternate SNP mapping for genoData to PLINK. If not NULL, this
annotation will be used to compare SNP information to the PLINK file, rather
than the default conversion from the SNP annotation embedded in genoData.
Columns should include "snpID", "rsID", "chromosome", "position".

check.parents logical for whether to check the father and mother columns

check.sex logical for whether to check the sex column

scan.exclude vector of scanIDs to exclude from PLINK file
scan.chromosome.filter

a logical matrix that can be used to zero out (set to missing) some chromosomes,
some scans, or some specific scan-chromosome pairs. Entries should be TRUE
if that scan-chromosome pair should have data in the PLINK file, FALSE if not.
The number of rows must be equal to the number of scans in genoData. The
column labels must be in the set ("1":"22", "X", "XY", "Y", "M", "U").

blockSize Number of samples to read from genoData at a time

verbose logical for whether to show progress information.

plinkUtils 131

Details

If "alleleA" and "alleleB" columns are not found in the SNP annotation of genoData, genotypes are
written as "A A", "A B", "B B" (or "0 0" for missing data).

If phenotype.col=NULL, plinkWrite will use "-9" for writing phenotype data and plinkCheck
will omit checking this column.

If mapdist.col=NULL, plinkWrite will use "0" for writing this column in the map file and plinkCheck
will omit checking this column.

plinkCheck first reads the map file and checks for SNP mismatches (chromosome, rsID, and/or
position). Any mismatches are written to logFile. plinkCheck then reads the ped file line by
line, recording all mismatches in logFile. SNPs and sample order is not required to be the same
as in genoData. In the case of genotype mismatches, for each sample the log file output gives the
position of the first mismatched SNP in the PLINK file, as well as the genotypes of the first six
mismatched SNPs (which may not be consecutive).

These utilities convert between chromosome coding in GenotypeData, which by default is 24=XY,
25=Y, and PLINK chromosome coding, which is 24=Y, 25=X.

Larger blockSize will improve speed but will require more RAM.

Value

plinkCheck returns TRUE if the PLINK files contain identical data to genoData, and FALSE if a
mismatch is encountered.

Author(s)

Stephanie Gogarten, Tushar Bhangale

References

Please see http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped for more infor-
mation on the ped and map files.

See Also

plinkToNcdf

Examples

library(GWASdata)
ncfile <- system.file("extdata", "illumina_geno.nc", package="GWASdata")
data(illuminaSnpADF, illuminaScanADF)
genoData <- GenotypeData(NcdfGenotypeReader(ncfile),

scanAnnot=illuminaScanADF, snpAnnot=illuminaSnpADF)

pedfile <- tempfile()
plinkWrite(genoData, pedfile)
logfile <- tempfile()
plinkCheck(genoData, pedfile, logfile)

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#ped

132 pseudoautoIntensityPlot

exclude samples
plinkWrite(genoData, pedfile, scan.exclude=c(281, 283),

blockSize=10)
plinkCheck(genoData, pedfile, logfile)
readLines(logfile)
#samples not found in Ped:
#281
#283

close(genoData)
unlink(c(logfile, paste(pedfile, "*", sep=".")))

pseudoautoIntensityPlot

Plot B Allele Frequency and Log R Ratio for the X and Y chromo-
somes, overlaying XY SNPs

Description

This function plots X, Y and pseudoautosomal SNPs on BAF/LRR plots.

Usage

pseudoautoIntensityPlot(intenData, scan.ids, main=NULL,
plotY=FALSE, hg.build=c("hg18", "hg19"),
snp.exclude = NULL, cex=0.5, ...)

Arguments

scan.ids A vector containing the sample indices of the plots.

intenData IntensityData object, must contain ’BAlleleFreq’ and ’LogRRatio’

main A character vector containing the titles to be used for each plot. If NULL then the
title will be the sample number and the chromosome.

plotY If plotY is TRUE, the Y chromosome will be plotted in addition to X.

hg.build Human genome bulid number

snp.exclude An integer vector giving the IDs of SNPs to exclude from the plot.

cex cex value for points on the plots

... Other parameters to be passed directly to plot.

Details

The pseudoautosomal regions are highlighted on the plots (PAR1 and PAR2 in gray, XTR in yellow),
and the X, Y, and XY SNPs are plotted in different colors. The base positions for these regions
depend on genome build (hg.build). Currently hg18 and hg19 are supported.

By default the output is a 2-panel plot with LRR and BAF for the X chromosome. if plotY is TRUE,
the output is a 4-panel plot with the Y chromosome plotted as well.

pseudoautosomal 133

Author(s)

Caitlin McHugh

References

Ross, Mark. T. et al. (2005), The DNA sequence of the human X chromosome. Nature, 434:
325-337. doi:10.1038/nature03440

Mumm, S., Molini, B., Terrell, J., Srivastava, A., and Schlessinger, D. (1997), Evolutionary features
of the 4-Mb Xq21.3 XY homology region revealed by a map at 60-kb resolution. Genome Res. 7:
307-314.

See Also

pseudoautosomal, IntensityData, GenotypeData, BAFfromGenotypes

Examples

library(GWASdata)
data(illuminaScanADF)
blfile <- system.file("extdata", "illumina_bl.nc", package="GWASdata")
blnc <- NcdfIntensityReader(blfile)
intenData <- IntensityData(blnc, scanAnnot=illuminaScanADF)

scanID <- getScanID(illuminaScanADF, index=1)
pseudoautoIntensityPlot(intenData=intenData, scan.ids=scanID)
close(intenData)

pseudoautosomal Pseudoautosomal region base positions

Description

Pseudoautosomal region (XTR, PAR1, PAR2) base positions for the X and Y chromsosomes from
the GRCh36/hg18 and GRCh37/hg19 genome builds.

Usage

pseudoautosomal.hg18
pseudoautosomal.hg19

Format

A data.frame with the following columns.

chrom chromosome (X or Y)2

region region (XTR, PAR1, or PAR2)

start.base starting base position of region

end.base ending base position of region

134 qqPlot

Details

The XTR region on X is defined as DXS1217 to DXS3. The XTR region on Y is defined as SY20
to DXYS1.

Source

UCSC genome browser (http://genome.ucsc.edu).

References

Ross, Mark. T. et al. (2005), The DNA sequence of the human X chromosome. Nature, 434:
325-337. doi:10.1038/nature03440

Mumm, S., Molini, B., Terrell, J., Srivastava, A., and Schlessinger, D. (1997), Evolutionary features
of the 4-Mb Xq21.3 XY homology region revealed by a map at 60-kb resolution. Genome Res. 7:
307-314.

Examples

data(pseudoautosomal.hg18)
data(pseudoautosomal.hg19)

qqPlot QQ plot for genome wide assocation studies

Description

Generates a Quantile-Quantile plot for -log10 p-values from genome wide association tests.

Usage

qqPlot(pval, truncate = FALSE, ...)

Arguments

pval Vector of p-values

truncate A logical value indicating whether the y-axis should be truncted to the same
range as the x-axis.

... Other parameters to be passed directly to plot.

Details

The function generates a Quantile-Quantile plot of p-values on a -log10 scale, with the option of
truncating the y-axis to the range of the x-axis (0, -log10(1/length(pval)). If the y-axis is
truncated, then points off the top of the plot are denoted by triangles at the upper edge. The 95%
confidence interval is shaded in gray.

http://genome.ucsc.edu

qualityScoreByScan 135

Author(s)

Cathy Laurie, Matthew P. Conomos

Examples

pvals <- seq(0, 1, 0.001)
qqPlot(pvals)

qualityScoreByScan Mean and median quality score for scans

Description

This function calculates the mean and median quality score, over all SNPs with a non-missing
genotype call, for each scan.

Usage

qualityScoreByScan(intenData, genoData,
snp.exclude = NULL,
verbose = TRUE)

Arguments

intenData IntensityData object

genoData GenotypeData object

snp.exclude An integer vector containing the id’s of SNPs to be excluded.

verbose Logical value specifying whether to show progress information.

Details

intenData and genoData must have matching snpID and scanID. Y chromosome SNPs are ex-
cluded for females. A "sex" variable must be present in the scan annotation slot of intenData or
genoData.

Value

The function returns a matrix with the following columns:

mean.quality A vector of mean quality scores for each scan

median.quality A vector of median quality scores for each scan.

Author(s)

Cathy Laurie

136 qualityScoreBySnp

See Also

IntensityData, GenotypeData, qualityScoreBySnp

Examples

library(GWASdata)
qualfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
qualnc <- NcdfIntensityReader(qualfile)
need scan annotation with sex
data(affyScanADF)
qualData <- IntensityData(qualnc, scanAnnot=affyScanADF)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc, scanAnnot=affyScanADF)

quality <- qualityScoreByScan(qualData, genoData)
close(qualData)
close(genoData)

qualityScoreBySnp Mean and median quality score for SNPs

Description

This function calculates the mean and median quality score, over all scans with a non-missing
genotype call, for each SNP.

Usage

qualityScoreBySnp(intenData, genoData, scan.exclude = NULL,
block.size = 5000, verbose = TRUE)

Arguments

intenData IntensityData object

genoData GenotypeData object

scan.exclude An integer vector containing the id’s of scans to be excluded.

block.size Number of SNPs to be read from intenData and genoData at once.

verbose Logical value specifying whether to show progress information.

Details

intenData and genoData must have matching snpID and scanID.

readWriteFirst 137

Value

The function returns a matrix with the following columns:

mean.quality A vector of mean quality scores for each snp.
median.quality

A vector of median quality scores for each snp.

Author(s)

Cathy Laurie

See Also

IntensityData, GenotypeData, qualityScoreByScan

Examples

qualfile <- system.file("extdata", "affy_qxy.nc", package="GWASdata")
qualnc <- NcdfIntensityReader(qualfile)
qualData <- IntensityData(qualnc)

genofile <- system.file("extdata", "affy_geno.nc", package="GWASdata")
genonc <- NcdfGenotypeReader(genofile)
genoData <- GenotypeData(genonc)

quality <- qualityScoreBySnp(qualData, genoData)
close(qualData)
close(genoData)

readWriteFirst Read and write the first n lines of a file

Description

Read first n lines of filein and write them to fileout, where filein and fileout are file names.

Usage

readWriteFirst(filein, fileout, n)

Arguments

filein input file

fileout output file

n number of lines to write

138 relationsMeanVar

Author(s)

Cathy Laurie

Examples

path <- system.file("extdata", "affy_raw_data", package="GWASdata")
file <- paste(path, list.files(path)[1], sep="/")
outf <- tempfile()
readWriteFirst(file, outf, 20)
file.remove(outf)

relationsMeanVar Mean and Variance information for full-sibs, half-sibs, first-cousins

Description

Computes theoretical mean and covariance matrix for k0 vs. k1 ibd coefficients for full-sib rela-
tionship along with inverse and eigenvalues/vectors of the covariance matrix.

Computes theoretical means and variances for half-sib relationship and for first-cousin relationship.

Usage

relationsMeanVar

Format

A list with the following entries:

FullSibs list with following entries:

• mean: mean of (k0,k1) for full-sibs
• cov: covariance matrix for full-sibs
• invCov: inverse of the covariance matrix
• eigvals: eigenvalues of the inverse covariance matrix
• eigvectors: eigenvectors of the inverse covariance matrix

HalfSibs list with following entries:

• mean: mean of (k0,k1) for half-sibs
• var: variance for half-sibs

FirstCousins list with following entries:

• mean: mean of (k0,k1) for first-cousins
• var: variance for first-cousin

Source

computed by Cecelia Laurie using the referenced papers

saveas 139

References

Hill, W.G. and B.S. Weir (2011) Variation in actual relationship as a consequence of Mendelian
sampling and linkage,Genet. Res., Camb., 93, 47–64.

Kong, X., et al (2004) A combined physical-linkage map of the human genome, American Journal
of Human Genetics, 75, 1143–1148.

Examples

data(relationsMeanVar)
FS<-relationsMeanVar$FullSibs
FScov<-FS$cov #gives covariance matrix for full-sibs
HS<-relationsMeanVar$HalfSibs
HSvar<-HS$var #gives variance for half-sibs

saveas Save an R object with a new name

Description

Saves an R object as name in an Rdata file called path/name.RData.

Usage

saveas(obj, name, path=".")

Arguments

obj R object to save

name character string with the new name for the R object

path path for the Rdata file (saved file will be path/name.RData)

Details

The suffix ".RData" will be appended to the new object name to create the file name, and the file
will be written to the path directory.

Author(s)

Stephanie Gogarten

See Also

getobj

140 ScanAnnotationDataFrame

Examples

x <- 1:10
path <- tempdir()
saveas(x, "myx", path)
newfile <- paste(path, "/myx", ".RData", sep="")
load(newfile) # myx now loaded
unlink(newfile)

ScanAnnotationDataFrame

Class ScanAnotationDataFrame

Description

The ScanAnnotationDataFrame class stores annotation data associated with subjects in a genotyp-
ing study, where there may be multiple scans per subject, as well as metadata describing each
column. It extends the AnnotatedDataFrame class.

Extends

AnnotatedDataFrame

Constructor

ScanAnnotationDataFrame(data, metadata):
data must be a data.frame containing the scan annotation. It must contain at least the follow-
ing column:

• "scanID": integer vector containing unique scan ids.

If a column representing sex is present, it must have the following format:

• "sex": character vector with values ’M’ or ’F’.

metadata is an optional data.frame containing a description for each column in data. It
should contain a column "labelDescription", with row.names(metadata) == names(data).
The ScanAnnotationDataFrame constructor creates and returns a ScanAnnotationDataFrame
instance.

Accessors

In the code snippets below, object is a ScanAnnotationDataFrame object.

getScanID(object, index): A unique integer vector of scan IDs. The optional index is a
logical or integer vector specifying elements to extract.

getSex(object, index): A character vector of sex, with values ’M’ or ’F’. The optional index
is a logical or integer vector specifying elements to extract.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

ScanAnnotationDataFrame 141

getVariable(object, varname, index): A vector of the column varname. The optional index
is a logical or integer vector specifying elements to extract. If varname is itself a vector, returns
a data.frame. Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in object.

getAnnotation(object): Returns all annotation variables as a data frame.

getMetadata(object): Returns metadata describing the annotation variables as a data frame.
Inherited methods from AnnotatedDataFrame:

varLabels(object): Returns a character vector with the names of all columns in object.

pData(object): Returns all annotation variables as a data frame, or sets the annotation variables
with pData(object) <- df.

varMetadata(object): Returns metadata describing the annotation variables as a data frame, or
sets the metadata with varMetadata(object) <- df.

The operators $ and [work just as they do in standard data frames, for both retrieval and assign-
ment.

Author(s)

Stephanie Gogarten

See Also

AnnotatedDataFrame, SnpAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
data(affy_scan_annot)
scanAnnot <- ScanAnnotationDataFrame(affy_scan_annot)

scanID <- getScanID(scanAnnot)
sex <- getSex(scanAnnot)
if (hasVariable(scanAnnot, "plate")) plate <- getVariable(scanAnnot, "plate")
subjectID <- getVariable(scanAnnot, "subjectID", index=(sex == "M"))

list columns
varLabels(scanAnnot)

add metadata
meta <- varMetadata(scanAnnot)
meta["scanID", "labelDescription"] <- "unique integer ID"
varMetadata(scanAnnot) <- meta

display data
head(pData(scanAnnot))

standard operators
scanID <- scanAnnot$scanID

142 ScanAnnotationSQLite

sex <- scanAnnot[["sex"]]
subset <- scanAnnot[1:10, 1:5]
scanAnnot$newVar <- rep(1, nrow(scanAnnot))

replace data
df <- pData(scanAnnot)
pData(scanAnnot) <- df

ScanAnnotationSQLite Class ScanAnotationSQLite

Description

The ScanAnnotationSQLite class stores annotation data associated with scans, as well as metadata
describing each column, in an SQLite database.

Constructor

ScanAnnotationSQLite(dbpath):
dbpath is the path to a SQLite database with tables "Annotation" and "Metadata." "Annota-
tion" must contain at least the following column:

• "scanID": integer vector containing unique scan ids.

If a column representing sex is present, it must have the following format:

• "sex": character vector with values ’M’ or ’F’.

"Metadata" must contain at least the following columns:

• "varname": name of variable in annotation
• "description": description of column in annotation

If the database does not yet exist, a database is created with tables "Annotation" and "Meta-
data."
The ScanAnnotationSQLite constructor creates and returns a ScanAnnotationSQLite in-
stance.

Accessors

In the code snippets below, object is a ScanAnnotationSQLite object.

open(object): Opens a connection to the database.

close(object): Closes the database connection.

nscan(object): The number of scans in the database.

getScanID(object, index, condition): A unique integer vector of scan IDs. The optional
index is a logical or integer vector specifying elements to extract. The optional condition
is a character string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE
sex=’M’").

ScanAnnotationSQLite 143

getSex(object, index, condition): A character vector of sex, with values ’M’ or ’F’. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data.

hasSex(object): Returns TRUE if the column ’sex’ is present in object.

getVariable(object, varname, index, condition): A vector of the column varname. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE sex=’M’"). Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in object.

getAnnotation(object): Returns all annotation variables as a data frame.

getMetadata(object): Returns metadata describing the annotation variables as a data frame.

getQuery(object, statement): Returns result of the SQL query statement.

writeAnnotation(object, value, append=FALSE,overwrite=TRUE): Writes value to the
scan annotation table. value must be a data.frame containing a column "scanID".

writeMetadata(object, value, append=FALSE,overwrite=TRUE): Writes value to the meta-
data table. value should be a data.frame containing columns "varname" and "description".

Author(s)

Stephanie Gogarten

See Also

SnpAnnotationSQLite, ScanAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
dbpath <- tempfile()
scanAnnot <- ScanAnnotationSQLite(dbpath)

data(affy_scan_annot)
writeAnnotation(scanAnnot, affy_scan_annot)

list columns
vars <- getVariableNames(scanAnnot)

add metadata
metadf <- data.frame(varname=vars, description=rep(NA, length(vars)),

row.names=vars, stringsAsFactors=FALSE)
metadf["scanID", "description"] <- "integer id"
writeMetadata(scanAnnot, metadf)

scanID <- getScanID(scanAnnot)
sex <- getSex(scanAnnot)
if (hasVariable(scanAnnot, "plate")) plate <- getVariable(scanAnnot, "plate")
subjectID <- getVariable(scanAnnot, "subjectID", condition="WHERE sex=’M’")

144 simulateGenotypeMatrix

display data
head(getAnnotation(scanAnnot))
getMetadata(scanAnnot)

close(scanAnnot)
file.remove(dbpath)

simulateGenotypeMatrix

Simulate Genotype Matrix & Load into NetCDF File

Description

This function creates a netCDF file with dimensions ’snp’ and ’sample’ and variables ’sampleID’,
’genotype’, ’position’ and ’chromosome’. These variables hold simulated data as described below.
Mainly, this function is intended to be used in examples involving genotype matrices.

Usage

simulateGenotypeMatrix(n.snps=10, n.chromosomes=10,
n.samples=1000, ncdf.filename,
silent=TRUE)

Arguments

n.snps An integer corresponding to the number of SNPs per chromosome, the default
value is 10. For this function, the number of SNPs is assumed to be the same for
every chromosome.

n.chromosomes An integer value describing the total number of chromosomes with default value
10.

n.samples An integer representing the number of samples for our data. The default value
is 1000 samples.

ncdf.filename A string that will be used as the name of the netCDF file. This is to be used later
when opening and retrieving data generated from this function.

silent Logical value. If FALSE, the function returns a table of genotype counts gener-
ated. The default is TRUE; no data will be returned in this case.

Details

The resulting netCDF file will have the following characteristics:

Dimensions:

’snp’: n.snps*n.chromosomes length

’sample’: n.samples length

Variables:

simulateIntensityMatrix 145

’sampleID’: sample dimension, values 1-n.samples

’position’: snp dimension, values [1,2,...,n.chromosomes] n.snps times

’chromosome’: snp dimension, values [1,1,...]n.snps times, [2,2,...]n.snps times, ..., [n.chromosomes,n.chromosomes,...]n.snps
times

’genotype’: 2-dimensional snp x sample, values 0, 1, 2 chosen from allele frequencies that were
generated from a uniform distribution on (0,1). The missing rate is 0.05 (constant across all SNPs)
and is denoted by -1.

Value

This function returns a table of genotype calls if the silent variable is set to FALSE, where 2 indicates
an AA genotype, 1 is AB, 0 is BB and -1 corresponds to a missing genotype call.

A netCDF file is created from this function and written to disk. This file (and data) can be accessed
later by using the command open.ncdf(ncdf.filename).

Author(s)

Caitlin McHugh

See Also

ncdf, missingGenotypeBySnpSex, missingGenotypeByScanChrom, simulateIntensityMatrix

Examples

filenm <- tempfile()

simulateGenotypeMatrix(ncdf.filename=filenm)

file <- NcdfGenotypeReader(filenm)
file #notice the dimensions and variables listed

genot <- getGenotype(file)
table(genot) #can see the number of missing calls

chrom <- getChromosome(file)
unique(chrom) #there are indeed 10 chromosomes, as specified in the function call

close(file)
unlink(filenm)

simulateIntensityMatrix

Simulate Intensity Matrix & Load into NetCDF File

146 simulateIntensityMatrix

Description

This function creates a netCDF file with dimensions ’snp’ and ’sample’ and variables ’sampleID’,
’position’, ’chromosome’, ’quality’, ’X’, and ’Y’. These variables hold simulated data as explained
below. Mainly, this function is intended to be used in examples involving matrices holding quanti-
tative data.

Usage

simulateIntensityMatrix(n.snps=10, n.chromosomes=10,
n.samples=1000, ncdf.filename,
silent=TRUE)

Arguments

n.snps An integer corresponding to the number of SNPs per chromosome, the default
value is 10. For this function, the number of SNPs is assumed to be the same for
every chromosome.

n.chromosomes An integer value describing the total number of chromosomes with default value
10.

n.samples An integer representing the number of samples for our data. The default value
is 1000 samples.

ncdf.filename A string that will be used as the name of the netCDF file. This is to be used later
when opening and retrieving data generated from this function.

silent Logical value. If FALSE, the function returns a list of heterozygosity and missing
values. The default is TRUE; no data will be returned in this case.

Details

The resulting netCDF file will have the following characteristics:

Dimensions:

’snp’: n.snps*n.chromosomes length

’sample’: n.samples length

Variables:

’sampleID’: sample dimension, values 1-n.samples

’position’: snp dimension, values [1,2,...,n.chromosomes] n.snps times

’chromosome’: snp dimension, values[1,1,...]n.snps times, [2,2,...]n.snps times, ... , [n.chromosomes,n.chromosomes,...]n.snps
times

’quality’: 2-dimensional snp x sample, values between 0 and 1 chosen randomly from a uniform
distribution. There is one quality value per snp, so this value is constant across all samples.

’X’: 2-dimensional snp x sample, value of X intensity taken from a normal distribution. The mean
of the distribution for each SNP is based upon the sample genotype. Mean is 0,2 if sample is
homozygous, 1 if heterozygous.

’Y’: 2-dimensional snp x sample, value of Y intensity also chosen from a normal distribution, where
the mean is chosen according to the mean of X so that sum of means = 2.

SnpAnnotationDataFrame 147

Value

This function returns a list if the silent variable is set to FALSE, which includes:

het Heterozygosity table

nmiss Number of missing values

A netCDF file is created from this function and written to disk. This file (and data) can be accessed
later by using the command ’open.ncdf(ncdf.filename)’.

Author(s)

Caitlin McHugh

See Also

ncdf, meanIntensityByScanChrom, simulateGenotypeMatrix

Examples

filenm <- tempfile()

simulateIntensityMatrix(ncdf.filename=filenm, silent=FALSE)

file <- NcdfIntensityReader(filenm)
file #notice the dimensions and variables listed

xint <- getX(file)
yint <- getY(file)
print("Number missing is: "); sum(is.na(xint))

chrom <- getChromosome(file)
unique(chrom) #there are indeed 10 chromosomes, as specified in the function call

close(file)
unlink(filenm)

SnpAnnotationDataFrame

Class SnpAnotationDataFrame

Description

The SnpAnnotationDataFrame class stores annotation data associated with SNPs, as well as meta-
data describing each column. It extends the AnnotatedDataFrame class.

Extends

AnnotatedDataFrame

148 SnpAnnotationDataFrame

Constructor

SnpAnnotationDataFrame(data, metadata):
data must be a data.frame containing the SNP annotation. It must contain at least the follow-
ing columns:

• "snpID": integer vector containing unique SNP ids.
• "chromosome": integer vector containing chromosome codes.
• "position": integer vector containing position (in base pairs) on the chromosome.

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.
metadata is an optional data.frame containing a description for each column in data. It
should contain a column "labelDescription", with row.names(metadata) == names(data).
The SnpAnnotationDataFrame constructor creates and returns a SnpAnnotationDataFrame
instance.

Accessors

In the code snippets below, object is a SnpAnnotationDataFrame object.

getSnpID(object, index): A unique integer vector of snp IDs. The optional index is a logical
or integer vector specifying elements to extract.

getChromosome(object, index, char=FALSE): A vector of chromosomes. The optional index
is a logical or integer vector specifying elements to extract. If char=FALSE (default), returns an
integer vector. If char=TRUE, returns a character vector with elements in (1:22,X,XY,Y,M,U).
"U" stands for "Unknown" and is the value given to any chromosome code not falling in the
other categories.

getPosition(object, index): An integer vector of base pair positions. The optional index is
a logical or integer vector specifying elements to extract.

getAlleleA(object, index): A character vector of A alleles. The optional index is a logical
or integer vector specifying elements to extract.

getAlleleB(object, index): A character vector of B alleles. The optional index is a logical
or integer vector specifying elements to extract.

getVariable(object, varname, index): A vector of the column varname. The optional index
is a logical or integer vector specifying elements to extract. If varname is itself a vector, returns
a data.frame. Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in object.

getAnnotation(object): Returns all annotation variables as a data frame.

getMetadata(object): Returns metadata describing the annotation variables as a data frame.
Inherited methods from AnnotatedDataFrame:

varLabels(object): Returns a character vector with the names of all columns in object.

pData(object): Returns all annotation variables as a data frame, or sets the annotation variables
with pData(object) <- df.

SnpAnnotationDataFrame 149

varMetadata(object): Returns metadata describing the annotation variables as a data frame, or
sets the metadata with varMetadata(object) <- df.

The operators [, $, and [[work just as they do in standard data frames, for both retrieval and
assignment.

autosomeCode(object): Returns the integer codes for the autosomes.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

See Also

AnnotatedDataFrame, ScanAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
data(affy_snp_annot)
snpAnnot <- SnpAnnotationDataFrame(affy_snp_annot)

list columns
varLabels(snpAnnot)

add metadata
meta <- varMetadata(snpAnnot)
meta["snpID", "labelDescription"] <- "unique integer ID"
varMetadata(snpAnnot) <- meta

get snpID and chromosome
snpID <- getSnpID(snpAnnot)
chrom <- getChromosome(snpAnnot)

get positions only for chromosome 22
pos22 <- getPosition(snpAnnot, index=(chrom == 22))

get rsID
if (hasVariable(snpAnnot, "rsID")) rsID <- getVariable(snpAnnot, "rsID")

display data
head(pData(snpAnnot))

standard operators
snpID <- snpAnnot$snpID
chrom <- snpAnnot[["chromosome"]]
subset <- snpAnnot[1:10, 1:5]
snpAnnot$newVar <- rep(1, nrow(snpAnnot))

150 SnpAnnotationSQLite

replace data
df <- pData(snpAnnot)
pData(snpAnnot) <- df

PLINK chromosome coding
snpID <- 1:10
chrom <- c(rep(1L,5), 23:27)
pos <- 101:110
df <- data.frame(snpID=snpID, chromosome=chrom, position=pos)
snpAnnot <- SnpAnnotationDataFrame(df, YchromCode=24L, XYchromCode=25L)
getChromosome(snpAnnot, char=TRUE)

SnpAnnotationSQLite Class SnpAnotationSQLite

Description

The SnpAnnotationSQLite class stores annotation data associated with SNPs, as well as metadata
describing each column, in an SQLite database.

Constructor

SnpAnnotationSQLite(dbpath):
dbpath is the path to a SQLite database with tables "Annotation" and "Metadata." "Annota-
tion" must contain at least the following columns:

• "snpID": integer vector containing unique SNP ids.
• "chromosome": integer vector containing chromosome codes.
• "position": integer vector containing position (in base pairs) on the chromosome.

Default values for chromosome codes are 1-22=autosome, 23=X, 24=XY, 25=Y, 26=M. The
defaults may be changed with the arguments autosomeCode, XchromCode, XYchromCode,
YchromCode, and MchromCode.
"Metadata" must contain at least the following columns:

• "varname": name of variable in annotation
• "description": description of column in annotation

If the database does not yet exist, a database is created with tables "Annotation" and "Meta-
data."
The SnpAnnotationSQLite constructor creates and returns a SnpAnnotationSQLite instance.

Accessors

In the code snippets below, object is a SnpAnnotationSQLite object.

open(object): Opens a connection to the database.

close(object): Closes the database connection.

SnpAnnotationSQLite 151

nsnp(object): The number of SNPs in the database.

getSnpID(object, index, condition): A unique integer vector of snp IDs. The optional
index is a logical or integer vector specifying elements to extract. The optional condition
is a character string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE
chromosome=1").

getChromosome(object, index, condition, char=FALSE): A vector of chromosomes. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1"). If char=FALSE (default), returns an integer vector. If char=TRUE,
returns a character vector with elements in (1:22,X,XY,Y,M,U). "U" stands for "Unknown"
and is the value given to any chromosome code not falling in the other categories.

getPosition(object, index, condition): An integer vector of base pair positions. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1").

getAlleleA(object, index): A character vector of A alleles. The optional condition is a
character string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE chromo-
some=1").

getAlleleB(object, index): A character vector of B alleles. The optional condition is a
character string with an SQL clause used to select data (e.g., "LIMIT 10", "WHERE chromo-
some=1").

getVariable(object, varname, index, condition): A vector of the column varname. The
optional index is a logical or integer vector specifying elements to extract. The optional
condition is a character string with an SQL clause used to select data (e.g., "LIMIT 10",
"WHERE chromosome=1"). Returns NULL if varname is not found in object.

hasVariable(object, varname): Returns TRUE if varname is a column in object, FALSE if not.

getVariableNames(object): Returns a character vector with the names of all columns in object.

getAnnotation(object): Returns all annotation variables as a data frame.

getMetadata(object): Returns metadata describing the annotation variables as a data frame.

getQuery(object, statement): Returns result of the SQL query statement.

writeAnnotation(object, value, append=FALSE,overwrite=TRUE): Writes value to the
SNP annotation table. value must be a data.frame containing columns "snpID", "chromo-
some", and "position".

writeMetadata(object, value, append=FALSE,overwrite=TRUE): Writes value to the meta-
data table. value should be a data.frame containing columns "varname" and "description".

autosomeCode(object): Returns the integer codes for the autosomes.

XchromCode(object): Returns the integer code for the X chromosome.

XYchromCode(object): Returns the integer code for the pseudoautosomal region.

YchromCode(object): Returns the integer code for the Y chromosome.

MchromCode(object): Returns the integer code for mitochondrial SNPs.

Author(s)

Stephanie Gogarten

152 snpCorrelationPlot

See Also

ScanAnnotationSQLite, SnpAnnotationDataFrame, GenotypeData, IntensityData

Examples

library(GWASdata)
dbpath <- tempfile()
snpAnnot <- SnpAnnotationSQLite(dbpath)

data(affy_snp_annot)
writeAnnotation(snpAnnot, affy_snp_annot)

list columns
vars <- getVariableNames(snpAnnot)

add metadata
metadf <- data.frame(varname=vars, description=rep(NA, length(vars)),

row.names=vars, stringsAsFactors=FALSE)
metadf["snpID", "description"] <- "integer id"
writeMetadata(snpAnnot, metadf)

get snpID and chromosome
snpID <- getSnpID(snpAnnot)
chrom <- getChromosome(snpAnnot)

get positions only for chromosome 22
pos22 <- getPosition(snpAnnot, condition="WHERE chromosome = 22")

get rsID
if (hasVariable(snpAnnot, "rsID")) rsID <- getVariable(snpAnnot, "rsID")

display data
head(getAnnotation(snpAnnot))
getMetadata(snpAnnot)

close(snpAnnot)
file.remove(dbpath)

snpCorrelationPlot SNP correlation plot

Description

Plots SNP correlation versus chromosome.

Usage

snpCorrelationPlot(correlations, chromosome,
ylim=c(0,1), ylab = "abs(correlation)", ...)

snpCorrelationPlot 153

Arguments

correlations A vector of correlations.

chromosome A vector containing the chromosome for each SNP.

ylim The limits of the y axis.

ylab The label for the y axis.

... Other parameters to be passed directly to plot.

Details

Plots SNP correlations (from, e.g., PCA), versus chromosome.

correlations must have the same length as chromosome and is assumed to be in order of position
on each chromosome. Values within each chromosome are evenly spaced along the X axis.

Author(s)

Cathy Laurie

See Also

manhattanPlot

Examples

correlations <- sample(0.001*(0:1000), 1000, replace=TRUE)
chromosome <- c(rep(1,400), rep(2,350), rep("X",200), rep("Y",50))
snpCorrelationPlot(correlations, chromosome)

Index

∗Topic IO
readWriteFirst, 137

∗Topic Mendelian
mendelErr, 91
mendelList, 94

∗Topic classes
GdsGenotypeReader, 61
GdsReader, 64
GenotypeData-class, 67
IntensityData-class, 82
MatrixGenotypeReader, 87
NcdfGenotypeReader, 105
NcdfIntensityReader, 109
NcdfReader, 112
ScanAnnotationDataFrame, 140
ScanAnnotationSQLite, 142
SnpAnnotationDataFrame, 147
SnpAnnotationSQLite, 150

∗Topic datagen
BAFfromClusterMeans, 40
BAFfromGenotypes, 42
simulateGenotypeMatrix, 144
simulateIntensityMatrix, 145

∗Topic datasets
centromeres, 47
HLA, 79
pcaSnpFilters, 116
pseudoautosomal, 133
relationsMeanVar, 138

∗Topic distributiion
duplicateDiscordanceProbability,

57
∗Topic file

readWriteFirst, 137
∗Topic hplot

anomSegStats, 19
chromIntensityPlot, 47
genoClusterPlot, 65
ibdPlot, 80

intensityOutliersPlot, 85
manhattanPlot, 86
pseudoautoIntensityPlot, 132
qqPlot, 134
snpCorrelationPlot, 152

∗Topic htest
batchTest, 44

∗Topic logic
allequal, 6

∗Topic manip
alleleFrequency, 5
anomDetectBAF, 7
anomDetectLOH, 11
anomIdentifyLowQuality, 16
anomSegStats, 19
apartSnpSelection, 24
asSnpMatrix, 25
BAFfromClusterMeans, 40
BAFfromGenotypes, 42
convertNcdfGds, 49
convertVcfGds, 51
duplicateDiscordance, 52
duplicateDiscordanceAcrossDatasets,

54
findBAFvariance, 59
genotypeToCharacter, 71
gwasExactHW, 75
hetByScanChrom, 77
hetBySnpSex, 78
ibdPlot, 80
ncdfAddData, 98
ncdfCreate, 104
ncdfImputedDosage, 107
ncdfSetMissingGenotypes, 114
ncdfSubset, 115
pedigreeCheck, 117
pedigreeClean, 120
pedigreeFindDuplicates, 121
pedigreeMaxUnrelated, 123

154

INDEX 155

pedigreePairwiseRelatedness, 125
plinkToNcdf, 127
plinkUtils, 129

∗Topic methods
GdsGenotypeReader, 61
GdsReader, 64
GenotypeData-class, 67
getVariable, 73
IntensityData-class, 82
MatrixGenotypeReader, 87
NcdfGenotypeReader, 105
NcdfIntensityReader, 109
NcdfReader, 112
ScanAnnotationDataFrame, 140
ScanAnnotationSQLite, 142
SnpAnnotationDataFrame, 147
SnpAnnotationSQLite, 150

∗Topic models
assocTestRegression, 32

∗Topic package
GWASTools-package, 4

∗Topic regression
assocTestRegression, 32

∗Topic survival
assocTestCPH, 26

∗Topic univar
meanIntensityByScanChrom, 89
missingGenotypeByScanChrom, 95
missingGenotypeBySnpSex, 97
qualityScoreByScan, 135
qualityScoreBySnp, 136

∗Topic utilities
getobj, 72
saveas, 139

all, 6
all.equal, 6
alleleFrequency, 5, 54
allequal, 6
AnnotatedDataFrame, 4, 140, 141, 147–149
anomDetectBAF, 7, 12, 16–19, 22, 23
anomDetectLOH, 11, 11, 15–19, 23
anomFilterBAF (anomDetectBAF), 7
anomIdentifyLowQuality, 16
anomSegmentBAF (anomDetectBAF), 7
anomSegStats, 19, 114
anomStatsPlot (anomSegStats), 19
apartSnpSelection, 24
asSnpMatrix, 25

assocTestCPH, 26
assocTestFisherExact, 30
assocTestRegression, 30, 31, 32, 108
autosomeCode (getVariable), 73
autosomeCode,GdsGenotypeReader-method

(GdsGenotypeReader), 61
autosomeCode,GenotypeData-method

(GenotypeData-class), 67
autosomeCode,IntensityData-method

(IntensityData-class), 82
autosomeCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
autosomeCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
autosomeCode,NcdfIntensityReader-method

(NcdfIntensityReader), 109
autosomeCode,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
autosomeCode,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150

BAFfromClusterMeans, 40, 41, 43, 61
BAFfromGenotypes, 42, 49, 61, 133
batchChisqTest (batchTest), 44
batchFisherTest (batchTest), 44
batchTest, 44

centromeres, 7, 8, 12, 19, 47
checkNcdfGds (convertNcdfGds), 49
chisq.test, 46
chromIntensityPlot, 43, 47
close,GdsReader-method (GdsReader), 64
close,GenotypeData-method

(GenotypeData-class), 67
close,IntensityData-method

(IntensityData-class), 82
close,NcdfReader-method (NcdfReader),

112
close,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
close,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
convertGdsNcdf (convertNcdfGds), 49
convertNcdfGds, 49
convertVcfGds, 51
coxph, 27–29

DNAcopy, 7, 8, 10–13, 15, 17
duplicateDiscordance, 52, 57, 58

156 INDEX

duplicateDiscordanceAcrossDatasets, 54,
54, 58

duplicateDiscordanceProbability, 54, 57,
57

findBAFvariance, 11, 15, 18, 59
fisher.test, 46

gdsfmt, 49–51, 65
GdsGenotypeReader, 52, 61, 67, 69
GdsGenotypeReader-class

(GdsGenotypeReader), 61
GdsReader, 61–63, 64
GdsReader-class (GdsReader), 64
genoClusterPlot, 65
genoClusterPlotByBatch

(genoClusterPlot), 65
GenotypeData, 4, 5, 7, 12, 19, 25–27, 29, 32,

39, 42–44, 46, 48, 49, 53–55, 57, 59,
61, 63, 65, 66, 71, 75, 78, 79, 84, 89,
91, 96, 97, 106, 108, 111, 129–131,
133, 135–137, 141, 143, 149, 152

GenotypeData (GenotypeData-class), 67
GenotypeData-class, 67
genotypeToCharacter, 71
getAlleleA (getVariable), 73
getAlleleA,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getAlleleA,GenotypeData-method

(GenotypeData-class), 67
getAlleleA,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getAlleleA,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getAlleleB (getVariable), 73
getAlleleB,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getAlleleB,GenotypeData-method

(GenotypeData-class), 67
getAlleleB,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getAlleleB,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getAnnotation (getVariable), 73
getAnnotation,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140
getAnnotation,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142

getAnnotation,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 147

getAnnotation,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 150

getAttribute (getVariable), 73
getAttribute,GdsReader-method

(GdsReader), 64
getAttribute,NcdfReader-method

(NcdfReader), 112
getBAlleleFreq (getVariable), 73
getBAlleleFreq,IntensityData-method

(IntensityData-class), 82
getBAlleleFreq,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getChromosome (getVariable), 73
getChromosome,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getChromosome,GenotypeData-method

(GenotypeData-class), 67
getChromosome,IntensityData-method

(IntensityData-class), 82
getChromosome,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
getChromosome,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
getChromosome,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getChromosome,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getChromosome,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getDimension (getVariable), 73
getDimension,GdsReader-method

(GdsReader), 64
getDimension,NcdfReader-method

(NcdfReader), 112
getDimensionNames (NcdfReader), 112
getDimensionNames,NcdfReader-method

(NcdfReader), 112
getGenotype (getVariable), 73
getGenotype,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getGenotype,GenotypeData-method

(GenotypeData-class), 67
getGenotype,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
getGenotype,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105

INDEX 157

getLogRRatio (getVariable), 73
getLogRRatio,IntensityData-method

(IntensityData-class), 82
getLogRRatio,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getMetadata (getVariable), 73
getMetadata,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140
getMetadata,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
getMetadata,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getMetadata,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getobj, 72, 139
getPosition (getVariable), 73
getPosition,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getPosition,GenotypeData-method

(GenotypeData-class), 67
getPosition,IntensityData-method

(IntensityData-class), 82
getPosition,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
getPosition,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
getPosition,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getPosition,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getPosition,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getQuality (getVariable), 73
getQuality,IntensityData-method

(IntensityData-class), 82
getQuality,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getQuery (getVariable), 73
getQuery,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
getQuery,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getScanID (getVariable), 73
getScanID,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getScanID,GenotypeData-method

(GenotypeData-class), 67
getScanID,IntensityData-method

(IntensityData-class), 82
getScanID,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
getScanID,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
getScanID,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getScanID,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140
getScanID,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
getScanVariable (getVariable), 73
getScanVariable,GenotypeData-method

(GenotypeData-class), 67
getScanVariable,IntensityData-method

(IntensityData-class), 82
getScanVariableNames (getVariable), 73
getScanVariableNames,GenotypeData-method

(GenotypeData-class), 67
getScanVariableNames,IntensityData-method

(IntensityData-class), 82
getSex (getVariable), 73
getSex,GenotypeData-method

(GenotypeData-class), 67
getSex,IntensityData-method

(IntensityData-class), 82
getSex,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140
getSex,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
getSnpID (getVariable), 73
getSnpID,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getSnpID,GenotypeData-method

(GenotypeData-class), 67
getSnpID,IntensityData-method

(IntensityData-class), 82
getSnpID,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
getSnpID,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
getSnpID,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getSnpID,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getSnpID,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getSnpVariable (getVariable), 73

158 INDEX

getSnpVariable,GenotypeData-method
(GenotypeData-class), 67

getSnpVariable,IntensityData-method
(IntensityData-class), 82

getSnpVariableNames (getVariable), 73
getSnpVariableNames,GenotypeData-method

(GenotypeData-class), 67
getSnpVariableNames,IntensityData-method

(IntensityData-class), 82
getVariable, 73
getVariable,GdsGenotypeReader-method

(GdsGenotypeReader), 61
getVariable,GdsReader-method

(GdsReader), 64
getVariable,GenotypeData-method

(GenotypeData-class), 67
getVariable,IntensityData-method

(IntensityData-class), 82
getVariable,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
getVariable,NcdfIntensityReader-method

(NcdfIntensityReader), 109
getVariable,NcdfReader-method

(NcdfReader), 112
getVariable,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140
getVariable,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
getVariable,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getVariable,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getVariableNames (getVariable), 73
getVariableNames,GdsReader-method

(GdsReader), 64
getVariableNames,NcdfReader-method

(NcdfReader), 112
getVariableNames,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140
getVariableNames,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
getVariableNames,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
getVariableNames,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
getX (getVariable), 73
getX,IntensityData-method

(IntensityData-class), 82

getX,NcdfIntensityReader-method
(NcdfIntensityReader), 109

getY (getVariable), 73
getY,IntensityData-method

(IntensityData-class), 82
getY,NcdfIntensityReader-method

(NcdfIntensityReader), 109
glm, 39
GWASExactHW, 76
gwasExactHW, 75
GWASTools (GWASTools-package), 4
GWASTools-deprecated, 77
GWASTools-package, 4

hasBAlleleFreq (getVariable), 73
hasBAlleleFreq,IntensityData-method

(IntensityData-class), 82
hasBAlleleFreq,NcdfIntensityReader-method

(NcdfIntensityReader), 109
hasCoordVariable (NcdfReader), 112
hasCoordVariable,NcdfReader-method

(NcdfReader), 112
hasLogRRatio (getVariable), 73
hasLogRRatio,IntensityData-method

(IntensityData-class), 82
hasLogRRatio,NcdfIntensityReader-method

(NcdfIntensityReader), 109
hasQuality (getVariable), 73
hasQuality,IntensityData-method

(IntensityData-class), 82
hasQuality,NcdfIntensityReader-method

(NcdfIntensityReader), 109
hasScanAnnotation (getVariable), 73
hasScanAnnotation,GenotypeData-method

(GenotypeData-class), 67
hasScanAnnotation,IntensityData-method

(IntensityData-class), 82
hasScanVariable (getVariable), 73
hasScanVariable,GenotypeData-method

(GenotypeData-class), 67
hasScanVariable,IntensityData-method

(IntensityData-class), 82
hasSex (getVariable), 73
hasSex,GenotypeData-method

(GenotypeData-class), 67
hasSex,IntensityData-method

(IntensityData-class), 82
hasSex,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140

INDEX 159

hasSex,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 142

hasSnpAnnotation (getVariable), 73
hasSnpAnnotation,GenotypeData-method

(GenotypeData-class), 67
hasSnpAnnotation,IntensityData-method

(IntensityData-class), 82
hasSnpVariable (getVariable), 73
hasSnpVariable,GenotypeData-method

(GenotypeData-class), 67
hasSnpVariable,IntensityData-method

(IntensityData-class), 82
hasVariable (getVariable), 73
hasVariable,GdsReader-method

(GdsReader), 64
hasVariable,GenotypeData-method

(GenotypeData-class), 67
hasVariable,IntensityData-method

(IntensityData-class), 82
hasVariable,NcdfReader-method

(NcdfReader), 112
hasVariable,ScanAnnotationDataFrame-method

(ScanAnnotationDataFrame), 140
hasVariable,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
hasVariable,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
hasVariable,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
hasX (getVariable), 73
hasX,IntensityData-method

(IntensityData-class), 82
hasX,NcdfIntensityReader-method

(NcdfIntensityReader), 109
hasY (getVariable), 73
hasY,IntensityData-method

(IntensityData-class), 82
hasY,NcdfIntensityReader-method

(NcdfIntensityReader), 109
hetByScanChrom, 77, 79
hetBySnpSex, 78, 78
HLA, 7, 12, 16, 19, 20, 79
HWExact, 76

ibdAreasDraw (ibdPlot), 80
ibdAssignRelatedness (ibdPlot), 80
ibdPlot, 80
identical, 6

IntensityData, 4, 7, 12, 19, 41–43, 48, 49,
59, 61, 65, 66, 69, 90, 106, 111, 132,
133, 135–137, 141, 143, 149, 152

IntensityData (IntensityData-class), 82
IntensityData-class, 82
intensityOutliersPlot, 85

lm, 39
lrtest, 39

manhattanPlot, 86, 153
MatrixGenotypeReader, 67, 69, 87
MatrixGenotypeReader-class

(MatrixGenotypeReader), 87
MchromCode (getVariable), 73
MchromCode,GdsGenotypeReader-method

(GdsGenotypeReader), 61
MchromCode,GenotypeData-method

(GenotypeData-class), 67
MchromCode,IntensityData-method

(IntensityData-class), 82
MchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
MchromCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
MchromCode,NcdfIntensityReader-method

(NcdfIntensityReader), 109
MchromCode,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
MchromCode,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
mean, 90
meanIntensityByScanChrom, 85, 89, 147
meanSdByChromWindow (findBAFvariance),

59
medianSdOverAutosomes, 8, 16
medianSdOverAutosomes

(findBAFvariance), 59
mendelErr, 91, 94, 95
mendelList, 91, 92, 94
mendelListAsDataFrame (mendelList), 94
minorAlleleDetectionAccuracy

(duplicateDiscordanceAcrossDatasets),
54

missingGenotypeByScanChrom, 95, 97, 145
missingGenotypeBySnpSex, 96, 97, 145

ncdf, 4, 50, 100, 101, 104, 112, 113, 115, 145,
147

160 INDEX

ncdfAddData, 98, 104, 115
ncdfAddIntensity (ncdfAddData), 98
ncdfCheckGenotype (ncdfAddData), 98
ncdfCheckIntensity (ncdfAddData), 98
ncdfCreate, 101, 104, 108, 115
NcdfGenotypeReader, 4, 50, 67, 69, 89, 105,

111, 113, 128
NcdfGenotypeReader-class

(NcdfGenotypeReader), 105
ncdfImputedDosage, 107
NcdfIntensityReader, 4, 82, 84, 106, 109,

113
NcdfIntensityReader-class

(NcdfIntensityReader), 109
NcdfReader, 4, 84, 88, 105, 106, 110, 111, 112
NcdfReader-class (NcdfReader), 112
ncdfSetMissingGenotypes, 114
ncdfSubset, 101, 104, 114, 115
ncdfSubsetCheck (ncdfSubset), 115
nscan (getVariable), 73
nscan,GdsGenotypeReader-method

(GdsGenotypeReader), 61
nscan,GenotypeData-method

(GenotypeData-class), 67
nscan,IntensityData-method

(IntensityData-class), 82
nscan,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
nscan,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
nscan,NcdfIntensityReader-method

(NcdfIntensityReader), 109
nscan,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
nsnp (getVariable), 73
nsnp,GdsGenotypeReader-method

(GdsGenotypeReader), 61
nsnp,GenotypeData-method

(GenotypeData-class), 67
nsnp,IntensityData-method

(IntensityData-class), 82
nsnp,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
nsnp,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
nsnp,NcdfIntensityReader-method

(NcdfIntensityReader), 109
nsnp,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150

open,GdsReader-method (GdsReader), 64
open,GenotypeData-method

(GenotypeData-class), 67
open,IntensityData-method

(IntensityData-class), 82
open,NcdfReader-method (NcdfReader), 112
open,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
open,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150

pcaSnpFilters, 116
pedigreeCheck, 117, 120–124, 126
pedigreeClean, 120
pedigreeClean-deprecated

(pedigreeClean), 120
pedigreeDeleteDuplicates, 119
pedigreeDeleteDuplicates

(pedigreeFindDuplicates), 121
pedigreeFindDuplicates, 121
pedigreeFindDuplicates-deprecated

(pedigreeFindDuplicates), 121
pedigreeMaxUnrelated, 123, 126
pedigreePairwiseRelatedness, 119, 121,

122, 124, 125
plinkCheck, 128
plinkCheck (plinkUtils), 129
plinkToNcdf, 127, 131
plinkUtils, 129
plinkWrite, 128
plinkWrite (plinkUtils), 129
plot, 20, 49, 66, 81, 85, 87, 132, 134, 153
points, 81
pseudoautoIntensityPlot, 132
pseudoautosomal, 7, 12, 16, 19, 20, 133, 133
put.attr.gdsn, 64

qqPlot, 134
qualityScoreByScan, 135, 137
qualityScoreBySnp, 136, 136

readWriteFirst, 137
relationsMeanVar, 81, 138

saveas, 72, 139
ScanAnnotationDataFrame, 4, 50, 67, 69, 82,

84, 108, 127, 128, 140, 143, 149

INDEX 161

ScanAnnotationDataFrame-class
(ScanAnnotationDataFrame), 140

ScanAnnotationSQLite, 4, 67, 69, 82, 84,
142, 152

ScanAnnotationSQLite-class
(ScanAnnotationSQLite), 142

sd, 90
sdByScanChromWindow, 8
sdByScanChromWindow (findBAFvariance),

59
segment, 8–12, 15
set.missval.ncdf, 113
show,GdsReader-method (GdsReader), 64
show,GenotypeData-method

(GenotypeData-class), 67
show,IntensityData-method

(IntensityData-class), 82
show,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
show,NcdfReader-method (NcdfReader), 112
show,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
show,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
simulateGenotypeMatrix, 144, 147
simulateIntensityMatrix, 145, 145
smooth.CNA, 7, 11, 12, 15
SnpAnnotationDataFrame, 4, 16, 50, 67, 69,

82, 84, 107, 127, 128, 141, 147, 152
SnpAnnotationDataFrame-class

(SnpAnnotationDataFrame), 147
SnpAnnotationSQLite, 4, 67, 69, 82, 84, 143,

150
SnpAnnotationSQLite-class

(SnpAnnotationSQLite), 150
snpCorrelationPlot, 87, 117, 152
SNPRelate, 49, 50
Surv, 27
survival, 27

vcov, 39
vcovHC, 39

writeAnnotation (getVariable), 73
writeAnnotation,ScanAnnotationSQLite-method

(ScanAnnotationSQLite), 142
writeAnnotation,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
writeMetadata (getVariable), 73

writeMetadata,ScanAnnotationSQLite-method
(ScanAnnotationSQLite), 142

writeMetadata,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 150

XchromCode (getVariable), 73
XchromCode,GdsGenotypeReader-method

(GdsGenotypeReader), 61
XchromCode,GenotypeData-method

(GenotypeData-class), 67
XchromCode,IntensityData-method

(IntensityData-class), 82
XchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
XchromCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
XchromCode,NcdfIntensityReader-method

(NcdfIntensityReader), 109
XchromCode,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
XchromCode,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150
XYchromCode (getVariable), 73
XYchromCode,GdsGenotypeReader-method

(GdsGenotypeReader), 61
XYchromCode,GenotypeData-method

(GenotypeData-class), 67
XYchromCode,IntensityData-method

(IntensityData-class), 82
XYchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87
XYchromCode,NcdfGenotypeReader-method

(NcdfGenotypeReader), 105
XYchromCode,NcdfIntensityReader-method

(NcdfIntensityReader), 109
XYchromCode,SnpAnnotationDataFrame-method

(SnpAnnotationDataFrame), 147
XYchromCode,SnpAnnotationSQLite-method

(SnpAnnotationSQLite), 150

YchromCode (getVariable), 73
YchromCode,GdsGenotypeReader-method

(GdsGenotypeReader), 61
YchromCode,GenotypeData-method

(GenotypeData-class), 67
YchromCode,IntensityData-method

(IntensityData-class), 82
YchromCode,MatrixGenotypeReader-method

(MatrixGenotypeReader), 87

162 INDEX

YchromCode,NcdfGenotypeReader-method
(NcdfGenotypeReader), 105

YchromCode,NcdfIntensityReader-method
(NcdfIntensityReader), 109

YchromCode,SnpAnnotationDataFrame-method
(SnpAnnotationDataFrame), 147

YchromCode,SnpAnnotationSQLite-method
(SnpAnnotationSQLite), 150

	GWASTools-package
	alleleFrequency
	allequal
	anomDetectBAF
	anomDetectLOH
	anomIdentifyLowQuality
	anomSegStats
	apartSnpSelection
	asSnpMatrix
	assocTestCPH
	assocTestFisherExact
	assocTestRegression
	BAFfromClusterMeans
	BAFfromGenotypes
	batchTest
	centromeres
	chromIntensityPlot
	convertNcdfGds
	convertVcfGds
	duplicateDiscordance
	duplicateDiscordanceAcrossDatasets
	duplicateDiscordanceProbability
	findBAFvariance
	GdsGenotypeReader
	GdsReader
	genoClusterPlot
	GenotypeData-class
	genotypeToCharacter
	getobj
	getVariable
	gwasExactHW
	GWASTools-deprecated
	hetByScanChrom
	hetBySnpSex
	HLA
	ibdPlot
	IntensityData-class
	intensityOutliersPlot
	manhattanPlot
	MatrixGenotypeReader
	meanIntensityByScanChrom
	mendelErr
	mendelList
	missingGenotypeByScanChrom
	missingGenotypeBySnpSex
	ncdfAddData
	ncdfCreate
	NcdfGenotypeReader
	ncdfImputedDosage
	NcdfIntensityReader
	NcdfReader
	ncdfSetMissingGenotypes
	ncdfSubset
	pcaSnpFilters
	pedigreeCheck
	pedigreeClean
	pedigreeFindDuplicates
	pedigreeMaxUnrelated
	pedigreePairwiseRelatedness
	plinkToNcdf
	plinkUtils
	pseudoautoIntensityPlot
	pseudoautosomal
	qqPlot
	qualityScoreByScan
	qualityScoreBySnp
	readWriteFirst
	relationsMeanVar
	saveas
	ScanAnnotationDataFrame
	ScanAnnotationSQLite
	simulateGenotypeMatrix
	simulateIntensityMatrix
	SnpAnnotationDataFrame
	SnpAnnotationSQLite
	snpCorrelationPlot
	Index

