
Package ‘ChemmineR’
October 9, 2013

Type Package

Title Cheminformatics of Drug-like Small Molecule Data

Version 2.12.3

Date 2013-08-26

Author Y. Eddie Cao, Kevin Horan, Tyler Backman, Yan Wang, Thomas Girke

Maintainer ChemmineR Team <khoran@cs.ucr.edu>

Description ChemmineR is a cheminformatics package for analyzing drug-
like small molecule data in R. Its latest version contains functions for efficient process-
ing of large numbers of molecules, physicochemical/structural property predictions, struc-
tural similarity searching, classification and clustering of compound libraries with a wide spec-
trum of algorithms. In addition, it offers visualization functions for compound clustering re-
sults and chemical structures.

License Artistic-2.0

System Requirements OpenBabel (>= 2.2.3) with headers. http://openbabel.org

Depends R (>= 2.10.0), methods

biocViews MicrotitrePlateAssay, CellBasedAssays, Visualization,Infrastructure, DataImport, Cluster-
ing, Bioinformatics,Proteomics

Imports graphics, methods, stats, RCurl, DBI, digest, BiocGenerics

Suggests RSQLite, scatterplot3d, gplots, fmcsR

URL http://manuals.bioinformatics.ucr.edu/home/chemminer

1

http://manuals.bioinformatics.ucr.edu/home/chemminer

2 R topics documented:

R topics documented:
addNewFeatures . 3
ap . 4
AP-class . 6
apfp . 7
apset . 8
APset-class . 9
apset2descdb . 10
atomblock . 12
atomcount . 13
atomprop . 15
atomsubset . 15
batchByIndex . 17
bondblock . 18
bonds . 19
bufferLines . 20
bufferResultSet . 21
byCluster . 21
cid . 22
cluster.sizestat . 23
cluster.visualize . 25
cmp.cluster . 27
cmp.duplicated . 29
cmp.parse . 31
cmp.parse1 . 32
cmp.search . 33
cmp.similarity . 35
conMA . 37
datablock . 38
datablock2ma . 39
db.explain . 41
db.subset . 42
desc2fp . 43
findCompounds . 44
findCompoundsByName . 46
FP-class . 47
fp2bit . 48
FPset-class . 49
fpSim . 51
fromNNMatrix . 53
getCompoundNames . 54
getCompounds . 55
getIds . 56
grepSDFset . 57
groups . 58
header . 59
initDb . 60

addNewFeatures 3

jarvisPatrick . 61
jarvisPatrick_c . 63
loadSdf . 63
makeUnique . 65
nearestNeighbors . 66
plotStruc . 67
pubchemFPencoding . 69
read.AP . 70
read.SDFindex . 72
read.SDFset . 73
read.SDFstr . 74
rings . 75
SDF-class . 77
sdf.subset . 79
sdf.visualize . 80
sdf2ap . 82
SDF2apcmp . 83
sdf2list . 84
sdf2smiles . 85
sdf2str . 86
sdfid . 88
sdfsample . 89
SDFset-class . 90
SDFset2list . 92
SDFset2SDF . 93
SDFstr-class . 94
sdfstr2list . 96
sdfStream . 97
searchSim . 98
searchString . 99
selectInBatches . 100
smiles2sdf . 101
trimNeighbors . 102
validSDF . 103
view . 104
write.SDF . 105
write.SDFsplit . 106

Index 108

addNewFeatures Add New Features

Description

Adds new features to a database without adding any data. Note that if you are loading new data
anyway, it is much more efficient to use the loadSdf function and include the new features then.
This function will have to read all compounds out of the database first.

4 ap

Usage

addNewFeatures(conn, featureGenerator)

Arguments

conn A database connection object, such as is returned by initDb.
featureGenerator

A function which returns a data frame containing the new features. It may also
contain features which are already in the database, these will simply be ignored.
See the description of fct in loadSdf for details.

Value

No value is returned.

Author(s)

Kevin Horan

See Also

loadSdf

Examples

#create and initialize a new SQLite database
conn = initDb("test.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=loadSdf(conn,sdfsample)

addNewFeatures(conn, function(sdfset)
data.frame(MW = MW(sdfset),

rings(sdfset,type="count",upper=6, arom=TRUE))
)

unlink("test.db")

ap Return atom pair component of AP/APset

Description

Returns atom pair component of objects of class AP or APset as list of vectors.

ap 5

Usage

ap(x)

Arguments

x Object of class AP and APset

Details

...

Value

List with one to many of following components:

numeric atom pairs

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfset[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

6 AP-class

AP-class Class "AP"

Description

Container for storing the atom pair descriptors of a single compound as numeric vector. The atom
pairs are used as structural similarity measures and for compound similarity searching.

Objects from the Class

Objects can be created by calls of the form new("AP", ...).

Slots

AP: Object of class "numeric"

Methods

ap signature(x = "AP"): returns atom pairs as numeric vector

coerce signature(from = "APset", to = "AP"): as(apset, "AP")

show signature(object = "AP"): prints summary of AP

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Related classes: SDF, SDFset, SDFstr, APset.

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

showClass("AP")

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)

apfp 7

(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

apfp Frequent Atom Pairs

Description

Ranked set of 4096 most frequent atom pairs observed in the compound collection from DrugBank
with a MW < 1000. Their atom pairs were generated with the sdf2ap function. The provided data
frame is sorted row-wise by atom pair frequency and only the 4096 most frequent atom pairs are
included. This data set can be used as predefined atom pair selection when computing atom pair
fingerprints with the desc2fp function.

Usage

data(apfp)

Format

Object of class data.frame. First column contains atom pair (AP) IDs and the second column their
frequency in DrugBank compounds.

Details

Object stores 4096 most frequent atom pairs generated from DrugBank compounds.

8 apset

Source

DrugBank: http://www.drugbank.ca/

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

Examples

data(apfp)
apfp[1:4,]

apset Atom pairs stored in APset object

Description

Atom pairs for 100 molecules stored in sdfsample.

Usage

data(apset)

Format

Object of class apset

Details

Object stores atom pairs of 100 molecules.

Source

apset <- sdf2ap(sdfsample)

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

Examples

data(apset)
apset[1:4]
view(apset[1:4])

APset-class 9

APset-class Class "APset"

Description

List-like container for storing the atom pair descriptors of a many compounds as objects of class
AP. This container is used for structure similarity searching of compounds.

Objects from the Class

Objects can be created by calls of the form new("APset", ...).

Slots

AP: Object of class "list"

ID: Object of class "character"

Methods

[signature(x = "APset"): subsetting of class with bracket operator

[[signature(x = "APset"): returns single component as AP object

[[<- signature(x = "APset"): replacement method for single AP component

[<- signature(x = "APset"): replacement method for several AP components

ap signature(x = "APset"): returns atom pair list from AP slot

c signature(x = "APset"): concatenates two APset containers

cid signature(x = "APset"): returns all compound identifiers from ID slot

cid<- signature(x = "APset"): replacement method for compound identifiers in ID slot

coerce signature(from = "APset", to = "AP"): as(apset, "AP")

coerce signature(from = "APset", to = "list"): as(apset, "list")

coerce signature(from = "list", to = "APset"): as(list, "APset")

length signature(x = "APset"): returns number of entries stored in object

show signature(object = "APset"): prints summary of APset

view signature(x = "APset"): prints extended summary of APset

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem
Inf Comput Sci.

10 apset2descdb

See Also

Related classes: SDF, SDFset, SDFstr, AP, FPset, FP.

Functions: SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Examples

showClass("APset")

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

apset2descdb APset to list-style AP database

Description

Coerces APset to old list-style descriptor database used by search/cluster functions.

apset2descdb 11

Usage

apset2descdb(apset)

Arguments

apset Object of class apset

Details

...

Value

list with following components

descdb list of atom pair sets

cids compound IDs

sdfsegs start/end coordinates for each molecule in SD file; only populated when cmp.parse
is used for import

source path/name of SD file

type import method

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: SDF2apcmp, sdf2ap, cmp.search, cmp.similarity

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs

12 atomblock

ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

atomblock Return atom block

Description

Returns atom block(s) from an object of class SDF or SDFset.

Usage

atomblock(x)

Arguments

x object of class SDF or SDFset

Details

...

Value

matrix if SDF is provided or list of matrices if SDFset is provided

Author(s)

Thomas Girke

References

...

atomcount 13

See Also

header, atomcount, bondblock, datablock, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract atome block
atomblock(sdf)
atomblock(sdfset[1:4])

Replacement methods
sdfset[[1]][[2]][1,1] <- 999
sdfset[[1]]
atomblock(sdfset)[1:2] <- atomblock(sdfset)[3:4]
atomblock(sdfset[[1]]) == atomblock(sdfset[[3]])
view(sdfset[1:2])

atomcount Molecular property functions

Description

Functions to compute molecular properties: weight, formula, atom frequencies, etc.

Usage

atomcount(x, addH = FALSE, ...)

atomcountMA(x, ...)

MW(x, mw=atomprop, ...)

MF(x, ...)

Arguments

x object of class SDFset or SDF

mw data.frame with atomic weights; imported by default with data(atomprop);
supports custom data sets

addH ’addH = TRUE’ should be passed on to any of these function to add hydrogens
that are often not specified in SD files

... Arguments to be passed to/from other methods.

14 atomcount

Details

...

Value

named vector MW and MF

list atomcount

matrix atomcountMA

Author(s)

Thomas Girke

References

Standard atomic weights (2005) from: http://iupac.org/publications/pac/78/11/2051/

See Also

Functions: datablock, datablocktag

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample

Compute properties; to consider missing hydrogens, set ’addH = TRUE’
MW(sdfset[1:4], addH = FALSE)
MF(sdfset[1:4], addH = FALSE)
atomcount(sdfset[1:4], addH = FALSE)
propma <- atomcountMA(sdfset[1:4], addH = FALSE)
boxplot(propma, main="Atom Frequency")

Example for injecting a custom matrix/data frame into the data block of an
SDFset and then writing it to an SD file
props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props
view(sdfset[1:4])
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)

atomprop 15

atomprop Standard atomic weights

Description

Data frame with atom names, symbols, standard atomic weights, group number and period number.

Usage

data(atomprop)

Format

The format is a data frame with 117 rows and 6 columns.

Source

Columns 1 to 4 from: http://iupac.org/publications/pac/78/11/2051/ Columns 5 to 6 from: http://en.wikipedia.org/wiki/List_of_elements

References

Pure Appl. Chem., 2006, Vol. 78, No. 11, pp. 2051-2066

Examples

data(atomprop)
atomprop[1:4,]

atomsubset Subset SDF/SDFset Objects by Atom Index to Obtain Substructure

Description

Function to obtain a substructure from SDF/SDFset objects by providing a row index for the atom
block in an SDF referencing the atoms of interest. The function subsets both the atom and bond
block(s) accordingly.

Usage

atomsubset(x, atomrows, type="new", datablock = FALSE)

16 atomsubset

Arguments

x object of class SDFset or SDF

atomrows The argument atomrows can be assigned a numeric index referencing the atoms
in the atom block of x. If x is of class SDF, the index needs to be provided as
vector. If x is of class SDFset, the same number of index vectors as molecules
stored in x need to be passed on in a list with component names identical to the
component (molecule) names stored in x.

type The argument type="new" assigns new atom numbers to a subsetted SDF, while
type="old" maintains the numbering of the source SDF.

datablock By default the data block(s) in SDF/SDFset objects are removed after atom sub-
setting. The setting datablock=TRUE will maintain the data block information
in the subsetted result.

Details

...

Value

object of class SDF or SDFset

Author(s)

Thomas Girke

References

...

See Also

...

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample

Subset one or more molecules with atom index(es) to obtain substructure(s)
atomsubset(sdfset[[1]], atomrows=1:18)
indexlist <- list(1:18, 1:12)
names(indexlist) <- cid(sdfset[1:2])
atomsubset(sdfset[1:2], atomrows=indexlist)

batchByIndex 17

batchByIndex Batch by Index

Description

When doing a select were the condition is a large number of ids it is not always possible to include
them in a single SQL statement. This function will break the list of ids into chunks and allow the
indexProcessor to deal with just a small number of ids.

Usage

batchByIndex(allIndices, indexProcessor, batchSize = 1e+05)

Arguments

allIndices

indexProcessor

batchSize

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (allIndices, indexProcessor, batchSize = 1e+05)
{

numIndices = length(allIndices)
if (numIndices == 0)

return()
start = 1
for (end in seq(1, numIndices, by = batchSize) + batchSize) {

end = min(end, numIndices)
if (debug)

print(paste(start, end))
indexSet = allIndices[start:end]
start = end + 1
indexProcessor(indexSet)

}
}

18 bondblock

bondblock Return bond block

Description

Returns bond block(s) from an object of class SDF or SDFset.

Usage

bondblock(x)

Arguments

x object of class SDF or SDFset

Details

...

Value

matrix if SDF is provided or list of matrices if SDFset is provided

Author(s)

Thomas Girke

References

...

See Also

header, atomcount, atomblock, datablock, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract bond block
bondblock(sdf)
bondblock(sdfset[1:4])

Replacement methods
sdfset[[1]][[3]][1,1] <- 999
sdfset[[1]]

bonds 19

bondblock(sdfset)[1:2] <- bondblock(sdfset)[3:4]
bondblock(sdfset[[1]]) == bondblock(sdfset[[3]])
view(sdfset[1:2])

bonds Bonds, charges and missing hydrogens

Description

Returns information about bonds, charges and missing hydrogens in SDF and SDFset objects.

Usage

bonds(x, type = "bonds")

Arguments

x SDF or SDFset containers

type If type="bonds" (default), a data.frame is returned with columns: atom (atom
labels), Nbondcount (observed bond count), Nbondrule (bond count according
to position in periodic table) and charge (charge of each atom).
If type="charge", all charged atoms are returned and if type="addNH", the
number of missing hydrogens are returned for each molecule.

Details

It is used by many other functions (e.g. MW, MF, atomcount, atomcuntMA and plot) to correct for
missing hydrogens that are often not specified in SD files.

Value

If x is of class SDF, then a single data.frame or vector is returned. If x is of class SDFset, then a
list of data.frames or vecotors is returned that has the same length and order as x.

Author(s)

Thomas Girke

References

...

See Also

Functions: conMA

Class: SDF and SDFset

20 bufferLines

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Returns data frames with bonds and charges
bonds(sdfset[1:2], type="bonds")

Returns charged atoms in each molecule
bonds(sdfset[1:2], type="charge")

Returns the number of missing hydrogens in each molecule
bonds(sdfset[1:2], type="addNH")

bufferLines Buffer File Input

Description

Buffer the input of files to increase efficiency

Usage

bufferLines(fh, batchSize, lineProcessor)

Arguments

fh

batchSize

lineProcessor

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (fh, batchSize, lineProcessor)
{

while (TRUE) {
lines = readLines(fh, n = batchSize)
if (length(lines) > 0)

lineProcessor(lines)
else break

}
}

bufferResultSet 21

bufferResultSet Buffer Query Results

Description

Allow query results to be processed in batches for efficiency.

Usage

bufferResultSet(rs, rsProcessor, batchSize = 1000,closeRS=FALSE)

Arguments

rs

rsProcessor

batchSize

closeRS Should the result set be closed by this function when it is done?

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (rs, rsProcessor, batchSize = 1000)
{

while (TRUE) {
chunk = fetch(rs, n = batchSize)
if (dim(chunk)[1] == 0)

break
rsProcessor(chunk)

}
}

byCluster By Cluster

Description

Re-organize a vector valued clustering into an list which groups cluster members together

Usage

byCluster(clustering, excludeSingletons = TRUE)

22 cid

Arguments

clustering A named vector in which the names are cluster members and the values are
cluster labels. This is format output by jarvisPatrick.

excludeSingletons

If true only clusters with more than 1 member will be in the output, otherwise
all clusters will be used.

Value

A list with a slot for each cluster. Each slot of the list is a vector containing the cluster members.

Author(s)

Kevin Horan

See Also

jarvisPatrick

Examples

data(apset)
cl = jarvisPatrick(nearestNeighbors(apset,cutoff=0.6),k=2)
print(byCluster(cl))

cid Return compound IDs

Description

Returns the compound identifiers from the ID slot of an SDFset object.

Usage

cid(x)

Arguments

x object of class SDFset or APset

Details

...

Value

character vector

cluster.sizestat 23

Author(s)

Thomas Girke

References

...

See Also

atomblock, atomcount, bondblock, datablock, header, sdfid

Examples

SDFset/APset instances
data(sdfsample)
sdfset <- sdfsample
apset <- sdf2ap(sdfset[1:4])

Extract compound IDs from SDFset/APset
cid(sdfset[1:4])
cid(apset[1:4])

Extract IDs defined in SD file
sdfid(sdfset[1:4])

Assigning compound IDs and keeping them unique
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids
cid(sdfset[1:4])

Replacement Method
cid(sdfset) <- as.character(1:100)

cluster.sizestat generate statistics on sizes of clusters

Description

’cluster.sizestat’ is used to do simple statistics on sizes of clusters generated by ’cmp.cluster’. It
will return a dataframe which maps a cluster size to the number of clusters with that size. It is often
used along with ’cluster.visualize’.

Usage

cluster.sizestat(cls, cluster.result=1)

24 cluster.sizestat

Arguments

cls The clustering result returned by ’cmp.cluster’

cluster.result If multiple cutoff values are used in clustering process, this argument tells which
cutoff value is to be considered here.

Details

’cluster.sizestat’ depends on the format that is returned by ’cmp.cluster’ - it will treat the first column
as the indecies, and the second column as the cluster sizes of effective clustering. Because of this,
when multiple cutoffs are used when ’cmp.cluster’ is called, ’cluster.sizestat’ will only consider
the clustering result of the first cutoff. If you want to work on an alternative cutoff, you have to
manually reorder/remove columns.

Value

Returns a data frame of two columns.

cluster size This column lists cluster sizes

count This column lists number of clusters of a cluster size

Author(s)

Y. Eddie Cao

See Also

cmp.cluster, cluster.visualize

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)

Binning clustering using variable similarity cutoffs.
cluster <- cmp.cluster(db=apset, cutoff = c(0.65, 0.5))

Statistics on sizes of clusters
cluster.sizestat(cluster[,c(1,2,3)])
cluster.sizestat(cluster[,c(1,4,5)])

cluster.visualize 25

cluster.visualize visualize clustering result using multi-dimensional scaling

Description

’cluster.visualize’ takes clustering result returned by ’cmp.cluster’ and generate multi-dimensional
scaling plot for visualization purpose.

Usage

cluster.visualize(db, cls, size.cutoff, distmat=NULL, color.vector=NULL, non.interactive="", cluster.result=1, dimensions=2, quiet=FALSE, highlight.compounds=NULL, highlight.color=NULL, ...)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

cls The clustering result returned by ’cmp.cluster’.

size.cutoff The cutoff size for clusters considered in this visualization. Clusters of size
smaller than the cutoff will not be considered.

distmat A distance matrix that corresponds to the ’db’. If not provided, it will be com-
puted on-the-fly in an efficient manner.

color.vector Colors to be used in the plot. If the number of colors in the vector is not enough
for the plot, colors will be reused. If not provided, color will be generated and
randomly sampled from ’rainbow’.

non.interactive

If provided, will enable the non-interactive mode, and the plot will be in an eps
file named after this value.

cluster.result Used to select the clustering result if multiple clustering results are present in
’cls’.

dimensions Dimensionality to be used in visualization. See details.

quiet Whether to supress the progress bar.

highlight.compounds

A vector of compound IDs, corresponding to compounds to be highlighted in
the plot. A highlighted compound is represented as a filled circle.

highlight.color

Color used for highlighted compounds. If not set, a highlighted compounds will
have the same color as that used for other compounds in the same cluster.

... Further arguments will be passed to ’cmp.similarity’ to calculate similarity ma-
trix.

26 cluster.visualize

Details

’cluster.visualize’ internally calls the ’cmdscale’ function to generate a set of points in 2-D for the
compounds in selected clusters. Note that for compounds in clusters smaller than the cutoff size,
they will not be considered in this calculation - their entries in ’distmat’ will be discarded if ’distmat’
is provided, and distances involving them will not be computed if ’distmat’ is not provided.

To determine the value for ’size.cutoff’, you can use ’cluster.sizestat’ to see the size distribution of
clusters.

Because ’cmp.cluster’ function allows you to perform multiple clustering processes simultaneously
with different cutoff values, the ’cls’ parameter may point to a data frame containing multiple
clustering results. The user can use ’cluster.result’ to specify which result to use. By default, this
is set to 1, and the first clustering result will be used in visualization. Whatever the value is, in
interactive mode (described below), all clustering result will be displayed when a compound is
selected in the interactive plot.

If the colors provided in ’color.vector’ are not enough to distinguish clusters by colors, the function
will silently reuse the colors, resulting multiple clusters colored in the same color. We suggest you
use ’cluster.sizestat’ to see how many clusters will be selected using your ’size.cutoff’, or simply
provide no ’color.vector’.

If ’non.interative’ is not set, the final plot is interactive. You will be able to select points by clicking
them. When you click on any point, information about the compound represented by that point will
be displayed. This includes the cluster ID, cluster size, compound index in the SDF and compound
name if any. You can then perform another selection. To exit this process, right click on X11 device
or press ESC in non-X11 device (Quartz and Windows).

By default, ’dimensions’ is set to 2, and the built-in ’plot’ function will be used for plotting. If you
need to do 3-Dimensional plotting, set ’dimensions’ to 3, and pass the returned value to 3D plot
utilities, such as ’scatterplot3d’ or ’rggobi’. This package does not perform 3D plot on its own.

Value

This function returns a data frame of MDS coordinates and clustering result. This value can be
passed to 3D plot utilities such as ’scatterplot3d’ and ’rggobi’.

The last column of the output gives whether the compounds have been clicked in the interactive
mode.

Author(s)

Y. Eddie Cao

See Also

cmp.parse, cmp.cluster, cluster.sizestat

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching

cmp.cluster 27

apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

cluster db with 2 cutoffs
clusters <- cmp.cluster(db, cutoff=c(0.5, 0.4))

Return size stats
sizestat <- cluster.sizestat(clusters)

Visualize results, using a cutoff of 3, write to file ’test.eps’
coord <- cluster.visualize(db, clusters, 2, non.interactive="test.eps")

Not run:
visualize it in interactive mode, using a cutoff of 3 and the 2nd clustering result
coord <- cluster.visualize(db, clusters, cluster.result=2, 3)

3D visualization with scatterplot3d
coord <- cluster.visualize(db, clusters, 3, dimensions=3)
library(scatterplot3d)
scatterplot3d(coord)

End(Not run)

cmp.cluster cluster compounds using a descriptor database

Description

’cmp.cluster’ uses structural compound descriptors and clusters the compounds based on their pair-
wise distances. cmp.cluster uses single linkage to measure distance between clusters when it
merges clusters. It accepts both a single cutoff and a cutoff vector. By using a cutoff vector, it can
generate results similar to hierarchical clustering after tree cutting.

Usage

cmp.cluster(db, cutoff, is.similarity = TRUE, save.distances = FALSE,
use.distances = NULL, quiet = FALSE, ...)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

cutoff The clustering cutoff. Can be a single value or a vector. The cutoff gives the
maximum distance between two compounds in order to group them in the same
cluster.

28 cmp.cluster

is.similarity Set when the cutoff supplied is a similarity cutoff. This cutoff is the minimum
similarity value between two compounds such that they will be grouped in the
same cluster.

save.distances whether to save distance for future clustering. See details below.

use.distances Supply pre-computed distance matrix.

quiet Whether to suppress the progress information.

... Further arguments to be passed to cmp.similarity.

Details

cmp.cluster will compute distances on the fly if use.distances is not set. Furthermore, if
save.distances is not set, the distance values computed will never be stored and any distance
between two compounds is guaranteed not to be computed twice. Using this method, cmp.cluster
can deal with large databases when a distance matrix in memory is not feasible. The speed of the
clustering function should be slowed when using a transient distance calculation.

When save.distances is set, cmp.cluster will be forced to compute the distance matrix and save
it in memory before the clustering. This is useful when additional clusterings are required in the
future without re-computed the distance matrix. Set save.distances to TRUE if you only want to
force the clustering to use this 2-step approach; otherwise, set it to the filename under which you
want the distance matrix to be saved. After you save it, when you need to reuse the distance matrix,
you can ’load’ it, and supply it to cmp.cluster via the use.distances argument.

cmp.cluster supports a vector of several cutoffs. When you have multiple cutoffs, cmp.cluster
still guarantees that pairwise distances will never be recomputed, and no copy of distances is kept
in memory. It is guaranteed to be as fast as calling cmp.cluster with a single cutoff that results in
the longest processing time, plus some small overhead linear in processing time.

Value

Returns a data.frame. Besides a variable giving compound ID, each of the other variables in the
data frame will either give the cluster IDs of compounds under some clustering cutoff, or the size
of clusters that the compounds belong to. When N cutoffs are given, in total 2*N+1 variables will
be generated, with N of them giving the cluster ID of each compound under each of the N cutoffs,
and the other N of them giving the cluster size under each of the N cutoffs. The rows are sorted by
cluster sizes.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.similarity

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

cmp.duplicated 29

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads atom pair and atom pair fingerprint samples provided by library
data(apset)
db <- apset
fpset <- desc2fp(apset)

Clustering of ’APset’ object with multiple cutoffs
clusters <- cmp.cluster(db=apset, cutoff=c(0.5, 0.85))

Clustering of ’FPset’ object with multiple cutoffs. This method allows to call
various similarity methods provided by the fpSim function.
clusters2 <- cmp.cluster(fpset, cutoff=c(0.5, 0.7), method="Tversky")

Saves the distance matrix before clustering:
clusters <- cmp.cluster(db, cutoff=0.65, save.distances="distmat.rda")
Later one reload the matrix and pass it the clustering function.
load("distmat.rda")
clusters <- cmp.cluster(db, cutoff=0.60, use.distances=distmat)

cmp.duplicated quickly detect compound duplication in a descriptor database

Description

’cmp.duplicated’ detects duplicated compounds from a descriptor database generated by ’cmp.parse’.
Two compounds are said to duplicate each other when their descriptors are the same.

Usage

cmp.duplicated(db, sort = FALSE, type=1)

Arguments

db The desciptor database, in the format returned by ’cmp.parse’.

sort Whether to sort the descriptors for a compound. See details.

type Returns results as vector (type=1) or data frame (type=2).

Details

’cmp.duplicated’ will take the descriptors in the descriptor database, concatenate all descriptors for
the same compound into a string, and use this string as the identification of a compound. If two
compounds share the same identification string, they are said to duplicate each other.

’cmp.duplicated’ assume the the database passed in as argument to follow the format generated by
’cmp.parse’. That is, ’db’ is a list, ’db$descdb’ is a list, and each entry of ’db$descdb’ is an array of
numeric values that give descriptors for one compound.

30 cmp.duplicated

By default, ’cmp.duplicated’ will assume the descriptors for a compound is already sorted. That is
each entry in ’db\$descdb’ is a sorted array. This is true for database generated by ’cmp.parse’. If
you generate the database using some other tools, you might want to enable sorting.

Value

Returns a logic array, telling whether a compound in the database is a duplication of a compound
appearing before this one. For example, if the i-th element of the array is TRUE, it means that the
i-th compound in the database is a duplication of a compound listed before this compound in the
database.

The returned array can be used to remove duplication. Simply use it to index the descriptor database.

If you are interested in what compound is duplicated, you can do a search in the database with cutoff
set to 1.

Author(s)

Y. Eddie Cao

See Also

cmp.parse, cmp.search

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

Manually create a duplication (here compound 1 and 10)
db[10] <- db[1]

Find duplication
dup <- cmp.duplicated(db)
dup
cid(db[dup])

Remove all duplications
db <- db[!dup]

cmp.parse 31

cmp.parse Parse an SDF file and compute descriptors for all compounds

Description

’cmp.parse’ will take a SDF file, parse all the compounds encoded, compute their atom-pair descrip-
tors, and return the descriptors as a list. The list contains two names, ’descdb’ and ’cids’. ’descdb’
is a vector of descriptors, and ’cids’ is a list of names of compounds found in the SDF file. The
returned list is usually used to a database, against which similarity search can be performed using
the ’search’ function. These two functions will parse all compounds in the SDF file. To parse a
single compound, use ’cmp.parse1’ instead.

Usage

cmp.parse(filename, quiet=FALSE, type="normal", dbname="")

Arguments

filename The file name of the SDF file

quiet Whether to silent the output of progress information

type Database type. Use the default value, or set to ’file-backed’ when the library is
large. See below.

dbname Datbase name. Only used when the type is set to ’file-backed’.

Details

The ’filename’ can be a local file or an URL. It is interactive, and will display the parsing progress.
Since the parsing will also compute of atom-pair descriptors, it is time consuming. You will be
reminded to save the parsing result for future use at the end of parsing.

’type’ is either set to the default value ’normal’ or ’file-backed’. When set to ’file-backed’, the
parsing work will be delegated to a separate package called ’ChemmineRpp’, and the database will
be stored in a file instead of in the primary memory. Therefore, ’file-backed’ mode can handle
larger compound libraries. In ’file-backed’ mode, ’dbname’ will be used to name the database file.
A suffix ’.cdb’ will be appended to the given name.

The type of the database is transparent to other part of the package. For example, calling ’cmp.search’
against a database in ’file-backed’ mode will cause the package to load the descriptors from the
database file progressively.

Value

Return a list that can be used as the database against which similarity search can be performed. The
’search’ and ’cmp.cluster’ functions both expect a database returned by ’cmp.parse’.

descdb A vector containing the descriptors for all the compounds.

cids Compound ID information found in the SDF file. It is the first line of SDF of a
compound.

32 cmp.parse1

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse1, cmp.search, cmp.cluster, cmp.similarity

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset
(optinally) save the db for future use
save(db, file="db.rda", compress=TRUE)
...
later, in a separate session, you can load it back:
load("db.rda")

cmp.parse1 Parsing an SDF file and calculate the descriptor for one compound

Description

Read SDF information from an SDF file or connection, parse the first compound, and calculate
the descriptor for that compound. The returned descriptor can be added to database returned
by ’cmp.parse’ or be used as the query structure when calling ’search’. This function will only
parse one compound and return only the descriptor. To parse all compounds in an SDF file, use
’cmp.parse’.

Usage

cmp.parse1(filename)

Arguments

filename The file name of the SDF file or a URL or a connection.

cmp.search 33

Details

’cmp.parse1’ can take a file name or a URL or a connection. When a connection is used, the current
line must be the first line of SDF of the compound to be parsed. ’cmp.parse1’ will skip the header
and parse from the 4th line. Therefore, the compound ID information will be skipped. After the
parsing is done, if ’filename’ is a connection, it will then point to the line after the connection table
of SDF. You can use some other procedure to parse the annotation block.

Value

Return the descriptor, which is encoded as a vector.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse, cmp.search, cmp.cluster, cmp.similarity

Examples

load an SDF file from web and parse it
Not run: structure <- cmp.parse1("http://bioweb.ucr.edu/ChemMineV2/compound/Aurora/b32:NNQS2MBRHAZTI===/sdf")

cmp.search Search a descriptor database for compounds similar to query com-
pound

Description

Given descriptor of a query compound and a database of compound descriptors, search for com-
pounds that are similar to the query compound. User can limit the output by supplying a cutoff
similarity score or a cutoff that limits the number of returned compounds. The function can also
return the scores together with the compounds.

Usage

cmp.search(db, query, type=1, cutoff = 0.5, return.score = FALSE, quiet = FALSE,
mode = 1, visualize=FALSE, visualize.browse=TRUE, visualize.query=NULL)

34 cmp.search

Arguments

db The compound descriptor database returned by ’cmp.parse’.

query The query descriptor, which is usually returned by ’cmp.parse1’.

type Returns results in form of position indices (type=1), named vector with com-
pound IDs (type=2) or data frame (type=3).

cutoff The cutoff similarity (when cutoff <= 1) or the number of maximum compounds
to be returned (when cutoff > 1).

return.score Whether to return similarity scores. If set to TRUE, a data frame will be re-
turned; otherwise, only the compounds’ indices in the database will be returned
in the order of decreasing scores.

quiet Whether to disable progress information.

mode Mode used when computing similarity scores. This value is passed to ’cmp.similarity’.

visualize Whether to visualize the search result in a webpage.
visualize.browse

Whether to open the browser automatically if you choose to visualize the search
result.

visualize.query

Filename/URL or a character string containing the SDF of the query structure if
you also want to visualize the query in the search result visualization webpage.

Details

’cmp.search’ will go through all the compound descriptors in the database and calculate the simi-
larity between the query compound and compounds in the database. When cutoff similarity score
is set, compounds having a similarity score higher than the cutoff will be returned. When maxi-
mum number of compounds to return is set to N via ’cutoff’, the compounds having the highest N
similarity scores will be returned.

If ’visualize’ is set to a TRUE value, sdf.visualize will be called to send the search results and the
scores to ChemMine website. If ’visualize.browse’ is set to a TRUE value, the browser will open to
show the structures in the search result with their corresponding scores. Otherwise, a URL pointing
to that webpage will be printed. By default, ’visualize.query’ is not set, and the query structure will
not be uploaded. If you want that to be included in the visualization webpage as well, you must set
this argument to a character string containing the SDF of the query, or a filename pointing to a file
containing the SDF of the query. If the character string or the file containing multiple SDFs, only
the first will be considered as the SDF of the query.

Value

When ’return.score’ is set to FALSE, a vector of matching compounds’ indices in the database will
be returned. Otherwise, a data frame will be returned:

ids The indices of matching compounds in the database.

scores The similarity scores between the matching compounds and the query com-
pound

cmp.similarity 35

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.cluster, cmp.similarity, sdf.visualize

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset
query <- db[1]

Ooptinally, save the db for future use
save(db, file="db.rda", compress=TRUE)

Search for similar compounds using similarity cutoff
cmp.search(db, query, cutoff=0.2, type=1) # returns index
cmp.search(db, query, cutoff=0.2, type=2) # returns named vector
cmp.search(db, query, cutoff=0.2, type=3) # returns data frame

you may visualize the search result in ChemMine
Not run: cmp.search(db, query, cutoff=10, visualize=TRUE, visualize.browse=FALSE, visualize.query=url)

in the next session, you may use load a saved db and do the search:
load("db.rda")
cmp.search(db, query, cutoff=3)
you may also use the loaded db to do clustering:
cmp.cluster(db, cutoff=0.35)

cmp.similarity Compute similarity between two compounds using their descriptors

Description

Given descriptors for two compounds, ’cmp.similarity’ returns the similarity measure between the
two compounds.

36 cmp.similarity

Usage

cmp.similarity(a, b, mode = 1, worst = 0)

Arguments

a Descriptor of the first compound.

b Descriptor of the second compound.

mode Mode used when computing the distance. See details below.

worst The worst value you are expecting. If ’cmp.similarity’ finds the upper bound of
similarity is worse than it, it will return a 0 and potentially save some computa-
tion.

Details

’cmp.similarity’ uses descriptor information generated by ’cmp.parse’ and ’cmp.parse1’. Basically,
a descriptor is a vector of numbers. The vector actually reprsents the set of descriptors of structural
fragment. Similarity measurement uses Tanimoto coefficient.

’cmp.similarity’ supports 3 different modes. In mode 1, normal Tanimoto coefficient is used. In
mode 2, it uses the size of descriptor intersection over the size of the smaller descriptor, mainly to
deal with compounds that vary a lot in size. In mode 3, it is similar to mode 2, except that it raises
the similarity to the power 3 to penalize small values. When mode is 0, ’cmp.similarity’ will select
mode 1 or mode 3, based on the size differences between the two descriptors.

When ’cmp.similarity’ is used in searching compounds with a threshold similarity value, or in
clustering with a cutoff distance, the threshold similarity and cutoff distance can be used to decide a
’worse’ value. ’cmp.similarity’ can compute an upper bound of similarity easier, and by comparing
this upper bound to the ’worst’ value, it can potentially skip the real computation if it finds the
similarity will be below the ’worst’ value and will be useless to the caller.

Value

Return a numeric value between 0 and 1 which gives the similarity between the two compounds.

Author(s)

Y. Eddie Cao, Li-Chang Cheng

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem Inf
Comput Sci.

Peter Willett (1998). "Chemical Similarity Searching", in J. Chem. Inf. Comput. Sci.

See Also

cmp.parse1, cmp.parse, cmp.search, cmp.cluster

conMA 37

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)

Compute similarities among two compounds
cmp.similarity(apset[1], apset[2])

Search apset database with a query compound
cmp.search(apset, apset[1], type=3, cutoff = 0.3)

conMA Bond Matrices

Description

Creates a bond matrix from SDF and SDFset objects. The matrix contains the atom labels in the row
and column titles and the bond types are given in the data part as follows: 0 is no connection, 1 is a
single bond, 2 is a double bond and 3 is a triple bond.

Usage

conMA(x, exclude = "none")

Arguments

x SDF or SDFset containers

exclude if exclude="none", then all atoms will be considered in the resulting connection
table; if exclude=c("H"), then the H atoms will be excluded. Any number
of atom labels to be excluded can be passed on to this argument in form of a
character vector.

Details

...

Value

If x is of class SDF, then a single bond matrix is returned. If x is of class SDFset, then a list of
matrices is returned that has the same length as x.

Author(s)

Thomas Girke

38 datablock

References

...

See Also

Functions: bonds

Class: SDF and SDFset

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Create bond matrix for first two molecules in sdfset
conMA(sdfset[1:2], exclude=c("H"))

Return bond matrix for first molecule and plot its structure with atom numbering
conMA(sdfset[[1]], exclude=c("H"))
plot(sdfset[1], atomnum = TRUE, noHbonds=FALSE , no_print_atoms = "", atomcex=0.8)

Return number of non-H bonds for each atom
rowSums(conMA(sdfset[[1]], exclude=c("H")))

datablock Return data block

Description

Returns data block(s) from an object of class SDF or SDFset.

Usage

datablock(x)

datablocktag(x, tag)

Arguments

x object of class SDF or SDFset

tag numeric position (index) or character name of entry in data block vector

Details

...

datablock2ma 39

Value

named character vector if SDF is provided or list of named character vectors if SDFset is
provided

Author(s)

Thomas Girke

References

...

See Also

atomblock, atomcount, bondblock, header, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract data block
datablock(sdf)
datablock(sdfset[1:4])
datablocktag(sdfset, tag="PUBCHEM_OPENEYE_CAN_SMILES")

Replacement methods
sdfset[[1]][[1]][1] <- "test"
sdfset[[1]]
datablock(sdfset)[1] <- datablock(sdfset[2])
view(sdfset[1:2])

Example for injecting a custom matrix/data frame into the data block of an
SDFset and then writing it to an SD file
props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props
view(sdfset[1:4])
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)

datablock2ma SDF data blocks to matrix

Description

Convert data blocks in SDFset to character matrix with datablock2ma, then store its numeric
columns as numeric matrix and its character columns as character matrix.

40 datablock2ma

Usage

datablock2ma(datablocklist, cleanup = " \\(.*", ...)

splitNumChar(blockmatrix)

Arguments

datablocklist list of data block vectors; can be created with datablock(sdfset)

blockmatrix matrix returned by datablock2ma

cleanup character pattern to be used to clean up the name fields of the data block
vectors; the exact pattern matches are replaced by nothing (deleted).

... option to pass on additional arguments

Details

...

Value

datablock2ma character matrix

splitNumChar list with two components, a numeric matrix and a character matrix

Author(s)

Thomas Girke

References

...

See Also

Classes: SDFset

Examples

SDFset instance
data(sdfsample)
sdfset <- sdfsample

Convert data block to matrix
blockmatrix <- datablock2ma(datablocklist=datablock(sdfset))
blockmatrix[1:4, 1:4]

Split matrix to numeric matrix and character matrix
numchar <- splitNumChar(blockmatrix=blockmatrix)
names(numchar)

db.explain 41

numchar[[1]][1:4,]
numchar[[2]][1:4,]

db.explain Explain an atom-pair descriptor or an array of atom-pair descriptors

Description

’db.explain’ will take an atom-pair descriptor in numeric or a set of such descriptors, and interpret
what they represent in a more human readable way.

Usage

db.explain(desc)

Arguments

desc The descriptor or the array/vector of descriptors

Details

’desc’ can be a single numeric giving a single descriptor or can be any container data type, such as
vector or array, such that ’length(desc)’ returns 2 or larger.

Value

Return a character vector describing the descriptors.

See Also

cmp.parse

Examples

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

Return atom pairs of first compound in human readable format
db.explain(db[1])

42 db.subset

db.subset Subset a descriptor database and return a sub-database for the se-
lected compounds

Description

’db.subset’ will take a descriptor database generated by ’cmp.parse’ and an array of indecies, and
return a new database for compounds corresponding to these indecies. The returned value is a
descriptor database as returned by the cmp.parse function.

Usage

db.subset(db, cmps)

Arguments

db The database generated by ’cmp.parse’

cmps An array of indecies that correspond to a set of selected compounds from the
database

Details

’db.subset’ creates a sub-database from ’db’ by only including infomration that is relevant to com-
pounds indexed by ’cmps’.

Value

Return a descriptor database for the selected compounds. The format of the database is compatible
with the one returned by cmp.parse.

See Also

cmp.parse, sdf.subset

Examples

Note: this functionality has become obsolete since the introduction of the
’apset’ S4 class.

Load sample SD file
data(sdfsample); sdfset <- sdfsample

Generate atom pair descriptor database for searching
apset <- sdf2ap(sdfset)

Loads same atom pair sample data set provided by library
data(apset)
db <- apset

desc2fp 43

olddb <- apset2descdb(db)

Create a sub-database for the 1st and 2nd compound in that SDF
db_sub <- db.subset(olddb, c(1, 2))

desc2fp Fingerprints from descriptor vectors

Description

Generates fingerprints from descriptor vectors such as atom pairs stored in APset or list con-
tainers. The obtained fingerprints can be used for structure similarity comparisons, searching and
clustering. Due to their compact size, computations on fingerprints are often more time and memory
efficient than on their much more complex atom pair counterparts.

Usage

desc2fp(x, descnames=1024, type = "FPset")

Arguments

x Object of classe APset or list of vectors

descnames Descriptor set to consider for fingerprint encoding. If a single value from 1-
4096 is provided then the function uses the corresponding number of the most
frequent atom pairs stored in the apfp data set provided by the package. Al-
ternatively, one can provide here any custom atom pair selection in form of a
character vector.

type return fingerprint set as FPset, matrix or character vector

Details

...

Value

matrix or character vectors

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

44 findCompounds

See Also

Functions: sdf2ap, SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Related classes: SDF, SDFset, SDFstr, APset.

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:10]

Compute atom pair library
apset <- sdf2ap(sdfset)

Compute atom pair fingerprint matrix using internal atom pair
selection containing 4096 most common atom pairs in DrugBank.
For details see ?apfp. The following example uses from this
set the 1024 most frequent atom pairs:
fpset <- desc2fp(x=apset, descnames=1024, type="FPset")

Alternatively, one can provide any custom atom pair selection. Here
1024 most common ones in apset object.
fpset1024 <- names(rev(sort(table(unlist(as(apset, "list")))))[1:1024])
fpset2 <- desc2fp(x=apset, descnames=fpset1024, type="FPset")

A more compact way of storing fingerprints is as character values
fpchar <- desc2fp(x=apset, descnames=1024, type="character")

Convert character fingerprints back to FPset or matrix
fpset <- as(fpchar, "FPset")
fpma <- as.matrix(fpset)

Similarity searching returning Tanimoto similarity coefficients
fpSim(x=fpset[1], y=fpset)

Clustering example
simMAap <- sapply(cid(fpset), function(x) fpSim(x=fpset[x], fpset, sorted=FALSE))
hc <- hclust(as.dist(1-simMAap), method="single")
plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

findCompounds Find Compounds in Database

Description

Searches the SQL database using features computed at load time. Each feature used should be
specified in the featureNames parameter. Then a set of filters can be given to search for specific
compounds.

findCompounds 45

Usage

findCompounds(conn, featureNames, tests)

Arguments

conn A database connection object, such as is returned by initDb.

featureNames A list of all feature names used in any test.

tests A vector of filters that must all be true for a compound to be returned. For
example: c("MW <= 400","RINGS > 3") would return all compounds with a
molecular weight of 400 or less and a more than 3 rings, assuming these fea-
tures exist in the database. The syntax for each test is "<feature name> <SQL
operator> <value>". These tests will simply be concatenated together with "
AND " in-between them and tacked on the end of a WHERE clause of an SQL
statement. So any SQL that will work in that context is fine.

Value

Returns a list of compound ids. The actual compounds can be fetched with getCompounds.

Author(s)

Kevin Horan

See Also

getCompounds

Examples

#create and initialize a new SQLite database
conn = initDb("test1.db")

data(sdfsample)

#load data and compute 3 features: molecular weight, with the MW function,
and counts for RINGS and AROMATIC, as computed by rings, which returns a data frame itself.
ids=loadSdf(conn,sdfsample,

function(sdfset)
data.frame(MW = MW(sdfset), rings(sdfset,type="count",upper=6, arom=TRUE))
)
#search for compounds with molecular weight less than 200
lightIds = findCompounds(conn,"MW",c("MW < 200"))
MW(getCompounds(conn,lightIds)) # should find one compound with weight 140

unlink("test1.db")

46 findCompoundsByName

findCompoundsByName Find compound by name

Description

Find the ids of compounds given the names.

Usage

findCompoundsByName(conn, names, keepOrder = FALSE)

Arguments

conn A database connection object, such as is returned by initDb.

names A list of names of compounds to search for. The names are those that would be
returned by sdfid. An error will be raised if any names are not found.

keepOrder If true, the order of the output compound ids will be the same as the input names.
This imposes a performance hit that can be significant for large datasets, thus it
should be left FALSE unless needed.

Value

Returns the compound ids for compounds with the given name. The output order is not guaranteed
unless keepOrder is set to TRUE. An error will be raised if any name cannot be found.

Author(s)

Kevin Horan

Examples

#create and initialize a new SQLite database
conn = initDb("test4.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=loadSdf(conn,sdfsample)

find id of compound 650003
findCompoundsByName(conn,c("650003"))

unlink("test4.db")

FP-class 47

FP-class Class "FP"

Description

Container for storing the fingerprint of a single compound. The FPset class is used for storing the
fingerprints of many compounds.

Objects from the Class

Objects can be created by calls of the form new("FP", ...).

Slots

fp: Object of class "numeric"

Methods

as.character signature(x = "FP"): returns fingerprint as character string

as.numeric signature(x = "FP"): returns fingerprint as numeric vector

as.vector signature(x = "FP"): returns fingerprint as numeric vector

coerce signature(from = "FPset", to = "FP"): coerce FPset component to list with many
FP objects

coerce signature(from = "numeric", to = "FP"): construct FP object from numeric vector

show signature(object = "FP"): prints summary of FP

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem
Inf Comput Sci.

See Also

Related classes: SDF, SDFset, SDFstr, AP, APset, FPset.

48 fp2bit

Examples

showClass("FP")

Instance of FP class
data(apset)
fpset <- desc2fp(apset)
(fp <- fpset[[1]])

Class usage
fpc <- as.character(fp)
fpn <- as.numeric(fp)
as(fpn, "FP")
as(fpset[1:4], "FP")

fp2bit Convert base 64 fingerprints to binary

Description

The function converts the base 64 encoded PubChem fingerprints to a binary matrix or a character
vector. If applied to a SDFset object, then its data block needs to contain the PubChem fingerprint
information.

Usage

fp2bit(x, type = 3, fptag = "PUBCHEM_CACTVS_SUBSKEYS")

Arguments

x Object of class SDFset, matrix or character

type If set to 1, the results are returned as binary matrix. If set to 2, the results are
returned as character strings in a named vector. If set to 3 (default), the results
are returned as FPset object.

fptag Name tag in SDF data block where the PubChem fingerprints are stored. Default
is set to "PUBCHEM_CACTVS_SUBSKEYS".

Details

...

Value

matrix, character or FPset

Author(s)

Thomas Girke

FPset-class 49

References

See PubChem fingerprint specification at: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

See Also

Functions: fpSim

Examples

Load PubChem SDFset sample
data(sdfsample); sdfset <- sdfsample
cid(sdfset) <- sdfid(sdfset)

Convert base 64 encoded fingerprints to FPset object
fpset <- fp2bit(sdfset)

Pairwise compound structure comparisons
fpSim(fpset[1], fpset[2])

Structure similarity searching: x is query and y is fingerprint database
fpSim(x=fpset[1], y=fpset, method="Tanimoto", cutoff=0, top="all")

Compute fingerprint based Tanimoto similarity matrix
simMA <- sapply(cid(fpset), function(x) fpSim(x=fpset[x], fpset, sorted=FALSE))

Hierarchical clustering with simMA as input
hc <- hclust(as.dist(1-simMA), method="single")

Plot hierarchical clustering tree
plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

FPset-class Class "FPset"

Description

Container for storing fingerprints of a many compounds. This container is used for structure simi-
larity searching of compounds.

Objects from the Class

Objects can be created by calls of the form new("FPset", ...).

Slots

fpma: Object of class "matrix" with compound identifiers stored in row names

50 FPset-class

Methods

[signature(x = "FPset"): subsetting of class with bracket operator

[[signature(x = "FPset"): returns single component as FP object

[<- signature(x = "FPset"): replacement method for several components

as.character signature(x = "FPset"): returns content as named character vector

as.matrix signature(x = "FPset"): returns content as numeric matrix

c signature(x = "FPset"): concatenates two FPset containers

cid signature(x = "FPset"): returns all compound identifiers from row names

cid<- signature(x = "FPset"): replacement method for compound identifiers

coerce signature(from = "FPset", to = "FP"): as(fpset, "FP")

coerce signature(from = "matrix", to = "FPset"): as(fpma, "FPset")

coerce signature(from = "character", to = "FPset"): as(fpchar, "FPset")

length signature(x = "FPset"): returns number of entries stored in object

show signature(object = "FPset"): prints summary of FPset

view signature(x = "FPset"): prints extended summary of FPset

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", in J Chem
Inf Comput Sci.

See Also

Related classes: SDF, SDFset, SDFstr, AP, APset, FP.

Examples

showClass("FPset")

Instance of FPset class
data(apset)
(fpset <- desc2fp(apset))
view(fpset)

Class usage
fpset[1:4] # behaves like a list
fpset[[1]] # returns FP object
length(fpset) # number of compounds
cid(fpset) # returns compound ids
fpset[1] <- 0 # replacement
cid(fpset) <- 1:length(fpset) # replaces compound ids

fpSim 51

c(fpset[1:4], fpset[11:14]) # concatenation

Coerce FPset from/to other objects
fpma <- as.matrix(fpset) # coerces to matrix
fpchar <- as.character(fpset) # coerces to character strings
as(fpma, "FPset")
as(fpchar, "FPset")

Compound similarity searching with FPset
fpSim(x=fpset[1], y=fpset, method="Tanimoto", cutoff=0.4, top=4)

fpSim Fingerprint Search

Description

Search function for fingerprints, such as PubChem or atom pair fingerprints. Enables structure
similarity comparisons, searching and clustering.

Usage

fpSim(x, y, sorted=TRUE, method="Tanimoto", addone=1, cutoff=0, top="all", alpha=1, beta=1, ...)

Arguments

x Query molecule of class numeric, FP or FPset (of length one) containing binary
fingerprint data. Both x and y need to have the same number of bits and should
contain the same type of fingerprints.

y Subject molecule(s) of class numeric, matrix, FP or FPset containing binary
fingerprint data.

sorted return results sorted or unsorted

method Similarity coefficient to return. One can choose here from several predefined
similarity measures: "Tanimoto" (default), "Euclidean", "Tversky" or "Dice".
Alternatively, one can pass on any custom similarity function containing the
arguments a, b, c and d. For instance, one can define "myfct <- function(a, b, c,
d) c/(alpha*a + beta*b + c)" and then pass on method=myfct. The variable ’c’ is
the number of "on-bits" common in both compounds, ’d’ is the number of "off-
bits" common in both compounds, and ’a’ and ’b’ are the number of "on-bits"
that are unique in one or the other compound, respectively.

addone Value to add to numerator and denominator of similarity coefficient to avoid
devision by zero when fingerprint(s) contain only "off-bits" (zeros). Note: if
addone > 0 then fingerprints with no "on-bits" will receive the highest similarity
score. Typically, this occurs only with extremely small molecules.

cutoff allows to restrict results to hits above a similarity cutoff value; default cutoff=0
returns results for all compounds in y.

52 fpSim

top allows to restrict number of subject molecules to return; default top="all" re-
turns results for all compounds in y above cutoff value.

alpha Only used when method="Tversky". Allows to specify the weighting variable
’alpha’ of the Tversky index: c/(alpha*a + beta*b + c)

beta Only used when method="Tversky". Allows to specify the weighting variable
’beta’ of the Tversky index.

... arguments to be passed to/from other methods.

Details

...

Value

Returns numeric vector with similarity coefficients as values and compound identifiers as names.

Note

...

Author(s)

Thomas Girke

References

Tanimoto similarity coefficient: Tanimoto TT (1957) IBM Internal Report 17th Nov see also Jaccard
P (1901) Bulletin del la Societe Vaudoisedes Sciences Naturelles 37, 241-272.

PubChem fingerprint specification: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

See Also

Functions: fp2bit

Examples

Load PubChem SDFset sample
data(sdfsample); sdfset <- sdfsample
cid(sdfset) <- sdfid(sdfset)

Convert base 64 encoded fingerprints to character vector or binary matrix
fpset <- fp2bit(sdfset)

Alternatively, one can use atom pair fingerprints
Not run:
fpset <- desc2fp(sdf2ap(sdfset))

End(Not run)

Pairwise compound structure comparisons

fromNNMatrix 53

fpSim(x=fpset[1], y=fpset[2], method="Tanimoto")

Structure similarity searching: x is query and y is fingerprint database
fpSim(x=fpset[1], y=fpset)

Controlling the output
fpSim(x=fpset[1], y=fpset, method="Tversky", cutoff=0.4, top=4, alpha=0.5, beta=1)

Use custom distance function
myfct <- function(a, b, c, d) c/(a+b+c+d)
fpSim(x=fpset[1], y=fpset, method=myfct)

Compute fingerprint-based Tanimoto similarity matrix
simMA <- sapply(cid(fpset), function(x) fpSim(x=fpset[x], fpset, sorted=FALSE))

Hierarchical clustering with simMA as input
hc <- hclust(as.dist(1-simMA), method="single")

Plot hierarchical clustering tree
plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)

fromNNMatrix From Nearest Neighbor Matrix

Description

Converts a nearest neighbor matrix into a list that can be used with the jarvisPatrick function.

Usage

fromNNMatrix(data, names = rownames(data))

Arguments

data A matrix containing integer valued indexes which represent items to be clus-
tered. The index values contained in the matrix must be smaller than the num-
ber of rows in the matrix. Each row in the matrix represents one item and the
columns are the nearest neighbors of that item.

names The names for each row. The rownames of data will be used if not given.

Value

A list containing the slots "indexes" and "names".

Author(s)

Kevin Horan

54 getCompoundNames

See Also

jarvisPatrick

Examples

data(apset)

nn = nearestNeighbors(apset,cutoff=0.6)
nnMatrix = nn$indexes

cl = jarvisPatrick(fromNNMatrix(nnMatrix),k=2)

getCompoundNames Get Compound Names

Description

Fetch the names of the given compound ids, if they exist

Usage

getCompoundNames(conn, compoundIds)

Arguments

conn A database connection object, such as is returned by initDb.

compoundIds A vector of compound ids.

Value

Returns a vector of compound names.The rownames will be the compound ids. Compound ids not
found, or for which a name is not defined, will be represented as NA.

Author(s)

Kevin Horan

Examples

#create and initialize a new SQLite database
conn = initDb("test2.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=loadSdf(conn,sdfsample)

getCompounds 55

getCompoundNames(conn,ids[1:3])
unlink("test3.db")

getCompounds Get Compounds From Database

Description

Create SDF objects from the given set of compound ids. Id numbers can be found using the find-
Compounds function.

Usage

getCompounds(conn,compoundIds,filename=NA)

Arguments

conn A database connection object, such as is returned by initDb.

compoundIds A vector of compound ids, as returned by loadSdf or findCompounds.

filename If given, writes the compounds directly to the file named.

Value

An SDFset with the requested compounds or nothing if filename was specified. A warning will be
raised if not all compounds could be found.

Author(s)

Kevin Horan

See Also

loadSdf findCompounds.

Examples

#create and initialize a new SQLite database
conn = initDb("test3.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=loadSdf(conn,sdfsample)

#returns a SDFset with 3 compounds
getCompounds(conn, ids[1:3])

56 getIds

unlink("test3.db")

getIds Import Compounds from PubChem

Description

Accepts one or more PubChem compound ids and downloads the corresponding compounds from
PubChem Power User Gateway (PUG) returning results in an SDFset container. The ChemMine
Tools web service is used as an intermediate, to translate queries from plain HTTP POST to a PUG
SOAP query.

Usage

getIds(cids)

Arguments

cids A numeric object which contains one or more PubChem cids

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html

Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

Examples

Not run:
fetch 2 compounds from PubChem
compounds <- getIds(c(111,123))
End(Not run)

grepSDFset 57

grepSDFset String search in SDFset

Description

Convenience grep function for string searching in SDFset containers.

Usage

grepSDFset(pattern, x, field = "datablock", mode = "subset", ignore.case = TRUE, ...)

Arguments

pattern search pattern

x SDFset

field delimits search to specific section in SDF; can be header, atomblock, bondblock
or datablock

mode if mode = "index", then the match positions are returned as vector; if mode = "subset",
a list with SDF components is returned where every entry has at least one query
match

ignore.case TRUE turns off case sensitivity

... option to pass on additional arguments

Details

...

Value

numeric index vector where the name field contains the component positions in the SDFset
and the values the row positions in each sub-component.

list if mode = "subset"

Author(s)

Thomas Girke

References

...

See Also

Class: SDFset

58 groups

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

String Searching in SDFset
q <- grepSDFset("65000", sdfset, field="datablock", mode="subset")
as(q, "SDFset")
grepSDFset("65000", sdfset, field="datablock", mode="index")

groups Enumeration of Functional Groups and Atom Neighbors

Description

Returns frequency information of functional groups in molecules provided as SDF or SDFset objects.
Alternatively, the function can return for each atom its atom/bond neighbor information.

Usage

groups(x, groups = "fctgroup", type = "countMA")

Arguments

x SDF or SDFset containers

groups if groups="fctgroup", frequencies of functional groups are returned; if groups="neighbors",
atom/bond neighbor information is returned.

type if type="all", then the complete neighbor information is generated for each
atom in a molecule; if type="count", the neighbors are enumerated in a list
and if type="countMA", then the counts of atom neighbors or functional groups
are returned in a frequency matrix.

Details

At this point this function is in an experimental stage.

Value

...

Author(s)

Thomas Girke

header 59

References

...

See Also

...

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Enumerate functional groups
groups(sdfset[1:20], groups="fctgroup", type="countMA")

Report atom/bond neighbors
groups(sdfset[1:4], groups="neighbors", type="countMA")
groups(sdfset[1:4], groups="neighbors", type="count")
groups(sdfset[1:4], groups="neighbors", type="all")

header Return header block

Description

Returns header block(s) from an object of class SDF or SDFset.

Usage

header(x)

Arguments

x object of class SDF or SDFset

Details

...

Value

named character vector if SDF is provided or list of named character vectors if SDFset is
provided

Author(s)

Thomas Girke

60 initDb

References

...

See Also

atomblock, atomcount, bondblock, datablock, cid, sdfid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract header block
header(sdf)
header(sdfset[1:4])

Replacement methods
sdfset[[1]][[1]][1] <- "test"
sdfset[[1]]
header(sdfset)[1] <- header(sdfset[2])
view(sdfset[1:2])

initDb Iinitialize SQL Database

Description

This will ensure that the database connection given is ready for use. If it does not find the tables it
needs, it will try to create them.

Usage

initDb(handle)

Arguments

handle This can be either a filename, in which case we assume it is the name of an
SQLite database and use RSQLite to connect to it, or else any DBI Connection.

Value

Returns a connection object that can be used with other database oriented functions.

Author(s)

Kevin Horan

jarvisPatrick 61

See Also

RSQLite

Examples

#create and initialize a new SQLite database
conn = initDb("test.db")

jarvisPatrick Jarvis-Patrick Clustering

Description

Function to perform Jarvis-Patrick clustering. The algorithm requires a nearest neighbor table,
which consists of neighbors for each item in the dataset. This information is then used to join
items into clusters with the following requirements: (a) they are contained in each other’s neigh-
bor list (b) they share at least ’k’ nearest neighbors The nearest neighbor table can be computed
with nearestNeighbors. For standard Jarvis-Patrick clustering, this function takes the number of
neighbors to keep for each item. It also has the option of passing a cutoff similarity value instead of
the number of neighbors. In this mode, all neighbors which meet the cutoff criteria will be included
in the table. This is a setting that is not part of the original Jarvis-Patrick algorithm. It allows to gen-
erate tighter clusters and to minimize some limitations of this method, such as joining completely
unrelated items when clustering small data sets. Other extensions, such as the linkage parameter,
can also help improve the clustering quality.

Usage

jarvisPatrick(nnm, k, mode="a1a2b", linkage="single")

Arguments

nnm A nearest neighbor table, as produced by nearestNeighbors.

k Minimum number of nearest neighbors two rows (items) in the nearest neighbor
table need to have in common to join them into the same cluster.

mode If mode = "a1a2b" (default), the clustering is run with both requirements (a)
and (b); if mode = "a1b" then (a) is relaxed to a unidirectional requirement;
and if mode = "b" then only requirement (b) is used. The size of the clusters
generated by the different methods increases in this order: "a1a2b" < "a1b" <
"b". The run time of method "a1a2b" follows a close to linear relationship, while
it is nearly quadratic for the much more exhaustive method "b". Only methods
"a1a2b" and "a1b" are suitable for clustering very large data sets (e.g. >50,000
items) in a reasonable amount of time.

linkage Can be one of "single", "average", or "complete", for single linkage, average
linkage and complete linkage merge requirements, respectively. In the context
of Jarvis-Patrick, average linkage means that at least half of the pairs between
the clusters under consideration must pass the merge requirement. Similarly, for

62 jarvisPatrick

complete linkage, all pairs must pass the merge requirement. Single linkage is
the normal case for Jarvis-Patrick and just means that at least one pair must meet
the requirement.

Details

...

Value

Depending on the setting under the type argument, the function returns the clustering result in a
named vector or a nearest neighbor table as matrix.

Note

...

Author(s)

Thomas Girke

References

Jarvis RA, Patrick EA (1973) Clustering Using a Similarity Measure Based on Shared Near Neigh-
bors. IEEE Transactions on Computers, C22, 1025-1034. URLs: http://davide.eynard.it/teaching/2012_PAMI/JP.pdf,
http://www.btluke.com/jpclust.html, http://www.daylight.com/dayhtml/doc/cluster/index.pdf

See Also

Functions: cmp.cluster trimNeighbors nearestNeighbors

Examples

Load/create sample APset and FPset
data(apset)
fpset <- desc2fp(apset)

Standard Jarvis-Patrick clustering on APset/FPset objects
jarvisPatrick(nearestNeighbors(apset,numNbrs=6), k=5, mode="a1a2b")
jarvisPatrick(nearestNeighbors(fpset,numNbrs=6), k=5, mode="a1a2b")

Jarvis-Patrick clustering only with requirement (b)
jarvisPatrick(nearestNeighbors(fpset,numNbrs=6), k=5, mode="b")

Modified Jarvis-Patrick clustering with minimum similarity ’cutoff’
value (here Tanimoto coefficient)
jarvisPatrick(nearestNeighbors(fpset,cutoff=0.6, method="Tanimoto"), k=2)

Output nearest neighbor table (matrix)
nnm <- nearestNeighbors(fpset,numNbrs=6)

Perform clustering on precomputed nearest neighbor table

jarvisPatrick_c 63

jarvisPatrick(nnm, k=5)

jarvisPatrick_c Jarvis Patrick Clustering in C code

Description

This not meant to be used directly, use jarvisPatrick instead. It is exposed so other libraries can
make use of it.

Usage

jarvisPatrick_c(neighbors,minNbrs,fast=TRUE,bothDirections=FALSE,linkage = "single")

Arguments

neighbors A matrix of integers. Non integer matricies will be coerced. Each row represen-
sts one element, indexed 1 to N. The values in row i should be the index value
of the neighbors of i. Thus, each value should itself be a valid row index.

minNbrs The minimum number of common neibhbors needed for two elements to be
merged.

fast If true, only the neibhors given in each row are checked to see if they share
minNbrs neighbors in common. If false, all pairs of elements are compared. For
a matrix of size NxM, the first method yeilds a running time of O(NM), while
the second yeilds a running time of O(N^2).

bothDirections If true, two elements must contain each other in their neighbor list in order to be
merged. If false and fast is true, then only one element must contain the other as
a neighbor. If false and fast is false, than neither element must contain the other
as a neighbor, though in all cases there must still be at least minNbrs neibhros
in common.

linkage See jarvisPatrick for details.

loadSdf Load SDF Data

Description

Load an SDF formatted file or SDFSet objects into the database. This will also load arbitrary
features from the data as well as descriptor data. The fct parameter can be used to specify a
function which will compute features which will then be indexed and stored in the database. These
features can later be used to quickly search for compounds. Descriptors can also be computed and
stored in another table.

64 loadSdf

Usage

loadSdf(conn, sdfFile, fct = function(x) data.frame(), descriptors=function(x) data.frame(descriptor=c(),descriptor_type=c()),
Nlines = 10000, startline = 1, restartNlines = 1e+05)

Arguments

conn A database connection object, such as is returned by initDb.

sdfFile Either the filename of an SDF formated file, or and SDFSet object.

fct A function to extract features from the data. It will be handed an SDFSet gen-
erated from the data being loaded. This may be done in batches, so there is
no guarantee that the given SDFSset will contain the whole dataset. This func-
tion should return a data frame with a column for each feature and a row for
each compound given, and in the same order. Each of these features will be-
come a new, indexed, table in the database which can be used later to search for
compounds. The column name will become the feature name. If not given, no
features are computed.

descriptors This function will also be given an SDFSet object, which may be done in batches.
It should return a data frame with the following two columns: "descriptor" and
"descriptor_type". The "descriptor" column should contain a string representa-
tion of the descriptor, and "descriptor_type" is the type of the descriptor. Our
convention for atom pair is "ap" and "fp" for finger print. The order should be
maintained. If not given no descriptors are computed.

Nlines When reading data from a file, the number of lines to read at a time. See also
sdfStream.

startline When reading data from a file, the line number to start reading from.See also
sdfStream

restartNlines When reading data from a file and startline > 1, the number of lines to look
forward to find the start of the next compound. See also sdfStream

Details

New features can also be added using this function. However, all compounds must have all features
so if new features are added to a new set of compounds, all existing features must be computable
by the fct function given. If new features are detected, all existing compounds will be run through
fct in order to compute the new features for them as well.

For example, if dataset X is loaded with features F1 and F2, and then at a later time we load dataset
Y with new feature F3, the fct function used to load dataset Y must compute and return features
F1, F2, and F3. loadSdf will call fct with both datasets X and Y so that all features are available
for all compounds. If any features are missing an error will be raised.

If just new features are being added, but no new compounds, use the addNewFeatures function.

Value

Returns the compound id numbers of each compound loaded. These can be used to retrieve com-
pounds later. These are id numbers computed by the database and are not extracted from the com-
pound data itself.

makeUnique 65

Author(s)

Kevin Horan

See Also

sdfStream

Examples

#create and initialize a new SQLite database
conn = initDb("test6.db")

data(sdfsample)

#just load the data with no features or descriptors
ids=loadSdf(conn,sdfsample)
unlink("test6.db")

conn = initDb("test5.db")
#load data and compute 3 features: molecular weight, with the MW function,
and counts for RINGS and AROMATIC, as computed by rings, which returns a data frame itself.
ids=loadSdf(conn,sdfsample,

function(sdfset)
data.frame(MW = MW(sdfset), rings(sdfset,type="count",upper=6, arom=TRUE))
)

unlink("test5.db")

makeUnique Uniquify CMP names

Description

Creates unique CMP names by appending a counter to each duplicatation set. The function can be
used for any character vector.

Usage

makeUnique(x, silent = FALSE)

Arguments

x character vector

silent silent = TRUE suppresses message about duplicate count

Details

The function is important to maintain unique compound names in the ID slot of SDFset containers.

66 nearestNeighbors

Value

character of same length as x but without duplications

Author(s)

Thomas Girke

References

...

See Also

Functions: cid, sdfid

Examples

SDFset instance
data(sdfsample)
sdfset <- sdfsample

Create unique compound IDs
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids
cid(sdfset[1:4])

nearestNeighbors Nearest Neighbors

Description

Computes the nearest neighbors of descriptors in an FPset or APset object for use with the jarvisPatrick
clustering function. Only one of numNbrs or cutoff should be given, cutoff will take precedence
if both are given. If numNbrs is given, then that many neighbors will be returned for each item in
the set. If cutoff is given, then, for each item X, every neighbor that has a similarity value greater
than or equal to the cutoff will be returned in the neighbor list for X.

Usage

nearestNeighbors(x, numNbrs = NULL, cutoff = NULL, ...)

plotStruc 67

Arguments

x Either an FPset or an APset.

numNbrs Number of neighbors to find for each item. If not enough neighbors can be found
the matrix will be padded with NA.

cutoff The minimum similarity value an item must have to another item in order to
be included in that items neighbor list. This parameter takes precedence over
numNbrs. This parameter allows to obtain tighter clustering results.

... These parameters will be passed into the distance function used, either cmp.similarity
or fpSim, for APset and FPset, respectively.

Value

The return value is a list with the following components:

indexes index values of nearest neighbors, for each item. If cutoff is used, this will be
a list of lists, otherwise it will be a matrix

names The names of each item in the set, as returned by cid

similarities The similarity values of each neighbor to the item for that row. This will also be
either a list of lists or a matrix, depending on whether or not cutoff was used.
Each similarity values corresponds to the id number in the same position in the
indexes entry

Author(s)

Kevin Horan

See Also

jarvisPatrick trimNeighbors

Examples

data(sdfsample)
ap = sdf2ap(sdfsample)
nnm = nearestNeighbors(ap,cutoff=0.5)
clustering = jarvisPatrick(nnm,k=2,mode="a1b")

plotStruc Plot compound structures

Description

Plots compound structure(s) for molecules stored in SDF and SDFset containers.

68 plotStruc

Usage

Convenience plot method
plot(x, griddim, print_cid=cid(x), print=TRUE, ...)

Less important for user
plotStruc(sdf, atomcex = 1.2, atomnum = FALSE, no_print_atoms = c("C"),

noHbonds = TRUE, bondspacer = 0.12, colbonds=NULL, bondcol="red", ...)

Arguments

sdf Object of class SDF

atomcex Font size for atom labels

atomnum If TRUE, then the atom numbers are included in the plot. They are the position
numbers of each atom in the atom block of an SDF.

no_print_atoms Excludes specified atoms from being plotted.

noHbonds If TRUE, then the C-hydrogens and their bonds - explicitly defined in an SDF -
are excluded from the plot.

bondspacer Numeric value specifying the plotting distance for double/triple bonds.

colbonds Highlighting of subgraphs in main structure by providing a numeric vector of
atom numbers, here position index in atom block. The bonds of connected atoms
will be plotted in the color provided under bondcol.

bondcol A character or numeric vector of length one to specify the color to use for sub-
structure highlighting under colbonds.

... Arguments to be passed to/from other methods.

Details

The function plotStruc depicts a single 2D compound structure based on the XY-coordinates
specified in the atom block of an SDF. The generic method plot can be used as a convenient
shorthand to plot one or many structures at once. Both functions depend on the availability of the
XY-coordinates in the source SD file and only 2D (not 3D) representations are plotted correctly.

Additional arguments that can only be passed on to the plot function when supplied with an SDFset
object:

griddim: numeric vector of length two to define the dimensions for arranging several structures in
one plot.

print_cid: character vector for printing custom compound labels. Default is print_cid=cid(sdfset).

print: if print=TRUE, then a summary of the SDF content for each supplied compound is printed
to the screen. This behavior is turned off with print=TRUE.

Value

Prints summary of SDF/SDFset to screen and plots their structures to graphics device.

pubchemFPencoding 69

Note

The compound depictions created by this function are not as pretty as the structure representations
generated with the sdf.visualize function. This will be improved in the future.

Author(s)

Thomas Girke

References

...

See Also

sdf.visualize

Examples

Import SDFset sample set
data(sdfsample)
(sdfset <- sdfsample)

Plot single compound structure
plotStruc(sdfset[[1]])

Plot several compounds structures
plot(sdfset[1:4])

Highlighting substructures (here all rings)
myrings <- as.numeric(gsub(".*_", "", unique(unlist(rings(sdfset[1])))))
plot(sdfset[1], colbonds=myrings)

Customize plot
plot(sdfset[1:4], griddim=c(2,2), print_cid=letters[1:4], print=FALSE, noHbonds=FALSE)

pubchemFPencoding Enncoding of PubChem Fingerprints

Description

Data frame with bit positions and substructure specifications.

Usage

data(pubchemFPencoding)

Format

The format is a data frame with 881 rows and 2 columns.

70 read.AP

Source

From: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

References

See: ftp://ftp.ncbi.nih.gov/pubchem/specifications/pubchem_fingerprints.txt

Examples

data(pubchemFPencoding)
pubchemFPencoding[1:4,]

read.AP Read Atom Pair/Fingerprint Strings

Description

Function to convert atom pairs (AP) or fingerprints (e.g. AP fingerprints) stored as character strings
to APset or FPset objects (e.g. generated by sdfStream). Alternatively, one can provide the AP or
fingerprint strings in a named character vector.

Usage

read.AP(x, type, colid, isFile = class(x) == "character" & length(x) == 1)

Arguments

x name of file from where to read the AP/APFP character strings; or named char-
acter vector containing the AP/APFP strings

type type="ap" for AP character string input, and type="fp" for fingerprint charac-
ter string input

colid column containing AP/FP character strings if x is a file

isFile Is x a file name or not?

Details

...

Value

object of class APset or FPset

Author(s)

Thomas Girke

read.AP 71

References

...

See Also

sdf2ap, sdfStream

Examples

Load sample data
library(ChemmineR)
data(sdfsample); sdfset <- sdfsample
Not run: write.SDF(sdfset, "test.sdf")

Define descriptor set in a simple function
desc <- function(sdfset) {

cbind(SDFID=sdfid(sdfset),
datablock2ma(datablocklist=datablock(sdfset)),
MW=MW(sdfset),
groups(sdfset),
APFP=desc2fp(x=sdf2ap(sdfset), descnames=1024, type="character"),
AP=sdf2ap(sdfset, type="character"),
rings(sdfset, type="count", upper=6, arom=TRUE)

)
}

Run sdfStream with desc function and write results to a file called ’matrix.xls’
sdfStream(input="test.sdf", output="matrix.xls", fct=desc, Nlines=1000)

Select molecules from SD File using line index from sdfStream
indexDF <- read.delim("matrix.xls", row.names=1)[,1:4]
indexDFsub <- indexDF[indexDF$MW < 400,] # Selects molecules with MW < 400
sdfset <- read.SDFindex(file="test.sdf", index=indexDFsub, type="SDFset")

Write result directly to SD file without storing larger numbers of molecules in memory
read.SDFindex(file="test.sdf", index=indexDFsub, type="file", outfile="sub.sdf")

Read AP/APFP strings from file into APset or FP object
apset <- read.AP(x="matrix.xls", type="ap", colid="AP")
apfp <- read.AP(x="matrix.xls", type="apfp", colid="APFP")

Alternatively, one can provide the AP/APFP strings in a named character vector
apset <- read.AP(x=sdf2ap(sdfset[1:20], type="character"), type="ap")
apfp <- read.AP(x=desc2fp(x=sdf2ap(sdfset[1:20]), descnames=1024, type="character"), type="apfp")

End(Not run)

72 read.SDFindex

read.SDFindex Extract Molecules from SD File by Line Index

Description

Extracts specific molecules from SD File based on a line position index computed by the sdfStream
function.

Usage

read.SDFindex(file, index, type = "SDFset", outfile)

Arguments

file file name of source SD file used to generate index

index data frame containing in the first two columns the start and end positions (index)
of molecules in an SD File, respectively. Typically, this index would be imported
with read.table/read.delim from a tabular descriptor file generated by the
sdfStream function.

type if type="file", the SDF output will be written to a file named as specified
under outfile; if type="SDFset", the SDF data is collected will be a SDFset
container.

outfile name of output file when type="file"

Details

...

Value

Writes molecules in SDF format to file or collects them in SDFset container.

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import/export functions: read.SDFset, read.SDFstr, read.SDFstr, read.SDFset, write.SDFsplit

read.SDFset 73

Examples

Load sample data
library(ChemmineR)
data(sdfsample); sdfset <- sdfsample
Not run: write.SDF(sdfset, "test.sdf")

Define descriptor set in a simple function
desc <- function(sdfset) {

cbind(SDFID=sdfid(sdfset),
datablock2ma(datablocklist=datablock(sdfset)),
MW=MW(sdfset),
groups(sdfset),
AP=sdf2ap(sdfset, type="character"),
rings(sdfset, type="count", upper=6, arom=TRUE)

)
}

Run sdfStream with desc function and write results to a file called ’matrix.xls’
sdfStream(input="test.sdf", output="matrix.xls", fct=desc, Nlines=1000)

Select molecules from SD File using line index from sdfStream
indexDF <- read.delim("matrix.xls", row.names=1)[,1:4]
indexDFsub <- indexDF[indexDF$MW < 400,] # Selects molecules with MW < 400
sdfset <- read.SDFindex(file="test.sdf", index=indexDFsub, type="SDFset")

Write result directly to SD file without storing larger numbers of molecules in memory
read.SDFindex(file="test.sdf", index=indexDFsub, type="file", outfile="sub.sdf")

End(Not run)

read.SDFset SD file to SDFset

Description

Imports one or many molecules from an SD/MOL file and stores it in an SDFset container.

Usage

read.SDFset(sdfstr = sdfstr, ...)

Arguments

sdfstr path/name to an SD file; alternatively an SDFstr object can be provided

... option to pass on additional arguments

Details

...

74 read.SDFstr

Value

SDFset for details see ?"SDFset-class"

Author(s)

Thomas Girke

References

SDF format defintion: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: read.SDFstr

Examples

Write instance of SDFset class to SD file
data(sdfsample); sdfset <- sdfsample
write.SDF(sdfset[1:4], file="sub.sdf")

Import SD file
read.SDFset("sub.sdf")

Pass on SDFstr object
sdfstr <- as(sdfset, "SDFstr")
read.SDFset(sdfstr)

read.SDFstr SD file to SDFstr

Description

Imports one or many molecules from an SD/MOL file and stores it in an SDFstr container.

Usage

read.SDFstr(sdfstr)

Arguments

sdfstr path/name to an SD file; alternatively one can pass on a character vector con-
taining lines of an SD file

Details

...

rings 75

Value

SDFstr for details see ?"SDFstr-class"

Author(s)

Thomas Girke

References

SDF format defintion: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: read.SDFset

Examples

Write instance of SDFstr class to SD file
data(sdfsample); sdfset <- sdfsample
sdfstr <- as(sdfset, "SDFstr")
write.SDF(sdfset[1:4], file="sub.sdf")

Import SD file
read.SDFstr("sub.sdf")

Pass on SDFstr object
sdfstr <- as(sdfset, "SDFstr")
read.SDFset(sdfstr)

rings Ring and Aromaticity Perception

Description

Identifies all possible rings in molecules using the exhaustive ring perception algorithm from Hanser
et al (1996). In addition, the function can return all smallest possible rings as well as aromaticity
information for each ring.

Usage

rings(x, upper = Inf, type = "all", arom = FALSE, inner = FALSE)

76 rings

Arguments

x SDF or SDFset containers

upper allows to specify an upper length limit for ring predictions. The default setting
upper=Inf will return all possible rings. Smaller length limits will reduce the
search space resulting in shortened compute times.

type if type="all", the function returns each ring of a compound as character vector
of atom symbols that are numbered by their position in the atom block of an
SDF/SDFset object. Note: the example below shows how to plot structures
with the same numbering information for visual inspection. If type="arom",
only aromatic rings are returned, while type="count" returns the ring and/or
aromaticity counts for each compound in a matrix.

arom if arom="TRUE", ring aromaticity information will be computed. If type="all",
the output is a logical vector where ’TRUE’ values indicate aromatic rings in
the associated ring list. If type="arom", then the function returns only aromatic
rings. A ring is considered aromatic if it meets the following requirements: (i)
all atoms in the ring need to be sp2 hybridized. This means each atom has to
have a double bond or at least one lone electron pair and it needs to be attached
to an sp2 hybridized atom. (ii) In addition, Hueckel’s rule ’4n + 2’ needs to be
true, where ’n’ is either zero or any positive integer.

inner if inner="TRUE", only inner (smallest possible) rings will be returned. They are
identified by first computing all possible rings and then selecting only the inner
rings. Note: this requires the setting upper=Inf. If only rings below a certain
size limit (e.g. 6) are of interest, then it will be more time efficient to set this
limmit under the upper argument than identifying all smallest rings.

Details

...

Value

The settings type="all" and type="arom" return lists, and type="count" returns a matrix.

Author(s)

Thomas Girke

References

Hanser, Jauffret and Kaufmann (1996) A New Algorithm for Exhaustive Ring Perception in a
Molecular Graph. Journal of Chemical Information and Computer Sciences, 36: 1146-1152. URL:
http://pubs.acs.org/doi/abs/10.1021/ci960322f

See Also

...

SDF-class 77

Examples

Instances of SDFset class
data(sdfsample)
sdfset <- sdfsample

Return all possible rings for a single compound
rings(sdfset[1], upper=Inf, type="all", arom=FALSE, inner=FALSE)
plot(sdfset[1], print=FALSE, atomnum=TRUE, no_print_atoms="H")

Return all possible rings for several compounds plus their
aromaticity information
rings(sdfset[1:4], upper=Inf, type="all", arom=TRUE, inner=FALSE)

Return rings with no more than 6 atoms
rings(sdfset[1:4], upper=6, type="all", arom=TRUE, inner=FALSE)

Return rings with no more than 6 atoms that are also armomatic
rings(sdfset[1:4], upper=6, type="arom", arom=TRUE, inner=FALSE)

Return shortest possible rings (no complex rings)
rings(sdfset[1:4], upper=Inf, type="all", arom=TRUE, inner=TRUE)

Count shortest possible rings
rings(sdfset[1:4], upper=Inf, type="count", arom=TRUE, inner=TRUE)

SDF-class Class "SDF"

Description

Container for storing every element of a single molecule defined in an SD/MOL file without infor-
mation loss in a list-like container. The import occurs via the SDFstr container class. The header
block is stored as named character vector, the atom/bond blocks as matrices and the data block as
named character vector.

Objects from the Class

Objects can be created by calls of the form new("SDF", ...).

Slots

header: Object of class "character"

atomblock: Object of class "matrix"

bondblock: Object of class "matrix"

datablock: Object of class "character"

78 SDF-class

Methods

[signature(x = "SDF"): subsetting of class with bracket operator

[[signature(x = "SDF"): returns one of the four object components

[[<- signature(x = "SDF"): replacement method for the four sub-components

[<- signature(x = "SDF"): replacement method for the four sub-components

atomblock signature(x = "SDF"): returns atom block as matrix

atomcount signature(x = "SDF"): returns atom frequency

bondblock signature(x = "SDF"): returns bond block as matrix

coerce signature(from = "character", to = "SDF"): as(character, "SDF")

coerce signature(from = "list", to = "SDF"): as(list, "SDF")

coerce signature(from = "SDF", to = "character"): as(sdf, "character")

coerce signature(from = "SDF", to = "list"): as(sdf, "list")

coerce signature(from = "SDF", to = "SDFset"): as(sdf, "SDFset")

coerce signature(from = "SDF", to = "SDFstr"): as(SDF, "SDFstr")

coerce signature(from = "SDFset", to = "SDF"): as(sdfset, "SDF")

datablock signature(x = "SDF"): returns data block as named character vector

datablocktag signature(x = "SDF"): returns data block as named character vector with subset-
ting support

header signature(x = "SDF"): returns header block as named character vector

plot signature(x = "SDF"): plots molecule structure for SDF object

sdf2list signature(x = "SDF"): returns SDF object as list

sdf2str signature(sdf = "SDF"): returns SDF object as character vector

sdfid signature(x = "SDF"): returns molecule ID field from header block

show signature(object = "SDF"): prints summary of SDF

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDFset, SDFstr, AP, APset

sdf.subset 79

Examples

showClass("SDF")

Instances of SDF class
data(sdfsample); sdfset <- sdfsample
(sdf <- sdfset[[1]]) # returns first molecule in sdfset as SDF object

Accessing SDF components
header(sdf); atomblock(sdf); bondblock(sdf); datablock(sdf)
sdfid(sdf)

Plot molecule structure of SDF
plot(sdf) # plots to R graphics device
sdf.visualize(sdf) # viewing in browser

sdf.subset Subset a SDF and return SDF segements for selected compounds

Description

’sdf.subset’ will take a descriptor database generated by ’cmp.parse’ and an array of indices, and
return an SDF string consisting of SDFs for compounds corresponding to that list of indices. The
returned value is a character string.

Usage

sdf.subset(db, cmps)

Arguments

db The database generated by ’cmp.parse’

cmps An array of indecies that correspond to a set of selected compounds from the
database

Details

’sdf.subset’ depends on information embedded in the descriptor database returned by ’cmp.parse’.
It also relies on the availability of the original SDF where the database has been generated from.
Basically, when ’cmp.parse’ parses the original SDF file, it will store the path of that SDF file as
well as offset information for SDF segment in that file. Therefore, if the SDF file has been changed
or deleted, ’sdf.subset’ cannot function properly.

The result SDF will also have names added to compounds if they are not present in the original
SDF.

Value

Return a character string whose content is the concatenation of SDFs for the selected compounds.

80 sdf.visualize

See Also

cmp.parse, sdf.visualize

Examples

Note: this functionality has become obsolete since the introduction of the
’SDFset’ and ’apset’ S4 classes.

load sample database from web
db <- cmp.parse("http://bioweb.ucr.edu/ChemMineV2/static/example_db.sdf")
select SDF for 1st and 2nd compound in that SDF
sdf_segments <- sdf.subset(db, c(1, 2))
now sdf_segments containt the 2 SDFs for those 2 compounds

sdf.visualize Subset a SDFset and visualize selected compounds in a webpage

Description

’sdf.visualize’ will take a descriptor database generated by ’cmp.parse’ and an array of indices,
send an SDF consisting structure information of compounds indexed by this array to ChemMine
(http://bioweb.ucr.edu/ChemMineV2), and open a webpage that shows the structures of these
compounds. It returns the URL of that page.

Usage

sdf.visualize(db, cmps, extra=NULL, reference.sdf=NULL, reference.note=NULL, browse=TRUE, quiet=TRUE)

Arguments

db The database generated by ’cmp.parse’

cmps A vector of indecies that correspond to a set of selected compounds from the
database

extra A vector or list of character strings or matrices or data frames, each entry of
which gives extra description on the compounds being visualized.

reference.sdf A character string of SDF or a filename of an SDF file for the reference com-
pound.

reference.note Note to be displayed with the reference compound.

browse Whether to open the webpage automatically after the upload is finished

quiet Whether to display the progress information

http://bioweb.ucr.edu/ChemMineV2

sdf.visualize 81

Details

’sdf.visualize’ uses sdf.subset to extract the SDF for the selected compounds. Therefore, ’sdf.visualize’
also depends on information embedded in the descriptor database returned by ’cmp.parse’. It also
relies on the availability of the original SDF file where the database has been generated from. Ba-
sically, when ’cmp.parse’ parses the original SDF file, it will store the path of that SDF file as well
as offset information for SDF segment in that file. Therefore, if the SDF file has been changed or
deleted, ’sdf.visualize’ cannot function properly.

After extracting the SDF segments for the selected compounds, ’sdf.visualize’ will send the SDF to
ChemMine (http://bioweb.ucr.edu/ChemMineV2) using HTTP POST method. ChemMine will
generate the 2D images for the selected compounds and a webpage containing these images as well
as the SDFs. The URL is returned by ’sdf.visualize’. If ’browse’ is set to TRUE, the URL will be
opened by your default browser.

If the argument ’extra’ is given, it must be a vector or list of character strings or data frames or
matrices. The length of the vector or list must be the same as that of the indices. Each entry may be
named or not. Each entry of this vector is a character string giving extra description on a compound.
This vector will be sent to ChemMine, and the extra description for a compound will be listed at the
right hand side of the compound. Data frames or matrices will be formatted and displayed as they
would be formatted by the ’print’ function.

The ’reference.sdf’ argument is given when you want to upload an extra compound as a reference
compound. This compound will be displayed at the top of the visualization web page. This argu-
ment can be a character string of SDF(s), or it can be a filename or URL that points to an SDF file.
If the string or the file contains multiple SDFs, this function will use the first one.

If a reference compound is uploaded, note about this compound can be set via the ’reference.note’
argument. This note will be displayed next to the structure of the compound on the resulting web-
page.

Value

Returns the URL of the webpage containing all the SDFs and 2D images corresponding to the
selected compounds.

See Also

cmp.parse, sdf.subset, plotStruc

Examples

Load sample SD file
data(sdfsample)
sdfset <- sdfsample

Not run:
Plot structures using web service ChemMine Tools
sdf.visualize(sdfset[1:4])

Add extra annotation as vector
sdf.visualize(sdfset[1:4], extra=month.name[1:4])

 http://bioweb.ucr.edu/ChemMineV2

82 sdf2ap

Add extra annotation as matrix
extra <- apply(propma[1:4,], 1, function(x) data.frame(Property=colnames(propma), Value=x))
sdf.visualize(sdfset[1:4], extra=extra)

Add extra annotation as list
sdf.visualize(sdfset[1:4], extra=bondblock(sdfset[1:4]))

End(Not run)

sdf2ap Atom pair library

Description

Creates from a SDFset a searchable atom pair library that is stored in a container of class APset.

Usage

sdf2ap(sdfset, type = "AP")

Arguments

sdfset Objects of classes SDFset or SDF

type if type="AP", the function returns APset/AP objects; if type="character", it
returns the result as a character vector of length one. The latter is useful for
storing AP data in tabular files.

Details

...

Value

APset if input is SDFset

AP if input is SDF

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

SDF2apcmp 83

See Also

Functions: desc2fp, SDF2apcmp, apset2descdb, cmp.search, cmp.similarity

Related classes: SDF, SDFset, SDFstr, APset.

Examples

Instance of SDFset class
data(sdfsample)
sdfset <- sdfsample[1:50]
sdf <- sdfsample[[1]]

Compute atom pair library
ap <- sdf2ap(sdf)
(apset <- sdf2ap(sdfset))
view(apset[1:4])

Return main components of APset object
cid(apset[1:4]) # compound IDs
ap(apset[1:4]) # atom pair descriptors

Return atom pairs in human readable format
db.explain(apset[1])

Coerce APset to other objects
apset2descdb(apset) # returns old list-style AP database
tmp <- as(apset, "list") # returns list
as(tmp, "APset") # converst list back to APset

Compound similarity searching with APset
cmp.search(apset, apset[1], type=3, cutoff=0.2)
plot(sdfset[names(cmp.search(apset, apset[6], type=2, cutoff=0.4))])

Identify compounds with identical AP sets
cmp.duplicated(apset, type=2)

Structure similarity clustering
cmp.cluster(db=apset, cutoff = c(0.65, 0.5))[1:20,]

SDF2apcmp SDF to list for AP generation

Description

Returns SDF class as list containing the components for generating atom pair descriptors.

Usage

SDF2apcmp(SDF)

84 sdf2list

Arguments

SDF SDF

Details

...

Value

list with atom and bond components

Author(s)

Thomas Girke

References

Chen X and Reynolds CH (2002). "Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity coefficients", J Chem Inf
Comput Sci.

See Also

Functions: sdf2ap, apset2descdb, cmp.search, cmp.similarity

Examples

Instances of SDFset class
data(sdfsample)
sdf <- sdfsample[[1]]

Return list
cmp <- SDF2apcmp(sdf)

sdf2list SDF to list

Description

Returns objects of class SDF as list.

Usage

sdf2list(x)

sdf2smiles 85

Arguments

x object of class SDF

Details

...

Value

list with following components:

character SDF header block

matrix SDF bond block

matrix SDF atom block

character SDF data block

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, SDFset2list, SDFset2SDF

Examples

Instance of SDF class
data(sdfsample); sdfset <- sdfsample
sdf <- sdfset[[1]]

Return as list
sdf2list(sdf)
as(sdf, "list") # similar result

sdf2smiles SDFset to character Convert SDFset to SMILES (character)

Description

Accepts one compound in an SDFset container and returns the corresponding SMILES string (Sim-
plified Molecular Input Line Entry Specification). The compound is submitted to the ChemMine
Tools web service for conversion with the Open Babel Open Source Chemistry Toolbox. If the input
object contains multiple items, only the first is converted.

86 sdf2str

Usage

sdf2smiles(sdf)

Arguments

sdf A SDFset object which contains one compound

Value

character for details see ?"character"

Author(s)

Tyler Backman

References

Chemmine web service: http://chemmine.ucr.edu

Open Babel: http://openbabel.org

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

Not run:
get a sample compound
data(sdfsample); sdfset <- sdfsample[1]
convert to smiles
smiles <- sdf2smiles(sdfset)
End(Not run)

sdf2str SDF to SDFstr

Description

Converts SDF to SDFstr. Its main use is to facilitate the export to SD files. It contains optional
arguments to generate custom SDF output.

Usage

sdf2str(sdf, head, ab, bb, db, cid = NULL, sig = FALSE, ...)

sdf2str 87

Arguments

sdf object of class SDF

head optional character vector to supply custom header block

ab optional matrix to supply custom atom block

bb optional matrix to supply custom bond block

db optional character vector to supply custom data block

cid character can be provided to inject custom compound ID into header block

sig if = TRUE then the ChemmineR signature will be injected into the header block
for tracking purposes

... option to pass on additional arguments

Details

If the export function write.SDF is supplied with an SDFset object, then sdf2str is used internally
to customize the export of many molecules to a single SD file using the same optional arguments.

Value

sdfstr SDF data of one molecule collapsed to character vector

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Coerce functions: sdfstr2list, sdf2str, SDFset2list, SDFset2SDF

Export function: write.SDF

Examples

Instance of SDF class
data(sdfsample); sdfset <- sdfsample
sdf <- sdfset[[1]]

Customize SDF blocks for export to SD file
sdf2str(sdf=sdf, sig=TRUE, cid=TRUE) # uses default SDF components
sdf2str(sdf=sdf, head=letters[1:4], db=NULL) # uses custom components for header and datablock

The same arguments can be supplied to the write.SDF function for
batch export of custom SDFs
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE, db=NULL)

88 sdfid

sdfid Return SDF compound IDs

Description

Returns the compound identifiers from the header block of SDF or SDFset objects.

Usage

sdfid(x, tag = 1)

Arguments

x object of class SDFset or SDF

tag values from 1-4 to extract different header block fields; SDF ID is in first one
(default)

Details

...

Value

character vector

Author(s)

Thomas Girke

References

...

See Also

atomblock, atomcount, bondblock, datablock, header, cid

Examples

SDF/SDFset instances
data(sdfsample)
sdfset <- sdfsample
sdf <- sdfset[[1]]

Extract IDs from header block
sdfid(sdf, tag=1)
sdfid(sdfset[1:4])

Extract compound IDs from ID slot in SDFset container

sdfsample 89

cid(sdfset[1:4])

Assigning compound IDs and keeping them unique
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids
cid(sdfset[1:4])

sdfsample SD file in SDFset object

Description

First 100 compounds from PubChem SD file: Compound_00650001_00675000.sdf.gz

Usage

data(sdfsample)

Format

Object of class sdfset

Details

Object stores 100 molecules from a sample SD file.

Source

ftp://ftp.ncbi.nih.gov/pubchem/Compound/CURRENT-Full/SDF/Compound_00650001_00675000.sdf.gz

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

Examples

data(sdfsample)
sdfset <- sdfsample
view(sdfset[1:4])

90 SDFset-class

SDFset-class Class "SDFset"

Description

List-like container for storing one or many objects of class SDF each containing the structure def-
inition information of molecules provided by an SD/MOL file. The SDFset is the most important
class in the ChemmmineR package for accessing and manipulating information stored in SD files.

Objects from the Class

Objects can be created by calls of the form new("SDFset", ...).

Slots

SDF: Object of class "list" storing SDF components

ID: Object of class "character" storing compound identifiers

Methods

[signature(x = "SDFset"): subsetting of class with bracket operator

[[signature(x = "SDFset"): returns single component as SDF object

[[<- signature(x = "SDFset"): replacement method for single SDF component

[<- signature(x = "SDFset"): replacement method for several SDF components

atomblock signature(x = "SDFset"): returns all atom blocks as list

atomcount signature(x = "SDFset"): returns all atom frequencies as list

bondblock signature(x = "SDFset"): returns all bond blocks as list

c signature(x = "SDFset"): concatenates two SDFset containers

cid signature(x = "SDFset"): returns all compound identifiers from ID slot

header<- signature(x = "SDFset"): replacement method for header block

atomblock<- signature(x = "SDFset"): replacement method for atom block

bondblock<- signature(x = "SDFset"): replacement method for bond block

datablock<- signature(x = "SDFset"): replacement method for data block

coerce signature(from = "list", to = "SDFset"): as(list, "SDFset")

coerce signature(from = "SDF", to = "SDFset"): as(sdf, "SDFset")

coerce signature(from = "SDFset", to = "list"): as(sdfset, "list")

coerce signature(from = "SDFset", to = "SDF"): as(sdfset, "SDF")

coerce signature(from = "SDFset", to = "SDFstr"): as(sdfset, "SDFstr")

coerce signature(from = "SDFstr", to = "SDFset"): as(sdfstr, "SDFset")

datablock signature(x = "SDFset"): returns all data blocks as list

SDFset-class 91

datablocktag signature(x = "SDFset"): returns all data blocks as named as list with subsetting
support

header signature(x = "SDFset"): returns all header blocks as list

length signature(x = "SDFset"): returns number of entries stored in object

plot signature(x = "SDFset"): plots one or many molecule structures from SDFset object

sdfid signature(x = "SDFset"): returns molecule ID field from header block

SDFset2list signature(x = "SDFset"): returns SDFset object as list

SDFset2SDF signature(x = "SDFset"): returns SDFset object as list with SDF components

SDFset2SDF<- signature(x = "SDFset"): replacement method for SDFset component in SDFset
using accessor method

show signature(object = "SDFset"): prints summary of SDFset

view signature(x = "SDFset"): prints extended summary of SDFset

SDFset SDFset(SDF, ID): interface to SDFset constructor

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDF, SDFstr, AP, APset

Import function: read.SDFset("some_SDF_file")

Export function: write.SDF(sdfset, "some_file.sdf")

Examples

showClass("SDFset")

Instances of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset; view(sdfset[1:4])
sdfset[[1]]

Import and store SD File in SDFset container
sdfset <- read.SDFset("some_SDF_file")

Miscellaneous accessor methods
header(sdfset[1:4])
atomblock(sdfset[1:4])
atomcount(sdfset[1:4])
bondblock(sdfset[1:4])
datablock(sdfset[1:4])

92 SDFset2list

Assigning compound IDs and keeping them unique
cid(sdfset); sdfid(sdfset)
unique_ids <- makeUnique(sdfid(sdfset))
cid(sdfset) <- unique_ids

Convert data block to matrix
blockmatrix <- datablock2ma(datablocklist=datablock(sdfset)) # Converts data block to matrix
numchar <- splitNumChar(blockmatrix=blockmatrix) # Splits to numeric and character matrix
numchar[[1]][1:4,]; numchar[[2]][1:4,]

Compute atom frequency matrix, molecular weight and formula
propma <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
propma[1:4,]

Assign matrix data to data block
datablock(sdfset) <- propma
view(sdfset[1:4])

String Searching in SDFset
grepSDFset("650001", sdfset, field="datablock", mode="subset") # To return index, set mode="index")

Export SDFset to SD file
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE)

Plot molecule structure of SDF
plot(sdfset[1:4]) # plots to R graphics device
sdf.visualize(sdfset[1:4]) # viewing in browser

SDFset2list SDFset to list

Description

Returns object of class SDFset as list where each component conists of a list of the four SDF
sub-components: header block, atom block, bond block and data block.

Usage

SDFset2list(x)

Arguments

x object of class SDFset

Details

...

SDFset2SDF 93

Value

list containing one or many lists each with following components:

character SDF header block

matrix SDF bond block

matrix SDF atom block

character SDF data block

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, sdf2list, SDFset2SDF

Examples

Instance of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset

Returns sdfset as list
SDFset2list(sdfset[1:4])
as(sdfset, "list")[1:4] # similar result

SDFset2SDF SDFset to list with many SDF

Description

Returns object of class SDFset as list were each component consists of an SDF object.

Usage

SDFset2SDF(x)

Arguments

x object of class SDFset

Details

...

94 SDFstr-class

Value

list containing one or many SDF objects

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdfstr2list, sdf2str, sdf2list, SDFset2list

Examples

Instance of SDFset class
data(sdfsample); sdfset <- sdfsample
sdfset

Returns sdfset as list
SDFset2SDF(sdfset[1:4])
as(sdfset, "SDF")[1:4] # similar result
view(sdfset[1:4]) # same result

SDFstr-class Class "SDFstr"

Description

List-like container for storing one or many molecules from an SD (or MOL) file. Each component
of an SDFstr object stores the SD data line by line from a single molecule in a character vector.
The SDFstr class is an intermediate container to import SD files into the more important SDFset
object or to export the data back from an SDFset container to a valid SD file.

Objects from the Class

Objects can be created by calls of the form new("SDFstr", ...).

Slots

a: Object of class "list" with character components

SDFstr-class 95

Methods

[signature(x = "SDFstr"): subsetting of class with bracket operator

[[signature(x = "SDFstr"): returns single component as character vector

[[<- signature(x = "SDFstr"): replacement method for single SDFstr component

[<- signature(x = "SDFstr"): replacement method for several SDFstr components

coerce signature(from = "character", to = "SDFstr"): as(character, "SDFstr")

coerce signature(from = "list", to = "SDFstr"): as(list, "SDFstr")

coerce signature(from = "SDF", to = "SDFstr"): as(sdf, "SDFstr")

coerce signature(from = "SDFset", to = "SDFstr"): as(sdfset, "SDFstr")

coerce signature(from = "SDFstr", to = "list"): as(sdfstr, "list")

coerce signature(from = "SDFstr", to = "SDFset"): as(sdfstr, "SDFset")

length signature(x = "SDFstr"): returns length of SDFstr

sdfstr2list signature(x = "SDFstr"): accessor method to return SDFstr as list

sdfstr2list<- signature(x = "SDFstr"): replacement method for several SDFstr components

show signature(object = "SDFstr"): prints summary of SDFstr

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Related classes: SDFset, AP, APset

Import function: read.SDFstr("some_SDF_file")

Examples

showClass("SDFstr")

Instances of SDFstr class
data(sdfsample); sdfset <- sdfsample
sdfstr <- as(sdfset, "SDFstr")
sdfstr[1:4] # print summary of container content
sdfstr[[1]] # returns character vector

Import: sdfstr <- read.SDFstr("some_SDF_file")
Export: write.SDF(sdfstr, "some_file.sdf")

96 sdfstr2list

sdfstr2list SDFstr to list

Description

Returns objects of class SDFstr as list.

Usage

sdfstr2list(x)

Arguments

x object of class SDFstr

Details

...

Value

list with many of the following components:

character SDF content of one molecule vectorized line by line

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Functions: sdf2list, sdf2str, SDFset2list, SDFset2SDF

Examples

Instance of SDFstr class
data(sdfsample); sdfset <- sdfsample
sdfstr <- as(sdfset, "SDFstr")

Return as list
sdfstr2list(sdfstr)
as(sdfstr, "list") # similar result

sdfStream 97

sdfStream Streaming through large SD files

Description

Streaming function to compute descriptors for large SD Files without consuming much memory. In
addition to descriptor values, it returns a line index that defines the positions of each molecule in
the source SD File. This line index can be used by the read.SDFindex function to retrieve specific
compounds of interest from large SD Files without reading the entire file into memory.

Usage

sdfStream(input, output, append=FALSE, fct, Nlines = 10000, startline=1, restartNlines=10000, silent = FALSE, ...)

Arguments

input file name of input SD file

output file name of tabular descriptor file

append if append=FALSE, a new output file will be created, if one with the same name
exists it will be overwritten; whereas append=TRUE will appended to this file.

fct Function to select descriptor sets; any combination of descriptors, supported by
ChemmineR, can be chosen here, as long as they can be represented in tabular
format.

Nlines Number of lines to read from input SD File at a time; the memory consumption
will be proportional to this value.

startline For restarting sdfStream at specific line assigned to startline argument. If
assigned startline value does not match the first line of a molecule in the SD
file then it will be reset to the start position of the next molecule in the SD file.

restartNlines Number of lines to parse when startline > 1 in order to identify proper
molecule start position. The default value of 10,000 is usually a good choice.

silent if silent=FALSE, the processing status will be printed to the screen, while
silent=TRUE suppresses this output.

... Arguments to be passed to/from other methods.

Details

...

Value

Writes a descriptor matrix to a tabular file. The first and last line number (position index) of each
molecule is specified in the first two columns of the tabular output file, respectively.

Author(s)

Thomas Girke

98 searchSim

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import/export functions: read.AP, read.SDFset, read.SDFstr, read.SDFstr, read.SDFset, write.SDFsplit

Examples

Load sample data
library(ChemmineR)
data(sdfsample); sdfset <- sdfsample
Not run: write.SDF(sdfset, "test.sdf")

Define descriptor set in a simple function
desc <- function(sdfset) {

cbind(SDFID=sdfid(sdfset),
datablock2ma(datablocklist=datablock(sdfset)),
MW=MW(sdfset),
groups(sdfset),
AP=sdf2ap(sdfset, type="character"),
rings(sdfset, type="count", upper=6, arom=TRUE)

)
}

Run sdfStream with desc function and write results to a file called ’matrix.xls’
sdfStream(input="test.sdf", output="matrix.xls", append=FALSE, fct=desc, Nlines=1000)

Same as before but starting in SD file at line number 950
sdfStream(input="test.sdf", output="matrix.xls", append=FALSE, fct=desc, Nlines=1000, startline=950)

Select molecules from SD File using line index from sdfStream
indexDF <- read.delim("matrix.xls", row.names=1)[,1:4]
indexDFsub <- indexDF[indexDF$MW < 400,] # Selects molecules with MW < 400
sdfset <- read.SDFindex(file="test.sdf", index=indexDFsub, type="SDFset")

Write result directly to SD file without storing larger numbers of molecules in memory
read.SDFindex(file="test.sdf", index=indexDFsub, type="file", outfile="sub.sdf")

Read atom pair string representation from file into APset
apset <- read.AP(file="matrix.xls", colid="AP")
cid(apsdf) <- as.character(indexDF$SDFID)

End(Not run)

searchSim PubChem Similarity (Fingerprint) Search

searchString 99

Description

Accepts one SDFset container and performs a >0.95 similarity PubChem fingerprint search, return-
ing the hits in an SDFset container. The ChemMine Tools web service is used as an intermediate,
to translate queries from plain HTTP POST to a PubChem Power User Gateway (PUG) query. If
the input object contains multiple items, only the first is used as a query.

Usage

searchSim(sdf)

Arguments

sdf A SDFset object which contains one compound

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html

Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

Not run:
get a sample compound
data(sdfsample); sdfset <- sdfsample[1]
search a compound on PubChem
compounds <- searchSim(sdfset)
End(Not run)

searchString PubChem Similarity (Fingerprint) SMILES Search

Description

Accepts one SMILES string (Simplified Molecular Input Line Entry Specification) and performs
a >0.95 similarity PubChem fingerprint search, returning the hits in an SDFset container. The
ChemMine Tools web service is used as an intermediate, to translate queries from plain HTTP
POST to a PubChem Power User Gateway (PUG) query.

100 selectInBatches

Usage

searchString(smiles)

Arguments

smiles A character object which contains one SMILES string

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

PubChem PUG SOAP: http://pubchem.ncbi.nlm.nih.gov/pug_soap/pug_soap_help.html

Chemmine web service: http://chemmine.ucr.edu

PubChem help: http://pubchem.ncbi.nlm.nih.gov/search/help_search.html

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

Examples

Not run:
search a compound on PubChem
compounds <- searchString("CC(=O)OC1=CC=CC=C1C(=O)O")
End(Not run)

selectInBatches Select in Batches

Description

When doing a select were the condition is a large number of ids it is not always possible to include
them in a single SQL statement. This function will break the list of ids into chunks and send the
query for each batch. The resutls are appended and returned as one data frame.

Usage

selectInBatches(conn, allIndices, genQuery, batchSize = 1e+05)

Arguments

conn

allIndices

genQuery

batchSize

smiles2sdf 101

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

The function is currently defined as
function (conn, allIndices, genQuery, batchSize = 1e+05)
{

batchByIndex(allIndices, function(indexBatch) {
df = dbGetQuery(conn, genQuery(indexBatch))
result = rbind(result, df)

}, batchSize)
result

}

smiles2sdf Convert SMILES (character) to SDFset

Description

Accepts one compound as a SMILES string (Simplified Molecular Input Line Entry Specification)
and returns it’s equivalent as an SDFset container. The compound is submitted to the ChemMine
Tools web service for conversion with the Open Babel Open Source Chemistry Toolbox.

Usage

smiles2sdf(smiles)

Arguments

smiles A character object which contains one SMILES string

Value

SDFset for details see ?"SDFset-class"

Author(s)

Tyler Backman

References

Chemmine web service: http://chemmine.ucr.edu

Open Babel: http://openbabel.org

SMILES Format: http://en.wikipedia.org/wiki/Chemical_file_format#SMILES

102 trimNeighbors

Examples

Not run:
convert to sdf
sdf <- smiles2sdf("CC(=O)OC1=CC=CC=C1C(=O)O\tname")
End(Not run)

trimNeighbors Trim Neighbors

Description

Further reduce the cutoff value of a nearest neighbor (NN) table, as produced by nearestNeighbors.
This allows one to compute a very relaxed NN table initially, and then quickly restrict it later without
having to re-compute all the similarities.

Usage

trimNeighbors(nnm, cutoff)

Arguments

nnm A nearest neighbor table, as produced by nearestNeighbors.

cutoff The new similarities cutoff value. All pairs with a similarity less than this value
will be removed from the table.

Value

The return value has the same structure as nnm, with some neighbors removed from the indexes
and similarties entries.

Author(s)

Kevin Horan

See Also

jarvisPatrick nearestNeighbors

Examples

data(sdfsample)
ap = sdf2ap(sdfsample)
nnm = nearestNeighbors(ap,numNbrs=20)
nnm = trimNeighbors(nnm,cutoff=0.5)
clustering = jarvisPatrick(nnm,k=2,mode="a1b")

validSDF 103

validSDF Validity check of SDFset

Description

Performs validity check of SDFs stored in SDFset objects. Currently, the function tests whether
the atom block and the bond block in each SDF component of an SDFset have at least Nabcol and
Nbbcol columns (default is 3 for both). In additions, it tests for the presence of NA values in the
atom and bond blocks. The function returns a logical vector with TRUE values for valid compounds
and FALSE values for invalid ones.

Usage

validSDF(x, Nabcol = 3, Nbbcol = 3, logic = "&", checkNA=TRUE)

Arguments

x x object of class SDFset

Nabcol minimum number of columns in atom block

Nbbcol minimum number of columns in bond block

logic logical connection (& or |) among Nabcol and Nbbcol cutoffs

checkNA checks for NA values in atom and bond blocks

Details

The function is important to remove invalid compounds from SDFset containers.

Value

logical vector of length x with TRUE for valid compounds and FALSE for invalid compounds.

Author(s)

Thomas Girke

References

...

See Also

Functions: read.SDFset

104 view

Examples

SDFset instance
data(sdfsample)
sdfset <- sdfsample

Detect and remove invalid SDFs in SDFset.
valid <- validSDF(sdfset)
which(!valid) # Returns index for invalid SDFs
sdfset <- sdfset[valid] # Returns only valid SDFs.

view Viewing of complex objects

Description

Convenience function for viewing the content of complex objects like SDFset and APset containers.
The function is a shorthand wrapper for as(sdfset, "SDF") and as(apset, "AP").

Usage

view(x)

Arguments

x object of class SDFset or APset

Details

...

Value

List populated with SDF and AP components.

Author(s)

Thomas Girke

References

...

See Also

Classes: SDF, SDFset, AP, APset

write.SDF 105

Examples

Viewing content of SDFset
data(sdfsample); sdfset <- sdfsample
view(sdfset[1:4])

Viewing content of APset
apset <- sdf2ap(sdfset[1:10])
view(apset)

write.SDF SDF export function

Description

Writes one or many molecules stored in a SDFset, SDFstr or SDF object to SD file.

Usage

write.SDF(sdf, file, cid = FALSE, ...)

Arguments

sdf object of class SDFset, SDFstr or SDF

file name of SD file to write to

cid if cid = TRUE and an SDFset object is provide as input, then the compound IDs
in the ID slot of the SDFset are used for compound naming

... the optional arguments of the sdf2str function can be provided here, including
head, ab, bb, db; details are provided in the help page for the sdf2str
function

Details

If the write.SDF function is supplied with an SDFset object, then it uses internally the sdf2str
function to allow customizing the resulting SD file. For this all optional arguments of the sdf2str
function can be passed on to write.SDF.

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

See Also

Import function: read.SDFset, read.SDFstr

106 write.SDFsplit

Examples

Instance of SDFset class
data(sdfsample); sdfset <- sdfsample

Write objects of classes SDFset/SDFstr/SDF to file
write.SDF(sdfset[1:4], file="sub.sdf")

Example for writing customized SDFset to file containing
ChemmineR signature, IDs from SDFset and no data block
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE, db=NULL)

Example for injecting a custom matrix/data frame into the data block of an
SDFset and then writing it to an SD file
props <- data.frame(MF=MF(sdfset), MW=MW(sdfset), atomcountMA(sdfset))
datablock(sdfset) <- props
view(sdfset[1:4])
write.SDF(sdfset[1:4], file="sub.sdf", sig=TRUE, cid=TRUE)

write.SDFsplit SDF split function

Description

Splits SD Files into any number of smaller SD Files

Usage

write.SDFsplit(x, filetag, nmol)

Arguments

x object of class SDFset, SDFstr
filetag string to prepend to file names
nmol integer specifying number of molecules in split SD files

Details

To split an SD File into smaller ones, one can read the source file into R with read.SDFstr and
write out smaller ones with write.SDFsplit. Note: when importing big SD Files, read.SDFstr
will be much faster than read.SDFset, and there is no need to go through an SDFset object instance
in this case.

Author(s)

Thomas Girke

References

SDF format definition: http://www.symyx.com/downloads/public/ctfile/ctfile.jsp

write.SDFsplit 107

See Also

Import/export functions: read.SDFset, read.SDFstr, read.SDFstr, read.SDFset

Examples

Load sample data
library(ChemmineR)
data(sdfsample)

Not run: ## Create sample SD File with 100 molecules
write.SDF(sdfsample, "test.sdf")

Read in sample SD File
sdfstr <- read.SDFstr("test.sdf")

Run export on SDFstr object
write.SDFsplit(x=sdfstr, filetag="myfile", nmol=10)

Run export on SDFset object
write.SDFsplit(x=sdfsample, filetag="myfile", nmol=10)

End(Not run)

Index

∗Topic \textasciitildekwd1
batchByIndex, 17
bufferLines, 20
bufferResultSet, 21
selectInBatches, 100

∗Topic \textasciitildekwd2
batchByIndex, 17
bufferLines, 20
bufferResultSet, 21
selectInBatches, 100

∗Topic aplot
plotStruc, 67

∗Topic classes
AP-class, 6
APset-class, 9
FP-class, 47
FPset-class, 49
SDF-class, 77
SDFset-class, 90
SDFstr-class, 94

∗Topic datasets
apfp, 7
apset, 8
atomprop, 15
pubchemFPencoding, 69
sdfsample, 89

∗Topic utilities
ap, 4
apset2descdb, 10
atomblock, 12
atomcount, 13
atomsubset, 15
bondblock, 18
bonds, 19
cid, 22
cluster.sizestat, 23
cluster.visualize, 25
cmp.cluster, 27
cmp.duplicated, 29

cmp.parse, 31
cmp.parse1, 32
cmp.search, 33
cmp.similarity, 35
conMA, 37
datablock, 38
datablock2ma, 39
db.explain, 41
db.subset, 42
desc2fp, 43
fp2bit, 48
fpSim, 51
getIds, 56
grepSDFset, 57
groups, 58
header, 59
jarvisPatrick, 61
makeUnique, 65
plotStruc, 67
read.AP, 70
read.SDFindex, 72
read.SDFset, 73
read.SDFstr, 74
rings, 75
sdf.subset, 79
sdf.visualize, 80
sdf2ap, 82
SDF2apcmp, 83
sdf2list, 84
sdf2smiles, 85
sdf2str, 86
sdfid, 88
SDFset2list, 92
SDFset2SDF, 93
sdfstr2list, 96
sdfStream, 97
searchSim, 98
searchString, 99
smiles2sdf, 101

108

INDEX 109

validSDF, 103
view, 104
write.SDF, 105
write.SDFsplit, 106

[,APset-method (APset-class), 9
[,FPset-method (FPset-class), 49
[,SDF-method (SDF-class), 77
[,SDFset-method (SDFset-class), 90
[,SDFstr-method (SDFstr-class), 94
[<-,APset-method (APset-class), 9
[<-,FPset-method (FPset-class), 49
[<-,SDF-method (SDF-class), 77
[<-,SDFset-method (SDFset-class), 90
[<-,SDFstr-method (SDFstr-class), 94
[[,APset-method (APset-class), 9
[[,FPset-method (FPset-class), 49
[[,SDF-method (SDF-class), 77
[[,SDFset-method (SDFset-class), 90
[[,SDFstr-method (SDFstr-class), 94
[[<-,APset-method (APset-class), 9
[[<-,SDF-method (SDF-class), 77
[[<-,SDFset-method (SDFset-class), 90
[[<-,SDFstr-method (SDFstr-class), 94

addNewFeatures, 3, 64
ap, 4
ap,AP-method (AP-class), 6
ap,APset-method (APset-class), 9
AP-class, 6
ap-methods (ap), 4
apfp, 7
apset, 8
APset-class, 9
apset2descdb, 10
as.character,FP-method (FP-class), 47
as.character,FPset-method

(FPset-class), 49
as.matrix,FPset-method (FPset-class), 49
as.numeric,FP-method (FP-class), 47
as.vector,FP-method (FP-class), 47
atomblock, 12
atomblock,SDF-method (SDF-class), 77
atomblock,SDFset-method (SDFset-class),

90
atomblock-methods (atomblock), 12
atomblock<- (atomblock), 12
atomblock<-,SDFset-method

(SDFset-class), 90
atomcount, 13

atomcount,SDF-method (SDF-class), 77
atomcount,SDFset-method (SDFset-class),

90
atomcountMA (atomcount), 13
atomprop, 15
atomsubset, 15

batchByIndex, 17
bondblock, 18
bondblock,SDF-method (SDF-class), 77
bondblock,SDFset-method (SDFset-class),

90
bondblock-methods (bondblock), 18
bondblock<- (bondblock), 18
bondblock<-,SDFset-method

(SDFset-class), 90
bonds, 19
bufferLines, 20
bufferResultSet, 21
byCluster, 21

c,APset-method (APset-class), 9
c,FPset-method (FPset-class), 49
c,SDFset-method (SDFset-class), 90
cid, 22
cid,APset-method (APset-class), 9
cid,FPset-method (FPset-class), 49
cid,SDFset-method (SDFset-class), 90
cid<- (cid), 22
cid<-,APset-method (APset-class), 9
cid<-,FPset-method (FPset-class), 49
cid<-,SDFset-method (SDFset-class), 90
cluster.sizestat, 23, 26
cluster.visualize, 24, 25
cmp.cluster, 24, 26, 27, 32, 33, 35, 36
cmp.duplicated, 29
cmp.parse, 26, 28, 30, 31, 33, 35, 36, 41, 42,

80, 81
cmp.parse1, 28, 32, 32, 35, 36
cmp.search, 28, 30, 32, 33, 33, 35, 36
cmp.similarity, 28, 32, 33, 35, 35
coerce,APset,AP-method (APset-class), 9
coerce,APset,list-method (APset-class),

9
coerce,character,FPset-method

(FPset-class), 49
coerce,character,SDF-method

(SDF-class), 77

110 INDEX

coerce,character,SDFstr-method
(SDFstr-class), 94

coerce,FPset,FP-method (FPset-class), 49
coerce,list,APset-method (APset-class),

9
coerce,list,SDF-method (SDF-class), 77
coerce,list,SDFset-method

(SDFset-class), 90
coerce,list,SDFstr-method

(SDFstr-class), 94
coerce,matrix,FPset-method

(FPset-class), 49
coerce,numeric,FP-method (FP-class), 47
coerce,SDF,character-method

(SDF-class), 77
coerce,SDF,list-method (SDF-class), 77
coerce,SDF,SDFset-method (SDF-class), 77
coerce,SDF,SDFstr-method (SDF-class), 77
coerce,SDFset,list-method

(SDFset-class), 90
coerce,SDFset,SDF-method

(SDFset-class), 90
coerce,SDFset,SDFstr-method

(SDFset-class), 90
coerce,SDFstr,list-method

(SDFstr-class), 94
coerce,SDFstr,SDFset-method

(SDFstr-class), 94
conMA, 37

datablock, 38
datablock,SDF-method (SDF-class), 77
datablock,SDFset-method (SDFset-class),

90
datablock-methods (datablock), 38
datablock2ma, 39
datablock<- (datablock), 38
datablock<-,SDFset-method

(SDFset-class), 90
datablocktag (datablock), 38
datablocktag,SDF-method (SDF-class), 77
datablocktag,SDFset-method

(SDFset-class), 90
db.explain, 41
db.subset, 42
desc2fp, 43

findCompounds, 44, 55
findCompoundsByName, 46

FP-class, 47
fp2bit, 48
FPset-class, 49
fpSim, 51
fromNNMatrix, 53

getCompoundNames, 54
getCompounds, 45, 55
getIds, 56
grepSDFset, 57
groups, 58

header, 59
header,SDF-method (SDF-class), 77
header,SDFset-method (SDFset-class), 90
header-methods (header), 59
header<- (header), 59
header<-,SDFset-method (SDFset-class),

90

initDb, 4, 45, 46, 54, 55, 60, 64

jarvisPatrick, 22, 54, 61, 63, 66, 67, 102
jarvisPatrick_c, 63

length,APset-method (APset-class), 9
length,FPset-method (FPset-class), 49
length,SDFset-method (SDFset-class), 90
length,SDFstr-method (SDFstr-class), 94
loadSdf, 4, 55, 63

makeUnique, 65
MF (atomcount), 13
MW (atomcount), 13

nearestNeighbors, 61, 62, 66, 102

plot (plotStruc), 67
plot,SDF-method (SDF-class), 77
plot,SDFset-method (SDFset-class), 90
plotStruc, 67, 81
pubchemFPencoding, 69

read.AP, 70
read.SDFindex, 72
read.SDFset, 73
read.SDFstr, 74
rings, 75

SDF-class, 77

INDEX 111

sdf.subset, 42, 79, 81
sdf.visualize, 34, 35, 80, 80
sdf2ap, 82
SDF2apcmp, 83
sdf2list, 84
sdf2list,SDF-method (SDF-class), 77
sdf2smiles, 85
sdf2str, 86
sdf2str,SDF-method (SDF-class), 77
sdf2str-methods (sdf2str), 86
sdfid, 46, 88
sdfid,SDF-method (SDF-class), 77
sdfid,SDFset-method (SDFset-class), 90
sdfsample, 89
SDFset (SDFset-class), 90
SDFset-class, 90
SDFset2list, 92
SDFset2list,SDFset-method

(SDFset-class), 90
SDFset2list-methods (SDFset2list), 92
SDFset2SDF, 93
SDFset2SDF,SDFset-method

(SDFset-class), 90
SDFset2SDF-methods (SDFset2SDF), 93
SDFset2SDF<- (SDFset2SDF), 93
SDFset2SDF<-,SDFset-method

(SDFset-class), 90
SDFstr-class, 94
sdfstr2list, 96
sdfstr2list,SDFstr-method

(SDFstr-class), 94
sdfstr2list-methods (sdfstr2list), 96
sdfstr2list<- (sdfstr2list), 96
sdfstr2list<-,SDFstr-method

(SDFstr-class), 94
sdfStream, 64, 65, 97
searchSim, 98
searchString, 99
selectInBatches, 100
show,AP-method (AP-class), 6
show,APset-method (APset-class), 9
show,FP-method (FP-class), 47
show,FPset-method (FPset-class), 49
show,SDF-method (SDF-class), 77
show,SDFset-method (SDFset-class), 90
show,SDFstr-method (SDFstr-class), 94
smiles2sdf, 101
splitNumChar (datablock2ma), 39

trimNeighbors, 62, 67, 102

validSDF, 103
view, 104
view,APset-method (APset-class), 9
view,FPset-method (FPset-class), 49
view,SDFset-method (SDFset-class), 90
view-methods (view), 104

write.SDF, 105
write.SDFsplit, 106

	addNewFeatures
	ap
	AP-class
	apfp
	apset
	APset-class
	apset2descdb
	atomblock
	atomcount
	atomprop
	atomsubset
	batchByIndex
	bondblock
	bonds
	bufferLines
	bufferResultSet
	byCluster
	cid
	cluster.sizestat
	cluster.visualize
	cmp.cluster
	cmp.duplicated
	cmp.parse
	cmp.parse1
	cmp.search
	cmp.similarity
	conMA
	datablock
	datablock2ma
	db.explain
	db.subset
	desc2fp
	findCompounds
	findCompoundsByName
	FP-class
	fp2bit
	FPset-class
	fpSim
	fromNNMatrix
	getCompoundNames
	getCompounds
	getIds
	grepSDFset
	groups
	header
	initDb
	jarvisPatrick
	jarvisPatrick_c
	loadSdf
	makeUnique
	nearestNeighbors
	plotStruc
	pubchemFPencoding
	read.AP
	read.SDFindex
	read.SDFset
	read.SDFstr
	rings
	SDF-class
	sdf.subset
	sdf.visualize
	sdf2ap
	SDF2apcmp
	sdf2list
	sdf2smiles
	sdf2str
	sdfid
	sdfsample
	SDFset-class
	SDFset2list
	SDFset2SDF
	SDFstr-class
	sdfstr2list
	sdfStream
	searchSim
	searchString
	selectInBatches
	smiles2sdf
	trimNeighbors
	validSDF
	view
	write.SDF
	write.SDFsplit
	Index

