
Package ‘BioSeqClass’
October 9, 2013

Version 1.18.0

Title Classification for Biological Sequences

Author Li Hong sysptm@gmail.com

Maintainer Li Hong <sysptm@gmail.com>

Imports Biostrings, ipred, e1071, klaR, randomForest, class, tree,nnet, rpart, party, for-
eign, Biobase, utils, stats, grDevices

Description Extracting Features from Biological Sequences and Building Classification Model

Keyword Classification

biocViews Classification

License LGPL (>= 2.0)

ZipData no

LazyLoad yes

Depends R (>= 2.10), scatterplot3d

Suggests scatterplot3d

R topics documented:
basic . 2
classify . 4
featureAAindex . 6
featureBDNAVIDEO . 8
featureBinary . 8
featureCKSAAP . 9
featureCTD . 10
featureDIPRODB . 11
featureDOMAIN . 12
featureEvaluate . 13

1

2 basic

featureFragmentComposition . 16
featureGapPairComposition . 17
featureHydro . 18
featurePseudoAAComp . 19
featurePSSM . 20
featureSSC . 21
hr . 22
model . 24
performance . 26
selectFFS . 27
selectWeka . 28
zzz . 29

Index 31

basic Assistant Functions

Description

Assistant functions including read/write files, invoke perl programs, and so on.

Usage

Elements and groups of base and amino acid
elements(ele.type)
aaClass(aa.type)

pwm(seq,class=elements("aminoacid"))

.pathPerl(perlName, os)

.callPerl(perlName, os)

data(dssp.ss)
data(aa.index)
data(PROPERTY)
data(DiProDB)

Arguments

ele.type a string for the type of biological sequence. This must be one of the strings
"rnaBase", "dnaBase", "aminoacid" or "aminoacid2".

aa.type a string for the group of amino acids. This must be one of the strings "aaH",
"aaV", "aaZ", "aaP", "aaF", "aaS" or "aaE".

seq a string vector for the protein or gene sequences.

class a list for the class of biological properties. It can be produced by elements and
aaClass.

basic 3

perlName a character string for the name of perl program.
os character string, giving the Operating System (family) of the computer.

Details

elements returns a list of basic elements of biological sequence. Parameter "ele.type" supported
following selection: "rnaBase" - basic elements of RNA (ATCG). "dnaBase" - basic elements of
DNA (AUCG). "aminoacid" - 20 amino acides (RKEDQNWGASTPHYCVLIMF). "aminoacid2" -
20 amino acides and 1 pseudo amino acid "O" (RKEDQNWGASTPHYCVLIMFO). Unknown or
uncomplete amino acides will be substituted by pseudo amino acid.

aaClass returns a list of amino acids groups depend on their physical-chemical properties. Pa-
rameter "aa.type" supports following selection: "aaH" (hydrophobicity): Polar(RKEDQN), Neu-
tral(GASTPHY), Hydrophobic(CVLIMFW) "aaV (normalized Van der Waals volume)": Small(GASCTPD),
Medium(NVEQIL), Large(MHKFRYW) "aaZ" (polarizability): Low polarizability (GASDT), Medium
polarizability (CPNVEQIL), High polarizability(KMHFRYW) "aaP" (polarity): Low polarity (LIFWCMVY),
Neutral polarity (PATGS), High polarity (HQRKNED) "aaF": Acidic (DE), Basic (HKR), Po-
lar (CGNQSTY), Nonpolar (AFILMPVW) "aaS": Acidic (DE), Basic (HKR), Aromatic (FWY),
Amide (NQ), Small hydroxyl (ST), Sulfur-containing (CM), Aliphatic (AGPILV) "aaE": Acidic
(DE), Basic(HKR), Aromatic (FWY), Amide (NQ), Small hydroxyl (ST), Sulfur-containing (CM),
Aliphatic 1 (AGP), Aliphatic 2 (ILV)

pwm returns a M*N position weight matrix (PWM) of input sequences. M is the number of elements
given by parameter "class". N is the length of each sequence. Each row is a kind of element, and
each column is a position. The input sequences must have equal length.

.pathPerl write the path of Perl to perl program file.

.callPerl invoke Perl program via R.

dssp.ss is a vector storing the secondary structure data from DSSP database (http://swift.
cmbi.ru.nl/gv/dssp/).

aa.index is a list storing the properties of amino acids from AAIndex database (http://www.
genome.jp/aaindex).

PROPERTY is a list sotring the properties of dinucleotide from B-DNA-VIDEO PROPERTY database
(http://wwwmgs.bionet.nsc.ru/mgs/systems/bdnavideo/).

DiProDB is a list sotring the conformational and thermodynamic dinucleotide properties from DiProDB
database (http://diprodb.fli-leibniz.de/).

Author(s)

Hong Li

Examples

amino acids groups depend on their hydrophobicity
aaClass("aaH")

load data: dssp.ss
data(dssp.ss)
see the data in dssp.ss
dssp.ss[1:5]

http://swift.cmbi.ru.nl/gv/dssp/
http://swift.cmbi.ru.nl/gv/dssp/
http://www.genome.jp/aaindex
http://www.genome.jp/aaindex
http://wwwmgs.bionet.nsc.ru/mgs/systems/bdnavideo/
http://diprodb.fli-leibniz.de/

4 classify

classify Classification with Specific Features and Cross-Validation

Description

Classification with selected features and cross-validation. It supports 10 classification algorithms,
feature selection by Weka, cross-validation and leave-one-out test.

Usage

classify(data,classifyMethod="libsvm",cv=10,
features, evaluator, search, n=200,
svm.kernel="linear",svm.scale=FALSE,
svm.path, svm.options="-t 0",
knn.k=1,
nnet.size=2, nnet.rang=0.7, nnet.decay=0, nnet.maxit=100)

Arguments

data a data frame including the feature matrix and class label. The last column is a
vector of class label comprising of "-1" or "+1"; Other columns are features.

classifyMethod a string for the classification method. This must be one of the strings "lib-
svm", "svmlight", "NaiveBayes", "randomForest", "knn", "tree", "nnet", "rpart",
"ctree", "ctreelibsvm", "bagging".

cv an integer for the time of cross validation, or a string "leave_one_out" for the
jackknife test.

features an integer vector for the index of interested columns in data, which will be used
as features for build classification model.

evaluator a string for the feature selection method used by WEKA. This must be one of the
strings "CfsSubsetEval", "ChiSquaredAttributeEval", "InfoGainAttributeEval",
or "SVMAttributeEval".

search a string for the search method used by WEKA. This must be one of the strings
"BestFirst" or "Ranker".

n an integer for the number of selected features.

svm.kernel a string for kernel function of SVM.

svm.scale a logical vector indicating the variables to be scaled.

svm.path a character for path to SVMlight binaries (required, if path is unknown by the
OS).

svm.options Optional parameters to SVMlight. For further details see: "How to use" on
http://svmlight.joachims.org/. (e.g.: "-t 2 -g 0.1"))

nnet.size number of units in the hidden layer. Can be zero if there are skip-layer units.

nnet.rang Initial random weights on [-rang, rang]. Value about 0.5 unless the inputs are
large, in which case it should be chosen so that rang * max(|x|) is about 1.

classify 5

nnet.decay parameter for weight decay.

nnet.maxit maximum number of iterations.

knn.k number of neighbours considered in function classifyModelKNN.

Details

classify employ feature selction method in Weka and diverse classification model in other R pack-
ages to perfrom classification. "Cross Validation" is controlled by parameter "cv"; "Feature Selec-
tion" is controlled by parameter "features", "evaluator", "search", and "n"; "Classification Model
Building" is controlled by parameter "classifyMethod".

Parameter "evaluator" supportes three feature selection methods provided by WEKA: "CfsSubsetE-
val": Evaluate the worth of a subset of attributes by considering the individual predictive ability
of each feature along with the degree of redundancy between them. "ChiSquaredAttributeEval":
Evaluate the worth of an attribute by computing the value of the chi-squared statistic with respect
to the class. "InfoGainAttributeEval": Evaluate attributes individually by measuring information
gain with respect to the class. "SVMAttributeEval": Evaluate the worth of an attribute by using an
SVM classifier. Attributes are ranked by the square of the weight assigned by the SVM. Attribute
selection for multiclass problems is handled by ranking attributes for each class seperately using a
one-vs-all method and then "dealing" from the top of each pile to give a final ranking.

Parameter "search" supportes three feature subset search methods provided by WEKA: "BestFirst":
Searches the space of attribute subsets by greedy hillclimbing augmented with a backtracking fa-
cility. Setting the number of consecutive non-improving nodes allowed controls the level of back-
tracking done. Best first may start with the empty set of attributes and search forward, or start with
the full set of attributes and search backward, or start at any point and search in both directions (by
considering all possible single attribute additions and deletions at a given point). "Ranker": Ranks
attributes by their individual evaluations.

Parameter "classifyMethod" supports multiple classification model: "libsvm": Employ classifyModelLIBSVM
to perform Support Vecotr Machine by LibSVM. Package "e1071" is required. "svmlight": Employ
classifyModelSVMLIGHT to Support Vecotr Machine by SVMLight. Package "klaR" is required.
"NaiveBayes": Employ classifyModelNB to perform Naive Bayes classification. Package "klaR"
is required. "randomForest": Employ classifyModelRF to perform random forest classification.
Package "randomForest" is required. "knn": Employ classifyModelKNN to perform k Nearest
Neighbor algorithm. Package "class" is required. "tree": Employ classifyModelTree to per-
form tree classification. Package "tree" is required. "nnet": Employ classifyModelNNET to per-
form neural net algorithm. Bundle "VR" is required. "rpart": Employ classifyModelRPART to
perform Recursive Partitioning and Regression Trees. Package "rpart" is required. "ctree": Em-
ploy classifyModelCTREE to perform Conditional Inference Trees. Package "party" is required.
"ctreelibsvm": Employ classifyModelCTREELIBSVM to combine Conditional Inference Trees and
Support Vecotr Machine for classification. For each node in the tree, one SVM model will be con-
structed using train data in this node. Test data will be firstly classified to one node of the tree, and
then use corresponding SVM to do classification. Package "party" and "e1071" is required. "bag-
ging": Employ classifyModelBAG to perform bagging for classification trees. Package "ipred" is
required.

Author(s)

Hong Li

6 featureAAindex

Examples

read positive/negative sequence from files.
tmpfile1 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
tmpfile2 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.neg40.pep")
posSeq = as.matrix(read.csv(tmpfile1,header=FALSE,sep="\t",row.names=1))[,1]
negSeq = as.matrix(read.csv(tmpfile2,header=FALSE,sep="\t",row.names=1))[,1]
seq=c(posSeq,negSeq)
classLable=c(rep("+1",length(posSeq)),rep("-1",length(negSeq)))
data = data.frame(featureBinary(seq),classLable)

Use LibSVM and 5-cross-validation to classify.
LIBSVM_CV5 = classify(data,classifyMethod="libsvm",cv=5,

svm.kernel="linear",svm.scale=FALSE)
Features selection is done by envoking "CfsSubsetEval" method in WEKA.
FS_LIBSVM_CV5 = classify(data,classifyMethod="libsvm",cv=5,evaluator="CfsSubsetEval",

search="BestFirst",svm.kernel="linear",svm.scale=FALSE)

if(interactive()){

KNN_CV5 = classify(data,classifyMethod="knn",cv=5,knn.k=1)

RF_CV5 = classify(data,classifyMethod="randomForest",cv=5)

TREE_CV5 = classify(data,classifyMethod="tree",cv=5)

NNET_CV5 = classify(data,classifyMethod="nnet",cv=5)

RPART_CV5 = classify(data,classifyMethod="rpart",cv=5,evaluator="")

CTREE_CV5 = classify(data,classifyMethod="ctree",cv=5,evaluator="")

BAG_CV5 = classify(data,classifyMethod="bagging",cv=5,evaluator="")

}

featureAAindex Feature Coding by physicochemical/biochemical properties in AAin-
dex

Description

Protein sequences are coded based on the physicochemical/biochemical properties of amino acids
in AAindex database.

Usage

featureAAindex(seq,aaindex.name="all")
featureACI(seq,aaindex.name="all")
featureACF(seq,n,aaindex.name="all")

featureAAindex 7

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

aaindex.name a string for the name of physicochemical and biochemical properties in AAindx.

n an integer used as paramter of featureACF (1<=n<=L-2, L is the the length of
sequence). featureACF takes the auto-correlation between fragment X(1)...X(L-
m) and X(m+1)...X(L) (1<=m<=n) as features.

Details

featureAAindex returns a matrix measuring the physicochemical and biochemical properties of
amino acids by AAindex (http://www.genome.jp/aaindex). If parameter aaindex.name="all",
all properties in AAindex will be considered, and each row represented the features of one sequence
coding by a 531*N dimension numeric vector. If parameter aaindex.name is a name of property in
AAindex, each row represented the features of one sequence coding by a N dimension numeric
vector.

featureACI returns a matrix with 531 columns, measuring the average cumulative value of AAin-
dex. N is the length of input sequence, and N must be odd. Central residue of all windows are the
central residue of input sequence. Each column is the average cumulative AAindex over a sliding
window.

featureACF returns a matrix with 531*n columns, measuring the Auto-Correlation Function (ACF)
of AAindex. If parameter aaindex.name is a name of property in AAindex, each row represented
the features of one sequence coding by a n dimension numeric vector.

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
seq = as.matrix(read.csv(file,header=F,sep="\t",row.names=1))[,1]

AI_all = featureAAindex(seq)
AI_ANDN920101 = featureAAindex(seq,"ANDN920101")

ACI_all = featureACI(seq)
ACI_ANDN920101 = featureACI(seq,"ANDN920101")

ACF_all_1 = featureACF(seq,1)
ACF_ANDN920101_3 = featureACF(seq,3,"ANDN920101")

}

http://www.genome.jp/aaindex

8 featureBinary

featureBDNAVIDEO Feature Coding by DNA/RNA property

Description

DNA/RNA Sequences are coded with DNA or RNA property from B-DNA-VIDEO database.

Usage

featureBDNAVIDEO(seq)

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

Details

featureBDNAVIDEO returns a matrix with 38 columns. Each column is the mean of DNA or
RNA property from B-DNA-VIDEO database (http://wwwmgs.bionet.nsc.ru/mgs/systems/
bdnavideo/).

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "test.rna")
rna = as.matrix(read.csv(file,header=F,sep="\t"))[,1]

BDNAVIDEO = featureBDNAVIDEO(rna)
}

featureBinary Feature Coding by Binary Vectors

Description

Sequences are coded by binary vectors.

Usage

featureBinary(seq,class=elements("aminoacid"))

http://wwwmgs.bionet.nsc.ru/mgs/systems/bdnavideo/
http://wwwmgs.bionet.nsc.ru/mgs/systems/bdnavideo/

featureCKSAAP 9

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

class a list for the class of biological properties. It can be produced by elements and
aaClass.

Details

featureBinary returns a matrix with M*N columns. Each row represented features of one se-
quence coding by a M*N dimension 0-1 vector. Each base/amino acid is coded as a M dimension
vetor. For example: amino acid "A" is coded by "00000000000000000001"; base "T" is coded by
"0010". The input sequences must have equal length.

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
seq = as.matrix(read.csv(file,header=F,sep="\t",row.names=1))[,1]

BIN1 = featureBinary(seq,elements("aminoacid"))
BIN2 = featureBinary(seq,aaClass("aaE"))

}

featureCKSAAP Feature Coding by k-spaced Aminoacids/Base Pairs

Description

Protein sequences are coded based on the frequency of k-spaced aminoacids/base pairs.

Usage

featureCKSAAP(seq,g,class=elements("aminoacid"))

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

g an integer indicating the distance between two aminoacids/bases (g>=0).

class a list for the class of biological properties. It can be produced by elements and
aaClass.

10 featureCTD

Details

featureCKSAAP returns a matrix with (g+1)*M\^2 columns. Each row represented features of one
sequence coding by a (g+1)*M\^2 dimension numeric vector. Each column is the number of k-
spaced aminoacids/base pair (0<=k<=g).

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
seq = as.matrix(read.csv(file,header=F,sep="\t",row.names=1))[,1]

CKSAAP0 = featureCKSAAP(seq,0,elements("aminoacid"))
CKSAAP2 = featureCKSAAP(seq,2,elements("aminoacid"))

}

featureCTD Feature Coding by composition, transition and distribution

Description

Sequences are coded based on their composition, transition and distribution.

Usage

featureCTD(seq,class=elements("aminoacid"))

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

class a list for the class of biological properties. It can be produced by elements and
aaClass.

Details

featureCTD returns a matrix with M+M*(M-1)/2+M*5 columns. Each row represented features of
one sequence coding by a M+M*(M-1)/2+M*5 dimension numeric vector. Three kinds of coding:
composition (C), transition (T) and distribution (D) are used. C is the number of amino acids
of a particular property (such as hydrophobicity) divided by the total number of amino acids. T
characterizes the percent frequency with which amino acids of a particular property is followed by
amino acids of a different property. D measures the chain length within which the first, 25, 50, 75
and 100 acids of a particular property is located respectively.

featureDIPRODB 11

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.fasta")
library(Biostrings)
tmp = readAAStringSet(file)

proteinSeq = as.character(tmp)

CTD1 = featureCTD(proteinSeq, class=elements("aminoacid"))
CTD2 = featureCTD(proteinSeq, class=aaClass("aaV"))

}

featureDIPRODB Feature Coding by Dinucleotide Property

Description

Sequences are coded by conformational or thermodynamic dinucleotide property from DiProDB
database.

Usage

featureDIPRODB(seq, na.type="all", na.strand="all", diprodb.method="all",
diprodb.type="all")

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

na.type a string for nucleic acid type. It must be "DNA", "DNA/RNA", "RNA", or "all".

na.strand a string for strand information. It must be "double", "single", or "all".

diprodb.method a string for mode of property determination. It can be "experimental", "calcu-
lated", or "all".

diprodb.type a string for property type. It can be "physicochemical", "conformational", "letter
based", or "all".

Details

featureDIPRODB returns a matrix with 122 columns. Each column is the mean of conformational or
thermodynamic dinucleotide property from DiProDB database (http://diprodb.fli-leibniz.
de).

http://diprodb.fli-leibniz.de
http://diprodb.fli-leibniz.de

12 featureDOMAIN

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "test.rna")
rna = as.matrix(read.csv(file,header=F,sep="\t"))[,1]

DIPRODB1 = featureDIPRODB(rna)
DIPRODB2 = featureDIPRODB(rna, na.type="RNA")

}

featureDOMAIN Feature Coding by doamin organization

Description

Protein sequences are coded based on their domains.

Usage

featureDOMAIN(domain)

Protein Pfam domain prediction
predictPFAM(seq, hmmpfam.path, pfam.path, Evalue=10^-5)

Arguments

domain a list of protein domains. It can be produced by function predictPFAM.

seq a string vector for the protein, DNA, or RNA sequences.

hmmpfam.path a string for the path of hammpfam program in HMMER. hammpfam will be
employed to predict domains using models in Pfam database.

pfam.path a string for the path of pfam domain database.

Evalue a numeric value for the E-value cutoff of perdicted Pfam domain.

Details

featureDOMAIN uses Pfam domains to code 0-1 feature vector.

predictPFAM predict Pfam domains by hmmpfam program. It returns a list, each element is a vector
which denotes the domain composition of a protein.

Author(s)

Hong Li

featureEvaluate 13

Examples

if(interactive()){

}

featureEvaluate Evaluate Different Feature Coding Schemas

Description

Feature sets from different feature coding schemas are used as input of classification models, and
the model performance are given in the result.

Usage

featureEvaluate(seq, classLable, fileName, ele.type, featureMethod,
cv=10, classifyMethod="libsvm",
group=c("aaH", "aaV", "aaZ", "aaP", "aaF", "aaS", "aaE"), k, g,

hydro.methods=c("kpm", "SARAH1"), hydro.indexs=c("hydroE", "hydroF", "hydroC"),
aaindex.name, n, d, w=0.05, start.pos, stop.pos, psiblast.path,
database.path, hmmpfam.path, pfam.path, Evalue=10^-5,

na.type="all", na.strand="all", diprodb.method="all", diprodb.type="all",
svm.kernel="linear", svm.scale=FALSE, svm.path, svm.options="-t 0",
knn.k=1, nnet.size=2, nnet.rang=0.7, nnet.decay=0, nnet.maxit=100)

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

classLable a factor or vector for the class lable of sequences in seq.

fileName a string for the output file name.

ele.type a string for the type of biological sequence. This must be one of the strings
"rnaBase", "dnaBase", "aminoacid" or "aminoacid2".

featureMethod a string vector for the name of feature coding. The alternative names are "Bi-
nary", "CTD", "FragmentComposition", "GapPairComposition", "CKSAAP",
"Hydro", "ACH", "AAindex", "ACI", "ACF", "PseudoAAComp", "PSSM", "DO-
MAIN", "BDNAVIDEO", and "DIPRODB".

classifyMethod a string for the classification method. This must be one of the strings "lib-
svm", "svmlight", "NaiveBayes", "randomForest", "knn", "tree", "nnet", "rpart",
"ctree", "ctreelibsvm", "bagging".

cv an integer for the time of cross validation, or a string "leave_one_out" for the
jacknife test.

group a string vector for the group of amino acids. This alternative groups are: "aaH",
"aaV", "aaZ", "aaP", "aaF", "aaS" or "aaE".

k an integer indicating the length of sequence fragment (k>=1).

14 featureEvaluate

g an integer indicating the distance between two aminoacids/bases (g>=0).
hydro.methods a string vector for the methods of coding protein hydrophobic effect. This alter-

native groups are: "kpm" or "SARAH1".
hydro.indexs a string vector for the methods of coding protein hydrophobic effect. This alter-

native groups are: "hydroE", "hydroF" or "hydroC".
aaindex.name a string for the name of physicochemical and biochemical properties in AAindx.
n an integer used as paramter of featureACF (1<=n<=L-2, L is the the length of

sequence). featureACF takes the auto-correlation between fragment X(1)...X(L-
m) and X(m+1)...X(L) (1<=m<=n) as features.

d an integer used as paramter of featurePseudoAAComp (d>=1). Coupling be-
tween amino acids X(i) and X(i+d) are considered as features.

w a numeric value for the weight factor of sequence order effect in featurePseudoAAComp.
start.pos a integer vector denoting the start position of the fragment window. If it is

missing, it is 1 by default.
stop.pos a integer vector denoting the stop position of the fragment window. If it is

missing, it is the length of sequence by default.
psiblast.path a string for the path of PSI-BLAST program blastpgp. blastpgp will be em-

ployed to iteratively search database and generate position-specific scores for
each position in the alignment.

database.path a string for the path of formatted protein database. Database can be formatted
by formatdb program.

hmmpfam.path a string for the path of hammpfam program in HMMER. hammpfam will be
employed to predict domains using models in Pfam database.

pfam.path a string for the path of pfam domain database.
Evalue a numeric value for the E-value cutoff of perdicted Pfam domain.
na.type a string for nucleic acid type. It must be "DNA", "DNA/RNA", "RNA", or "all".
na.strand a string for strand information. It must be "double", "single", or "all".
diprodb.method a string for mode of property determination. It can be "experimental", "calcu-

lated", or "all".
diprodb.type a string for property type. It can be "physicochemical", "conformational", "letter

based", or "all".
svm.kernel a string for kernel function of SVM.
svm.scale a logical vector indicating the variables to be scaled.
svm.path a character for path to SVMlight binaries (required, if path is unknown by the

OS).
svm.options Optional parameters to SVMlight. For further details see: "How to use" on

http://svmlight.joachims.org/. (e.g.: "-t 2 -g 0.1"))
nnet.size number of units in the hidden layer. Can be zero if there are skip-layer units.
nnet.rang Initial random weights on [-rang, rang]. Value about 0.5 unless the inputs are

large, in which case it should be chosen so that rang * max(|x|) is about 1.
nnet.decay parameter for weight decay.
nnet.maxit maximum number of iterations.
knn.k number of neighbours considered in function classifyModelKNN.

featureEvaluate 15

Details

featureEvaluate can test feature coding methods for short peptide, protein, DNA or RNA. It re-
turns a ranked list based on the accuracy of classification result. Each element in the list has three
components: "data", "model", and "performance". "data" is a data.frame object, which stores fea-
ture matrix and its last column is the class label. "model" is a vector for feature coding method,
which contains 6 elements: "Feature_Function", "Feature_Parameter", "Feature_Number", "Model",
"Model_Parameter", and "Cross_Validataion". "performance" is a vector for the performance re-
sult of classification model, which contains 10 elements: "tp", "tn", "fp", "fn", "prcc", "sn", "sp",
"acc", "mcc", "pc".

Author(s)

Hong Li

Examples

read positive/negative sequence from files.
tmpfile1 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
tmpfile2 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.neg40.pep")
posSeq = as.matrix(read.csv(tmpfile1,header=FALSE,sep="\t",row.names=1))[,1]
negSeq = as.matrix(read.csv(tmpfile2,header=FALSE,sep="\t",row.names=1))[,1]
seq=c(posSeq,negSeq)
classLable=c(rep("+1",length(posSeq)),rep("-1",length(negSeq)))
if(interactive()){
test various feature coding methods.
it may be time consuming.
fileName = tempfile()
testFeatureSet = featureEvaluate(seq, classLable, fileName, ele.type="aminoacid",

featureMethod=c("Binary", "CTD", "FragmentComposition", "GapPairComposition",
"Hydro"), cv=5, classifyMethod="libsvm",
group=c("aaH", "aaV", "aaZ", "aaP", "aaF", "aaS", "aaE"), k=3, g=7,

hydro.methods=c("kpm", "SARAH1"), hydro.indexs=c("hydroE", "hydroF", "hydroC"))
summary = read.csv(fileName,sep="\t",header=T)
fix(summary)

Evaluate features from different feature coding functions
feature.index = 1:5
tmp <- testFeatureSet[[1]]$data

colnames(tmp) <- paste(testFeatureSet[[feature.index[1]]]$model["Feature_Function"],testFeatureSet[[feature.index[1]]]$model["Feature_Parameter"],colnames(tmp),sep=" ; ")
data <- tmp[,-ncol(tmp)]
for(i in 2:length(feature.index)){

tmp <- testFeatureSet[[feature.index[i]]]$data
colnames(tmp) <- paste(testFeatureSet[[feature.index[i]]]$model["Feature_Function"],testFeatureSet[[feature.index[i]]]$model["Feature_Parameter"],colnames(tmp),sep=" ; ")

data <- data.frame(data, tmp[,-ncol(tmp)])
}
name <- colnames(data)
data <- data.frame(data, tmp[,ncol(tmp)])
feature forward selection by ’cv_FFS_classify’
it is very time consuming.
combineFeatureResult = fsFFS(data,stop.n=50,classifyMethod="knn",cv=5)

tmp = sapply(combineFeatureResult,function(x){c(length(x$features),x$performance["acc"])})

16 featureFragmentComposition

plot(tmp[1,],tmp[2,],xlab="featureNumber",ylab="Accuracy",main="result of FFS_KNN",pch=19)
lines(tmp[1,],tmp[2,])

compare the prediction accuracy based on different feature coding methods and different classification models.
it is very time consuming.
testResult = lapply(c("libsvm", "randomForest", "knn", "tree"),

function(x){
tmp = featureEvaluate(seq, classLable, fileName = tempfile(),

ele.type="aminoacid", featureMethod=c("Binary", "CTD", "FragmentComposition",
"GapPairComposition", "Hydro"), cv=5, classifyMethod=x,
group=c("aaH", "aaV", "aaZ", "aaP", "aaF", "aaS", "aaE"), k=3, g=7,

hydro.methods=c("kpm", "SARAH1"), hydro.indexs=c("hydroE", "hydroF", "hydroC"));
sapply(tmp,function(y){c(y$model[["Feature_Function"]], y$model[["Feature_Parameter"]], y$model[["Model"]], y$performance[["acc"]])})

})
tmpFeature = as.factor(c(sapply(testResult,function(x){apply(x[1:2,],2,function(y){paste(y,collapse="; ")})})))
tmpModel = as.factor(c(sapply(testResult,function(x){x[3,]})))

tmp1 = data.frame(as.integer(tmpFeature), as.integer(tmpModel), as.numeric(c(sapply(testResult,function(x){x[4,]}))))
require(scatterplot3d)
s3d=scatterplot3d(tmp1,color=c("red","blue","green","yellow")[tmp1[,2]],pch=19,

xlab="Feature Coding", ylab="Classification Model",
zlab="Accuracy under 5-fold cross validation",lab=c(10,6,7),
y.ticklabs=c("",as.character(sort(unique(tmpModel))),""))

}

featureFragmentComposition

Feature Coding by the composition of k-mer fragments

Description

Sequences are coded based on the frequency of k-mer sequence fragments.

Usage

featureFragmentComposition(seq,k,class=elements("aminoacid"))

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

k an integer indicating the length of sequence fragment (k>=1).

class a list for the class of biological properties. It can be produced by elements and
aaClass.

Details

featureFragmentComposition returns a matrix with M\^k columns. Each row represented fea-
tures of one sequence coding by a M\^k dimension numeric vector. Each column is the frequency
of k-mer sequence fragment.

featureGapPairComposition 17

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
seq = as.matrix(read.csv(file,header=F,sep="\t",row.names=1))[,1]

FC2 = featureFragmentComposition(seq,2,aaClass("aaS"))
FC3 = featureFragmentComposition(seq,3,aaClass("aaS"))

}

featureGapPairComposition

Feature Coding by g-spaced aminoacids/bases pairs

Description

Sequences are coded based on the frequency of g-spaced aminoacids/bases pairs.

Usage

featureGapPairComposition(seq,g,class=elements("aminoacid"))

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

g an integer indicating the distance between two aminoacids/bases (g>=0).

class a list for the class of biological properties. It can be produced by elements and
aaClass.

Details

featureGapPairComposition returns a matrix with M\^2 columns. Each row represented features
of one sequence coding by a M\^2 dimension numeric vector. Each column is the frequency of
g-spaced aminoacids/bases pair. featureFragmentComposition(seq,2) is same with featureGapPair-
Composition(seq,0).

Author(s)

Hong Li

18 featureHydro

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
seq = as.matrix(read.csv(file,header=F,sep="\t",row.names=1))[,1]

GPC0 = featureGapPairComposition(seq,0,elements("aminoacid"))
GPC2 = featureGapPairComposition(seq,2,elements("aminoacid"))

}

featureHydro Feature Coding by hydrophobicity

Description

Protein sequences are coded based on their hydrophobicity.

Usage

featureHydro(seq,hydro.method="SARAH1")
featureACH(seq,hydro.index="hydroE")

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

hydro.method a string for the method of coding protein hydrophobic effect. This must be one
of the strings "kpm" or "SARAH1".

hydro.index a string for the method of coding protein hydrophobic effect. This must be one
of the strings "hydroE", "hydroF" or "hydroC".

Details

featureHydro returns a matrix measuring the hydrophobic effect. Parameter "hydro.method" sup-
ported following coding methods: "kpm": use a numeral to indicating the hydrophobic effect of
amino acid. Each sequence is coded by a N dimension numeric vector. "SARAH1": use a 5 dimen-
sion 0-1 vector to indicating the hydrophobic effect of amino acid. Each sequence is coded by a
5*N dimension 0-1 vector.

featureACH returns a matrix with (N-1)/2 columns. N is the length of input sequence, andis N must
be odd. Central residue of all windows are the central residue of input sequence. Each column is
the average cumulative hydrophobicity over a sliding window.

Author(s)

Hong Li

featurePseudoAAComp 19

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
seq = as.matrix(read.csv(file,header=F,sep="\t",row.names=1))[,1]

H1 = featureHydro(seq,"kpm")
H2 = featureHydro(seq,"SARAH1")

H3 = featureACH(seq,hydro.index="hydroE")
H3 = featureACH(seq,hydro.index="hydroF")
H3 = featureACH(seq,hydro.index="hydroC")

}

featurePseudoAAComp Feature Coding by Pseudo Amino Acid Composiion

Description

Protein sequences are coded by pseudo amino acid composiion.

Usage

featurePseudoAAComp(seq,d,w=0.05)

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

d an integer used as paramter of featurePseudoAAComp (d>=1). Coupling be-
tween amino acids X(i) and X(i+d) are considered as features.

w a numeric value for the weight factor of sequence order effect in featurePseudoAAComp.

Details

featurePseudoAAComp returns a matrix representing the pseudo amino acid composiion. Each row
represented features of one sequence coding by a 20+d dimension numeric vector. The first 20
features indicates the composition of 20 amino acids. The last d features indicates the coupling be-
tween amino acids X(i) and X(i+d). Coupling value is cacluated by hydrophobicity, hydrophilicity
and mass of amino acids.

Author(s)

Hong Li

20 featurePSSM

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
seq = as.matrix(read.csv(file,header=F,sep="\t",row.names=1))[,1]

PAC4 = featurePseudoAAComp(seq,4)
}

featurePSSM Feature Coding

Description

A set of functions for extract features from biological sequences, and coding features by numeric
vector.

Usage

featurePSSM(seq, start.pos, stop.pos, psiblast.path, database.path)

Arguments

seq a string vector for the protein, DNA, or RNA sequences.

start.pos a integer vector denoting the start position of the fragment window.

stop.pos a integer vector denoting the stop position of the fragment window.

psiblast.path a string for the path of blastpgp program. blastpgp will be employed to do PSI-
BLAST and get Position-Specific Scoring Matrix.

database.path a string for the path of a formated reference database. Database can be formated
by "formatdb" program.

Details

featurePSSM returns a matrix with 20*N+N columns. Each row represented features of one se-
quence coding by a 20*N+N dimension numeric vector generated by PSI-BLAST. It contains two
kinds of fatures: normalized position-specific score of PSSM (Position-Specific Scoring Matrix),
Shannon entropy for each position of WOP (weighted observed percentages). Program PSI-BLAST
and formatted NCBI non-redundant protein database are needed.

Author(s)

Hong Li

featureSSC 21

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.fasta")
tmp = readAAStringSet(file)
proteinSeq = as.character(tmp)

Need "blastpgp" program and a formated database. Database can be formated by "formatdb" program.
PSSM1 = featurePSSM(proteinSeq[1:2], start.pos=rep(1,2), stop.pos=rep(10,2), psiblast.path="blastpgp", database.path="./result1.fasta")

}

featureSSC Feature Coding by secondary structure

Description

It is suitable for peptides with odd residues and the central residue has important role.

Usage

featureSSC(secondaryStructure, confidenceScore)

secondary structure from DSSP database
getDSSP(pdb)
Protein secondary structure prediction
predictPROTEUS(seq,proteus2.organism="euk")

Arguments

secondaryStructure

a string vector for the protein secondary structure. It is consisted of three kinds
of secondary structures: H = Helix, E = Beta Strand, C = Coil.

confidenceScore

a string vector for the confidence score of secondary structure prediction (0-9, 0
= low, 9 = high).

pdb a string vector for the name of pdb structure. (e.g. "43ca")

seq a string vector for the protein, DNA, or RNA sequences.
proteus2.organism

a string for the organism of proteus2 program. This must be one of the strings
"gram-", "gram+", "euk".

Details

featureSSC codes for the secondary structure of the central residue of peptides. It is suitable for
peptides with odd residues and the central residue has important role.

getDSSP returns a vector of secondary structure extracted from DSSP database (http://swift.
cmbi.ru.nl/gv/dssp/).

http://swift.cmbi.ru.nl/gv/dssp/
http://swift.cmbi.ru.nl/gv/dssp/

22 hr

predictPROTEUS predicts secondary structure based on protein sequence using following methods
: "PROTEUS2", "PSIPRED", "JNET", "TRANSSEC", "JURY-OF-EXPERTS PREDICTION". Pa-
rameter "proteus2.organism" can be "gram-" for "Gram negative prokaryote", "gram+" for "Gram
positive prokaryote", "euk" for "Eukaryote". It returns.....

Author(s)

Hong Li

Examples

if(interactive()){
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.fasta")
tmp = readAAStringSet(file)
proteinSeq = as.character(tmp)

DSSP1 = getDSSP(c("108l","43ca"))
DSSP2 = getDSSP(c("108l","43ca","aaaa"))

Predict protein secordary strucutre
PROTEUS = predictPROTEUS(proteinSeq[1:2],proteus2.organism="euk")

Use general feature conding functions to codes protein secordary strucutre
secondaryStructure = sapply(PROTEUS,function(x){paste(x[["PROTEUS2"]]$SecondaryStructure,collapse="")})
confidenceScore = sapply(PROTEUS,function(x){paste(x[["PROTEUS2"]]$ConfidenceScore,collapse="")})
SSCTD = featureCTD(secondaryStructure, class=list("H"="H","E"="E","C"="C"))
Codes for peptides which have equal length and their central residues are important
secondaryStructure = sapply(PROTEUS,function(x){sub.seq(paste(x[["PROTEUS2"]]$SecondaryStructure,collapse=""), 1, 11)})
confidenceScore = sapply(PROTEUS,function(x){sub.seq(paste(x[["PROTEUS2"]]$ConfidenceScore,collapse=""), 1, 11)})

SS1 = featureSSC(secondaryStructure, confidenceScore)
}

hr Homolog Reduction

Description

Filter homolog sequences by sequence similarity.

Usage

hr(seq, method, identity, cdhit.path)

cdhitHR(seq, identity=0.3, cdhit.path)
aligndisHR(seq, identity=0.6)
distance(seq1,seq2)

getTrain(seqfile, posfile, aa, w, identity, balance=T)
getNegSite(posSite, seq, aa)

hr 23

Arguments

seq a list with one element for each protein/gene sequence. The elements are in two
parts, one the description ("desc") and the second is a character string of the
biological sequence ("seq").

identity a numeric value ranged from 0 to 1. It is used as a maximum identity cutoff
among input sequences.

method a string for the method of homolog redunction. This must be one of the strings
"cdhit" or "aligndis".

cdhit.path a string for the path of cdhit program directory. eg: "/people/hongli/cd-hit". It is
necessary when method="cdhit".

seq1 a string for the protein or gene sequence.

seq2 a string for the protein or gene sequence. seq1 and seq2 must have same length.

seqfile a string for the name of FASTA file.

posfile a string for the name of file which contains the positive site dataset. It has two
columns: 1st column is the protein name; 2st column is the positive site. Protein
name should be consistent with the name used in seqfile.

aa a character for the interested amino acid. eg: "C".

w an integer for the window size of flanking peptide sequence. Window size is
2*w+1, and the central residues are the positive sites in posfile.

balance a logical value indicating whether negative sites will be random selected to have
the same number with positive sites.

posSite a string vector for the positive sites. It is consisted of protein description and
positive site, eg: "P278168:952".

Details

hr employs cdhitHR and aligndisHR to filter homolog sequences. It supported following methods:

"cdhit": Use cd-hit program to quickly filter sequences by given identity. It is designed to filter full-
length protein or gene sequences. "formatdb" and "blastall" are required for running cd-hit program.
(http://www.bioinformatics.org/download.php/cd-hit/cd-hit-2007-0131.tar.gz or http://www.bioinformatics.org/download.php/cd-
hit/cd-hit-2007-0131-win32.tar.gz)

"aligndis": Use the number of different residues to meature the identity between two sequences. It
is designed to filter aligned seuqnces with equal length.

getTrain extract 2*w+1 flanking peptides of positive sites and filter homolog sequences. Negative
sites are non-positive sites in the same proteins.

distance calculate the number of positions with different residues between two sequences.

Value

hr return a list of reduced sequences.

Author(s)

Hong Li

24 model

Examples

distance("AABD","ACBD")
distance("AABD","ECBD")
if(interactive()){

file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.fasta")
library(Biostrings)
seq = as.character(readAAStringSet(file))
Homolog reduction of whole-length sequence by cd-hit
need cd-hit program;
reducSeq50 = hr(seq, method="cdhit", identity=0.5, cdhit.path="/people/hongli/cd-hit")

file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.site")
tmp = as.matrix(read.csv(file, sep="\t",header=F))

logical = apply(tmp,1,function(x){ l=nchar(seq[x[1]]); (l>=as.numeric(x[2])+7 & as.numeric(x[2])-7>0) })
fragment = sub.seq(seq[tmp[logical,1]], as.numeric(tmp[logical,2])-7, as.numeric(tmp[logical,2])+7)
Homolog reduction of short sequence fragment
It may be slow.
reducSeq = hr(fragment, method="aligndis", identity=0.4)

produce train set based on given positive sites and fasta sequences.
file = file.path(path.package("BioSeqClass"), "example", "acetylation_K.fasta")
posfile = file.path(path.package("BioSeqClass"), "example", "acetylation_K.site")

"getTrain" integrate negative set construction and homolog reduction. It is designed for site level training data.
It may be very slow.
data = getTrain(file, posfile, aa="K", w=7, identity=0.4)

}

model Classification Models

Description

These functions build various classification models.

Usage

classifyModelLIBSVM(train,svm.kernel="linear",svm.scale=FALSE)
classifyModelSVMLIGHT(train,svm.path,svm.options="-t 0")
classifyModelNB(train)
classifyModelRF(train)
classifyModelKNN(train, test, knn.k=1)
classifyModelTree(train)
classifyModelNNET(train, nnet.size=2, nnet.rang=0.7, nnet.decay=0, nnet.maxit=100)
classifyModelRPART(train)
classifyModelCTREE(train)
classifyModelCTREELIBSVM(train, test, svm.kernel="linear",svm.scale=FALSE)
classifyModelBAG(train)

model 25

Arguments

train a data frame including the feature matrix and class label. The last column is a
vector of class label comprising of "-1" or "+1"; Other columns are features.

svm.kernel a string for kernel function of SVM.

svm.scale a logical vector indicating the variables to be scaled.

svm.path a character for path to SVMlight binaries (required, if path is unknown by the
OS).

svm.options Optional parameters to SVMlight. For further details see: "How to use" on
http://svmlight.joachims.org/. (e.g.: "-t 2 -g 0.1"))

nnet.size number of units in the hidden layer. Can be zero if there are skip-layer units.

nnet.rang Initial random weights on [-rang, rang]. Value about 0.5 unless the inputs are
large, in which case it should be chosen so that rang * max(|x|) is about 1.

nnet.decay parameter for weight decay.

nnet.maxit maximum number of iterations.

knn.k number of neighbours considered in function classifyModelKNN.

test a data frame including the feature matrix and class label. The last column is a
vector of class label comprising of "-1" or "+1"; Other columns are features.

Details

classifyModelLIBSVM builds support vector machine model by LibSVM. R package "e1071" is
needed.

classifyModelSVMLIGHT builds support vector machine model by SVMlight. R package "klaR" is
needed.

classifyModelNB builds naive bayes model. R package "klaR" is needed.

classifyModelRF builds random forest model. R package "randomForest" is needed.

classifyModelKNN builds k-nearest neighbor model. R package "class" is needed.

classifyModelTree builds tree model. R package "class" is needed.

classifyModelRPART builds recursive partitioning trees model. R package "rpart" is needed.

classifyModelCTREE builds conditional inference trees model. R package "party" is needed.

classifyModelCTREELIBSVM combines conditional inference trees and support vecotr machine. R
package "party" and "e1071" is needed.

classifyModelBAG uses bagging method. R package "ipred" is needed.

Author(s)

Hong Li

26 performance

Examples

read positive/negative sequence from files.
tmpfile1 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
tmpfile2 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.neg40.pep")
posSeq = as.matrix(read.csv(tmpfile1,header=FALSE,sep="\t",row.names=1))[,1]
negSeq = as.matrix(read.csv(tmpfile2,header=FALSE,sep="\t",row.names=1))[,1]
data = data.frame(rbind(featureBinary(posSeq,elements("aminoacid")),

featureBinary(negSeq,elements("aminoacid"))),
class=c(rep("+1",length(posSeq)),
rep("-1",length(negSeq))))

sample train and test data
tmp = c(sample(1:length(posSeq),length(posSeq)*0.8),

sample(length(posSeq)+(1:length(negSeq)),length(negSeq)*0.8))
train = data[tmp,]
test = data[-tmp,]

Build classification model using training data
model1 = classifyModelLIBSVM(train,svm.kernel="linear",svm.scale=FALSE)
Predict test data by classification model
testClass = predict(model1, test[,-ncol(test)])

performance Performance Evaluation

Description

Evaluate the performance of classification model.

Usage

performance(predictClass,factClass)

Arguments

predictClass a factor of predicted classifications of training set, comprising of "-1" or "+1".

factClass a vector of true classifications of training set, comprising of "-1" or "+1".

Details

performance evaluates the performance of classification model. It cacluates: tp (true positive),
tn(ture negative), fp(false positive), fn(false negative), prc(precision), sn(sensitivity), sp(specificity),
acc(accuracy), mcc(Matthews Correlation Coefficient), pc(Performance Coefficient).

Author(s)

Hong Li

selectFFS 27

Examples

read positive/negative sequence from files.
tmpfile1 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
tmpfile2 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.neg40.pep")
posSeq = as.matrix(read.csv(tmpfile1,header=FALSE,sep="\t",row.names=1))[,1]
negSeq = as.matrix(read.csv(tmpfile2,header=FALSE,sep="\t",row.names=1))[,1]
data = data.frame(rbind(featureBinary(posSeq,elements("aminoacid")),

featureBinary(negSeq,elements("aminoacid"))),
class=c(rep("+1",length(posSeq)),
rep("-1",length(negSeq))))

sample train and test data
tmp = c(sample(1:length(posSeq),length(posSeq)*0.8),

sample(length(posSeq)+(1:length(negSeq)),length(negSeq)*0.8))
train = data[tmp,]
test = data[-tmp,]

Build classification model using training data
model1 = classifyModelLIBSVM(train,svm.kernel="linear",svm.scale=FALSE)
Predict test data by classification model
testClass = predict(model1, test[,-ncol(test)])
Evaluate the performance of classification model
performance(testClass,test[,ncol(test)])

selectFFS feature forward selection

Description

feature forward selection.

Usage

selectFFS(data, accCutoff, stop.n,
classifyMethod="knn",cv=10)

Arguments

data a data frame including the feature matrix and class label. The last column is a
vector of class label comprising of "-1" or "+1"; Other columns are features.

accCutoff a numeric indicating the minimum difference of accuracy between two mod-
els in selectFFS. Feature subsets will stop increasing when the difference of
accuracy is samll than accCutoff.

stop.n number of selected features by selectFFS.
classifyMethod a string for the classification method. This must be one of the strings "lib-

svm", "svmlight", "NaiveBayes", "randomForest", "knn", "tree", "nnet", "rpart",
"ctree", "ctreelibsvm", "bagging".

cv an integer for the time of cross validation, or a string "leave_one_out" for the
jacknife test.

28 selectWeka

Details

selectFFS uses FFS (Feature Forword Selection) method to increase feature, and use NNA (Near-
east Neighbor Analysis) to evaluate the performance of feature subset. Two conditions are used to
stop feature increasing: control the difference of accuracy between two models; control the number
of selected features by Parameter "stop.n".

Author(s)

Hong Li

Examples

read positive/negative sequence from files.
tmpfile1 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.pos40.pep")
tmpfile2 = file.path(path.package("BioSeqClass"), "example", "acetylation_K.neg40.pep")
posSeq = as.matrix(read.csv(tmpfile1,header=FALSE,sep="\t",row.names=1))[,1]
negSeq = as.matrix(read.csv(tmpfile2,header=FALSE,sep="\t",row.names=1))[,1]
seq=c(posSeq,negSeq)
classLable=c(rep("+1",length(posSeq)),rep("-1",length(negSeq)))
data = data.frame(featureBinary(seq),classLable)

if(interactive()){
Use KNN to evaluate the performance of feature subset,
and use Feature Forword Selection method to increase feature.
If the difference of accuracy between two models is less than 0.01, feature
selection will stop.
FFS_NNA_CV5 = selectFFS(data,accCutoff=0.01,classifyMethod="knn",cv=5)
If 20 features have been selected, feature selection will stop.
FFS_NNA_CV5 = selectFFS(data,stop.n=3,classifyMethod="knn",cv=5)
If any one condiction is satisfied, feature selection will stop.
FFS_NNA_CV5 = selectFFS(data,accCutoff=0.001,stop.n=100,classifyMethod="knn",cv=5)

}

selectWeka Feature Selection by Weka

Description

feature selection by Weka.

Usage

selectWeka(train, evaluator="CfsSubsetEval", search="BestFirst", n)

zzz 29

Arguments

train a data frame including the feature matrix and class label of training set.

evaluator a string for the feature selection method used by WEKA. This must be one of the
strings "CfsSubsetEval", "ChiSquaredAttributeEval", "InfoGainAttributeEval",
or "SVMAttributeEval".

search a string for the search method used by WEKA. This must be one of the strings
"BestFirst" or "Ranker".

n an integer for the number of selected features.

Details

Parameter "evaluator" supportes three feature selection methods provided by WEKA: "CfsSubsetE-
val": Evaluate the worth of a subset of attributes by considering the individual predictive ability
of each feature along with the degree of redundancy between them. "ChiSquaredAttributeEval":
Evaluate the worth of an attribute by computing the value of the chi-squared statistic with respect
to the class. "InfoGainAttributeEval": Evaluate attributes individually by measuring information
gain with respect to the class. "SVMAttributeEval": Evaluate the worth of an attribute by using an
SVM classifier. Attributes are ranked by the square of the weight assigned by the SVM. Attribute
selection for multiclass problems is handled by ranking attributes for each class seperately using a
one-vs-all method and then "dealing" from the top of each pile to give a final ranking.

Parameter "search" supportes three feature subset search methods provided by WEKA: "BestFirst":
Searches the space of attribute subsets by greedy hillclimbing augmented with a backtracking fa-
cility. Setting the number of consecutive non-improving nodes allowed controls the level of back-
tracking done. Best first may start with the empty set of attributes and search forward, or start with
the full set of attributes and search backward, or start at any point and search in both directions (by
considering all possible single attribute additions and deletions at a given point). "Ranker": Ranks
attributes by their individual evaluations.

Author(s)

Hong Li

zzz Load packages and data

Description

This functions load depended R packages and imports default data into global "options".

Usage

.onLoad(libname, pkgname)

30 zzz

Arguments

libname a character string giving the library directory where the package defining the
namespace was found.

pkgname a character string giving the name of the package.

Details

After loading, loadNamespace looks for a hook function named .onLoad and runs it before sealing
the namespace and processing exports.

Author(s)

Hong Li

Index

.callPerl, 3

.callPerl (basic), 2

.onLoad (zzz), 29

.pathPerl, 3

.pathPerl (basic), 2

aa.index, 3
aa.index (basic), 2
aaClass, 2, 3, 9, 10, 16, 17
aaClass (basic), 2
aligndisHR, 23
aligndisHR (hr), 22

basic, 2

cdhitHR, 23
cdhitHR (hr), 22
classify, 4, 5
classifyModelBAG, 5, 25
classifyModelBAG (model), 24
classifyModelCTREE, 5, 25
classifyModelCTREE (model), 24
classifyModelCTREELIBSVM, 5, 25
classifyModelCTREELIBSVM (model), 24
classifyModelKNN, 5, 14, 25
classifyModelKNN (model), 24
classifyModelLIBSVM, 5, 25
classifyModelLIBSVM (model), 24
classifyModelNB, 5, 25
classifyModelNB (model), 24
classifyModelNNET, 5
classifyModelNNET (model), 24
classifyModelRF, 5, 25
classifyModelRF (model), 24
classifyModelRPART, 5, 25
classifyModelRPART (model), 24
classifyModelSVMLIGHT, 5, 25
classifyModelSVMLIGHT (model), 24
classifyModelTree, 5, 25
classifyModelTree (model), 24

DiProDB, 3
DiProDB (basic), 2
distance, 23
distance (hr), 22
dssp.ss, 3
dssp.ss (basic), 2

elements, 2, 3, 9, 10, 16, 17
elements (basic), 2

featureAAindex, 6, 7
featureACF, 7, 14
featureACF (featureAAindex), 6
featureACH, 18
featureACH (featureHydro), 18
featureACI, 7
featureACI (featureAAindex), 6
featureBDNAVIDEO, 8, 8
featureBinary, 8, 9
featureCKSAAP, 9, 10
featureCTD, 10, 10
featureDIPRODB, 11, 11
featureDOMAIN, 12, 12
featureEvaluate, 13, 15
featureFragmentComposition, 16, 16
featureGapPairComposition, 17, 17
featureHydro, 18, 18
featurePseudoAAComp, 14, 19, 19
featurePSSM, 20, 20
featureSSC, 21, 21

getDSSP, 21
getDSSP (featureSSC), 21
getNegSite (hr), 22
getTrain, 23
getTrain (hr), 22

hr, 22, 23

model, 24

31

32 INDEX

performance, 26, 26
predictPFAM, 12
predictPFAM (featureDOMAIN), 12
predictPROTEUS, 22
predictPROTEUS (featureSSC), 21
PROPERTY, 3
PROPERTY (basic), 2
pwm, 3
pwm (basic), 2

selectFFS, 27, 27, 28
selectWeka, 28
sub.seq (basic), 2

zzz, 29

	basic
	classify
	featureAAindex
	featureBDNAVIDEO
	featureBinary
	featureCKSAAP
	featureCTD
	featureDIPRODB
	featureDOMAIN
	featureEvaluate
	featureFragmentComposition
	featureGapPairComposition
	featureHydro
	featurePseudoAAComp
	featurePSSM
	featureSSC
	hr
	model
	performance
	selectFFS
	selectWeka
	zzz
	Index

