Package ‘AnnotationForge’

October 9, 2013
Title Code for Building Annotation Database Packages

Description Provides code for generating Annotation packages and
their databases. Packages produced are intended to be used with AnnotationDbi.

Version 1.2.2
Author Marc Carlson, Herve Pages
Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Depends R (>= 2.7.0), methods, utils, BiocGenerics (>= 0.1.13),Biobase (>= 1.17.0), Annota-
tionDbi (>= 1.19.15), org.Hs.eg.db

Imports methods, utils, DBI, RSQLite, BiocGenerics, Biobase

Suggests DBI (>= 0.2-4), RSQLite (>= 0.6-
4), XML, RCurl, hgu95av2.db,human.db0, affy, Homo.sapiens, hom.Hs.inp.db, GO.db

Collate AnnDbPkg-maker.R sqlForge_utils.R sqlForge_baseMapBuilder.R
sqlForge_schemaGen.R sqlForge_tableBuilder.R
sqlForge_makeAnnPkgs.R sqlForge_wrapBaseDBPkgs.R
sqlForge_seqnames.R makeProbePackage.R NCBI_ftp.R NCBI_getters.R

License Artistic-2.0

biocViews Annotation, Infrastructure

R topics documented:

AnnDbPkg-maker 2
available.dbOpkgs e 3
createSimpleBimap L. 4
generateSeqnames.db L o 5
getProbeDataAffy 6
getProbeData_11q 8
makeDBPackage 9
makeOrgPackageFromNCBI 10
makeProbePackage L 12
populateDB oL 13
wrapBaseDBPackages 15

2 AnnDbPkg-maker

Index 17

AnnDbPkg-maker Creates an SQLite-based annotation package

Description

Creates an SQLite-based annotation package from an SQLite file.

Usage

makeAnnDbPkg(x, dbfile, dest_dir=".", no.man=FALSE, ...)
loadAnnDbPkgIndex(file)

Arguments
X A AnnDbPkgSeed object, a list, a string or a regular expression.
dbfile The path to the SQLite containing the annotation data for the package to build.
dest_dir The directory where the package will be created.
file The path to a DCF file containing the list of annotation packages to build.
no.man If TRUE then no man page is included in the package.
Extra args used for extra filtering.
See Also

AnnDbPkg-checker

Examples

With a "AnnDbPkgSeed"” object:

seed <- new("AnnDbPkgSeed",
Package="hgu133a2.db",
Version="0.0.99",
PkgTemplate="HUMANCHIP.DB",
AnnObjPrefix="hgu133a2"

if (FALSE)
makeAnnDbPkg(seed, "path/to/hgul33a2.sqlite”)

With package names:
(Note that in this case makeAnnDbPkg() will use the package descriptions
found in the master index file ANNDBPKG-INDEX.TXT located in the
AnnotationDbi package.)
if (FALSE)
makeAnnDbPkg(c("hgu95av2.db”, "hgul33a2.db"))

A character vector of length 1 is treated as a regular expression:
if (FALSE)

available.dbOpkgs 3

makeAnnDbPkg("hgu.*")
To make all the packages described in the master index:
if (FALSE)
makeAnnDbPkg ("")
Extra args can be used to narrow down the roaster of packages to make:
if (FALSE) {
makeAnnDbPkg("", PkgTemplate="HUMANCHIP.DB", manufacturer="Affymetrix")
makeAnnDbPkg (" .*[3k]\\.db", species=c("Mouse”, "Rat"))

}
The master index file ANNDBPKG-INDEX.TXT can be loaded with:
loadAnnDbPkgIndex()
available.dbOpkgs available.dbOpkgs
Description

Get the list of intermediate annotation data packages (.db0 data packages) that are currently avail-
able on the Bioconductor repositories for your version of R/Bioconductor.

Or get a list of schemas supported by AnnotationDbi.

Usage

available.dbOpkgs()
available.dbschemas()
available.chipdbschemas()

Details

The SQLForge code uses a series of intermediate database packages that are necessary to build
updated custom annotation packages. These packages must be installed or updated if you want to
make a custom annotation package for a particular organism. These special intermediate packages
contain the latest freeze of the data needed to build custom annotation data packages and are easily
identified by the fact that they end with the special ".db0" suffix. This function will list all such
packages that are available for a specific version of bioconductor.

The available.dbschemas() and available.chipdbschemas() functions allow you to get a list of the
schema names that are available similar to how you can list the available ".db0" packages by using
available.dbOpkgs(). This list of shemas is useful (for example) when you want to build a new
package and need to know the name of the schema you want to use.

Value

A character vector containing the names of the available ".db0" data packages. Or a a character
vector listing the names of the available schemas.

4 createSimpleBimap

Author(s)

H. Pages and Marc Carlson

Examples

Get the list of BSgenome data packages currently available:
available.dbOpkgs()

Not run:
Make your choice and install like this:
source("http://bioconductor.org/biocLite.R")
biocLite("human.db0")

End(Not run)

Get the list of chip DB schemas:
available.chipdbschemas()

Get the list of ALL DB schemas:
available.dbschemas()

createSimpleBimap Creates a simple Bimap from a SQLite database in an situation that is
external to AnnotationDbi

Description

This function allows users to easily make a simple Bimap object for extra tables etc that they may
wish to add to their annotation packages. For most Bimaps, their definition is stored inside of
AnnotationDbi. The addition of this function is to help ensure that this does not become a limitation,
by allowing simple extra Bimaps to easily be defined external to AnnotationDbi. Usually, this
will be done in the zzz.R source file of a package so that these extra mappings can be seemlessly
integrated with the rest of the package. For now, this function assumes that users will want to use
data from just one table.

Usage
createSimpleBimap(tablename, Lcolname, Rcolname, datacache, objName,
objTarget)
Arguments
tablename The name of the database table to grab the mapping information from.
Lcolname The field name from the database table. These will become the Lkeys in the
final mapping.
Rcolname The field name from the database table. These will become the Rkeys in the

final mapping.

generateSeqnames.db 5

datacache The datacache object should already exist for every standard Annotation pack-
age. It is not exported though, so you will have to access it with ::: . It is needed
to provide the connection information to the function.

objName This is the name of the mapping.

objTarget This is the name of the thing the mapping goes with. For most uses, this will
mean the package name that the mapping belongs with.

Examples

##You simply have to call this function to create a new mapping. For
##example, you could have created a mapping between the gene_name and
##the symbols fields from the gene_info table contained in the hgu95av2
##package by doing this:
library(hgu95av2.db)
hgu95av2NAMESYMBOL <- createSimpleBimap("”gene_info",
"gene_name",
"symbol”,
hgu95av2.db:: :datacache,
"NAMESYMBOL",
"hgu95av2.db")

generateSegnames.db Generates the seqnames.db package and database

Description

This function is used to generate the seqnames.db package and it’s database from the csv files
contained in the template for this package within AnnotationForge. The csv files are converted into
database tables, and the DB is packaged into a new seqnames.db package.

Usage
generateSeqgnames.db(version, outdir=".")
Arguments
version Character. Version number for the final package.
outdir Character. Path to output directory where the package is to be placed. By default
the current working directory will be used.
Details

The generateSeqnames.db function allows users to regenerate the seqnames.db package from csv
sources contained in the currently installed AnnotationForge package. It is expected that the typical
user will not need to use this at all, but in case they do, we have made it available. We expect that
the more common use case is someone who wants to make some new chromosome conventions
available for the world. It is expected that this person will more typicalyl be charitable and want

6 getProbeDataAffy

to share their conventions, so they could share their .csv files with us and we would add them to
AnnotationForge, install the updated package and then run this function to make a new package.

The .csv files need to be formatted the same as the ones that are currently in the template in Anno-
tationForge. Examples of these .csv files can be found in AnnotationForge in the "inst/seqnames-
template/inst/extdata/dataFiles/" directory. Each file must be named after it’s corresponding genus
and species with an underscore separator and a .csv file extension. The 1st line of each file defines
columns that are the names of the corresponding naming conventions. And the chromosome names
are then listed below this header line such that the equivalent names for the different styles share
the same row.

So for example the 1st four rows of Mus_musculus look like this (but with only one newline at the
end of each row):

UCSC,NCBI,ensembl

chrl,1,1

chr2,2,2

chr3,3,3

etc.

Once you have your file ready your only need to place it in the same dir in AnnoationDbi (with
the other files), install AnnotationForge, and then run this function to generate a new seqnames.db
package. Of course, if you have a useful set of conventions or species to contribute, it would be
best if you gave your .csv files to the Bioconductor core team so that we can add these files to the
official version of AnnotationForge and so that they can occur in the official seqnames.db package.

Value

A new seqnames.db package, complete with all the latest data stored in the dataFiles subdirectory

Author(s)

Marc Carlson

Examples

Not run:
generateSeqgnames.db(version="1.0.0")

End(Not run)

getProbeDataAffy Read a data file describing the probe sequences on an Affymetrix
genechip

Description

Read a data file describing the probe sequences on an Affymetrix genechip

getProbeDataAffy 7

Usage

getProbeDataAffy(arraytype, datafile, pkgname = NULL, comparewithcdf = FALSE)

Arguments
arraytype Character. Array type (e.g. 'HG-U133A’)
datafile Character with the filename of the input data file, or a connection (see example).
If omitted a default name is constructed from arraytype (for details you will
need to consult this function’s source code).
pkgname Character. Package name. If NULL the name is derived from arraytype.

comparewithcdf Logical. If TRUE, run a consistency check against a CDF package of the same

L]

name (what used to be Laurent’s "extraparanoia”.)

Details

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly version-
specific way the data are represented in datafile.

datafile is a tabulator-separated file with one row per probe, and column names ’Probe X’,
"Probe Y’, ’Probe Sequence’, and ’Probe.Set.Name’. See the vignette for an example.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.

symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.

pkgname a character with the package name; will be the same as the function parameter
pkgname if it was specified; otherwise, the name is constructed from the param-
eter arraytype.

See Also

makeProbePackage

Examples

Please refer to the vignette

getProbeData_1lq

getProbeData_11q

Read a 1lq file for an Affymetrix genechip

Description

Read a 1lq file for an Affymetrix genechip

Usage

getProbeData_1lq(arraytype, datafile, pkgname = NULL)

Arguments

arraytype
datafile

pkgname

Details

Character. Array type (e.g. *Scerevisiaetiling)

Character. The filename of the input data file. If omitted a default name is
constructed from arraytype (see this function’s source code).

Character. Package name. If NULL the name is derived from arraytype.

This function serves as an interface between the (1) representation of array probe information data
in the packages that are generated by makeProbePackage and (2) the vendor- and possibly version-
specific way the data are represented in datafile.

Value

A list with three components

dataEnv an environment which contains the data frame with the probe sequences and the
other probe data.
symVal a named list of symbol value substitutions which can be used to customize the
man pages. See createPackage.
pkgname a character with the package name; will be the same as the function parameter
pkgname if it was specified; otherwise, the name is constructed from the param-
eter arraytype.
See Also
makeProbePackage
Examples
makeProbePackage(
#it arraytype = "Scerevisiaetiling”,
#i# maintainer= "Wolfgang Huber <huber@ebi.ac.uk>",
#it version = "1.1.0",
#it datafile = "S.cerevisiae_tiling.11lq",
#i#t importfun = "getProbeData_11q")

makeDBPackage

makeDBPackage

Creates a sqlite database, and then makes an annotation package with
it

Description

This function Ist creates a SQLite file useful for making a SQLite based annotation package by
using the correct popXXXCHIP_DB function. Next, this function produces an annotation package
featuring the sqlite database produced. All makeXXXXChip_DB functions REQUIRE that you
previously have installed the appropriate XXXX.db0 package. Call the function available.dbOpkgs()
to see what your options are, and then install the appropriate package with biocLite().

Usage

makeDBPackage(schema, ...)

wusage case with required arguments

E=3

H oH B

Arguments

schema

affy

prefix

fileName

otherSrc

chipMapSrc

chipSrc

makeDBPackage (schema, affy, prefix, fileName, baseMapType, version)

usage case with all arguments

makeDBPackage (schema, affy, prefix, fileName, otherSrc, chipMapSrc,
chipSrc, baseMapType, outputDir, version, manufacturer, chipName,
manufacturerUrl, author, maintainer)

String listing the schema that you want to use to make the DB. You can list
schemas with available.dbschemas()

Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix is the first part of the eventual desired package name. (ie. "prefix.db")

The path and filename for the file to be parsed. This can either be an affy csv
file or it can be a more classic file type.

The path and filenames to any other lists of IDs which might add information
about how a probe will map.

The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other. If not provided,
then the appropriate source DB from the most current .db0 package will be used
instead.

The path and filename to the intermediate database containing the annotation
data for the sqlite to build. If not provided, then the appropriate source DB from
the most current .db0 package will be used instead.

10 makeOrgPackageFromNCBI

baseMapType The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and

refseq IDs
outputDir Where you would like the output files to be placed.
version What is the version number for the desired package.

manufacturer ~ Who made the chip being described.

chipName What is the name of the chip.

manufacturerurl
URL for manufacturers website.

author List of authors involved in making the package.
maintainer List of package maintainers with email addresses for contact purposes.

Just used so we can have a wrapper function. Ignore this argument.

Examples

Not run:
##Build the hgu95av2.db package
makeDBPackage ("HUMANCHIP_DB",
affy = TRUE,
prefix = "hgu95av2"”,
fileName = "/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/HG_U95Av2_annot.csv.0708:
otherSrc = ¢(
EA="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/hgu95av2.EA. txt",
UMICH="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/hgu95av2_UMICH. txt"),
baseMapType = "gbNRef",
version = "1.0.0",
manufacturer = "Affymetrix”,
chipName = "hgu95av2”,
manufacturerUrl = "http://www.affymetrix.com")

End(Not run)

makeOrgPackageFromNCBI
Making an organism package from annotations available from NCBI.

Description

The makeOrgPackageFromNCBI function allows the user to make an organism package from NCBI
annotations available from the NCBI.

makeOrgPackageFromNCBI 11

Usage

makeOrgPackageFromNCBI (
version=,
maintainer,
author,
outputDir=".",
tax_id,
genus,
species,
NCBIFilesDir=NULL)

Arguments
version What is the version number for this package?
maintainer Who is the package maintainer? (must include email to be valid)
author Who is the creator of this package?
outputDir A path where the package source should be assembled.
tax_id The Taxonomy ID that represents your organism. (NCBI has a nice online
browser for finding the one you need)
genus Single string indicating the genus.
species Single string indicating the species.

NCBIFilesDir If you want the files to be saved locally that were used to make your DB, then
specify a directory here. Otherwise leave this NULL. This argument is mostly
useful for troubleshooting since many of the files are large. Most users should
ignore it.

Value

Nothing returned to the R session. Just creates an organism annotation package.

Author(s)
M. Carlson

Examples

Not run:
Makes an organism package for Zebra Finch from NCBI:

makeOrgPackageFromNCBI (version = "0.1",
author = "Some One <so@someplace.org>",
maintainer = "Some One <so@someplace.org>",
outputDir = ".",
tax_id = "59729",
genus = "Taeniopygia”,
species = "guttata")

12 makeProbePackage

End(Not run)

makeProbePackage Make a package with probe sequence related data for microarrays

Description

Make a package with probe sequence related data for microarrays

Usage

makeProbePackage (arraytype,
importfun = "getProbeDataAffy"”,

maintainer,
version,
species,
pkgname = NULL,
outdir =".",
force = FALSE, quiet = FALSE,
check = TRUE, build = TRUE, unlink = TRUE, ...)
Arguments
arraytype Character. Name of array type (typically a vendor’s name like "HG-U133A").
importfun Character. Name of a function that can read the probe sequence data e.g. from a
file. See getProbeDataAffy for an example.
maintainer Character. Name and email address of the maintainer.
version Character. Version number for the package.
species Character. Species name in the format Genus_species (e.g., Homo_sapiens)
pkgname Character. Name of the package. If missing, a name is created from arraytype.
outdir Character. Path where the package is to be written.
force Logical. If TRUE overrides possible warnings
quiet Logical. If TRUE do not print statements on progress on the console
check Logical. If TRUE call R CMD check on the package
build Logical. If TRUE call R CMD build on the package
unlink Logical. If TRUE unlink (remove) the check directory (only relevant if check=TRUE)

Further arguments that get passed along to importfun

populateDB 13

Details

See vignette.

Important note for Windows users: Building and checking packages requires some tools outside
of R (e.g. a Perl interpreter). While these tools are standard with practically every Unix, they
do not come with MS-Windows and need to be installed separately on your computer. See http:
//www.murdoch-sutherland.com/Rtools. If you just want to build probe packages, you will not
need the compilers, and the "Windows help" stuff is optional.

Examples

filename <- system.file("”extdata", "HG-U95Av2_probe_tab.gz",
package="AnnotationDbi")
outdir <- tempdir()

me <- "Wolfgang Huber <huber@ebi.ac.uk>"

makeProbePackage ("HG-U95Av2",
datafile = gzfile(filename, open="r"),
outdir = outdir,
maintainer = me,
version ="0.0.1",
species = "Homo_sapiens”,

check = FALSE,

force = TRUE)

dir(outdir)

populateDB Populates an SQLite DB with and produces a schema definition
Description

Creates SQLite file useful for making a SQLite based annotation package. Also produces the
schema file which details the schema for the database produced.
Usage

populateDB(schema, ...)

wusage case with required arguments
populateDB(schema, prefix, chipSrc, metaDataSrc)

wusage case with all possible arguments
populateDB(schema, affy, prefix, fileName, chipMapSrc, chipSrc,
metaDataSrc, otherSrc, baseMapType, outputDir, printSchema)

E=3

Arguments

schema String listing the schema that you want to use to make the DB. You can list
schemas with available.dbschemas()

http://www.murdoch-sutherland.com/Rtools
http://www.murdoch-sutherland.com/Rtools

14

affy

prefix

fileName

chipMapSrc

chipSrc

metaDataSrc

otherSrc

baseMapType

outputDir

printSchema

Examples

Not run:

populateDB

Boolean to indicate if this is starting from an affy csv file or not. If it is, then that
will be parsed to make the sqlite file, if not, then you can feed a tab delimited
file with IDs as was done before with AnnBuilder.

prefix is the first part of the eventual desired package name. (ie. "prefix.sqlite")

The path and filename for the mapping file to be parsed. This can either be
an affy csv file or it can be a more classic file type. This is only needed when
making chip packages.

The path and filename to the intermediate database containing the mapping data
for allowed ID types and how these IDs relate to each other. If not provided,
then the appropriate source DB from the most current .db0 package will be used
instead.

The path and filename to the intermediate database containing the annotation
data for the sqlite to build. If not provided, then the appropriate source DB from
the most current .db0 package will be used instead.

Either a named character vector containing pertinent information about the meta-
data OR the path and filename to the intermediate database containing the meta-
data information for the package.

If this is a custom package, then it must be a named vector with the following
fields:

metaDataSrc <- ¢(DBSCHEMA="the DB schema", ORGANISM="the organ-
ism", SPECIES="the species", MANUFACTURER="the manufacturer", CHIP-
NAME-="the chipName", MANUFACTURERURL="the manufacturerUrl")

The path and filenames to any other lists of IDs which might add information
about how a probe will map.

The type of ID that is used for the initial base mapping. If using a classic base
mapping file, this should be the ID type present in the fileName. This can be
any of the following values: "gb" = for genbank IDs "ug" = unigene IDs "eg"
= Entrez Gene IDs "refseq" = refseq IDs "gbNRef" = mixture of genbank and
refseq IDs

Where you would like the output files to be placed.

Boolean to indicate whether or not to produce an output of the schema (default
is FALSE).

Just used so we can have a wrapper function. Ignore this argument.

##Set up the metadata
my_metaDataSrc <- c(DBSCHEMA="the DB schema”,

ORGANISM="the organism”,

SPECIES="the species”,
MANUFACTURER="the manufacturer”,
CHIPNAME="the chipName",
MANUFACTURERURL="the manufacturerUrl")

##Builds the org.Hs.eg sqlite:

wrapBaseDBPackages 15

populateDB("HUMAN_DB",
prefix="org.Hs.eg",
chipSrc = "/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/annosrc/db/chipsrc_human.sqlite”,
metaDataSrc = my_metaDataSrc,
printSchema=TRUE)

##Builds hgu95av2.sqlite:
populateDB("HUMANCHIP_DB",
affy=TRUE,
prefix="hgu95av2",
fileName="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/hgu95av2/HG_U95Av2.na27.annot.csv",
metaDataSrc=my_metaDataSrc,
baseMapType="gbNRef")

##Builds the ag.sqglite:
populateDB("ARABIDOPSISCHIP_DB",
affy=TRUE,
prefix="ag",
metaDataSrc=my_metaDataSrc)

##Builds yeast2.sqglite:
populateDB("YEASTCHIP_DB",
affy=TRUE,
prefix="yeast2",
fileName="/mnt/cpb_anno/mcarlson/proj/mcarlson/sqliteGen/srcFiles/yeast2/Yeast_2.na27.annot.csv",
metaDataSrc=metaDataSrc)

End(Not run)

wrapBaseDBPackages Wrap up all the Base Databases into Packages for distribution

Description

Creates extremely simple packages from the base database files for distribution. This is a conve-
nience function for wrapping up these packages in a consistent way each time.

Usage

wrapBaseDBPackages(dbPath, destDir, version)

Arguments
dbPath dbPath is just the path to the location of the latest intermediate sqlite source files.
These files are then used to make base DB packages.
destDir destination path for the newly minted packages.

version version number to stamp onto these newly minted packages.

16 wrapBaseDBPackages

Examples

Not run:
##Make all of the intermediate DBs and place the new packages right here.
wrapBaseDBPackages (dbPath = "/mnt/cpb_anno/mcarlson/proj/sqliteGen/nli/annosrc/db/",
destDir = ".")

End(Not run)

Index

*Topic 10
getProbeData_11q, 8
getProbeDataAffy, 6
makeProbePackage, 12

*Topic classes
AnnDbPkg-maker, 2

+Topic manip
available.dbOpkgs, 3
generateSeqnames.db, 5

*Topic methods
AnnDbPkg-maker, 2

xTopic utilities
AnnDbPkg-maker, 2
createSimpleBimap, 4
getProbeData_11q, 8
getProbeDataAffy, 6
makeDBPackage, 9
makeProbePackage, 12
populateDB, 13
wrapBaseDBPackages, 15

AnnDbPkg-checker, 2

AnnDbPkg-maker, 2

AnnDbPkgSeed (AnnDbPkg-maker), 2

AnnDbPkgSeed-class (AnnDbPkg-maker), 2

available.chipdbschemas
(available.dbOpkgs), 3

available.dbOpkgs, 3

available.dbschemas
(available.dbOpkgs), 3

class:AnnDbPkgSeed (AnnDbPkg-maker), 2
createPackage, 7, 8
createSimpleBimap, 4

generateSegnames.db, 5
getProbeData_11q, 8
getProbeDataAffy, 6, 12

loadAnnDbPkgIndex (AnnDbPkg-maker), 2

17

makeAnnDbPkg (AnnDbPkg-maker), 2
makeAnnDbPkg , AnnDbPkgSeed-method
(AnnDbPkg-maker), 2

makeAnnDbPkg, character-method
(AnnDbPkg-maker), 2
makeAnnDbPkg, 1ist-method
(AnnDbPkg-maker), 2
makeDBPackage, 9
makeOrgPackageFromBiomart
(makeOrgPackageFromNCBI), 10
makeOrgPackageFromNCBI, 10
makeProbePackage, 7, 8, 12

popBOVINECHIPDB (populateDB), 13
popBOVINEDB (populateDB), 13
popCANINECHIPDB (populateDB), 13
popCANINEDB (populateDB), 13
popCHICKENCHIPDB (populateDB), 13
popCHICKENDB (populateDB), 13
popECOLICHIPDB (populateDB), 13
popECOLIDB (populateDB), 13
popFLYCHIPDB (populateDB), 13
popFLYDB (populateDB), 13
popHUMANCHIPDB (populateDB), 13
popHUMANDB (populateDB), 13
popMALARIADB (populateDB), 13
popMOUSECHIPDB (populateDB), 13
popMOUSEDB (populateDB), 13
popPIGCHIPDB (populateDB), 13
popPIGDB (populateDB), 13
popRATCHIPDB (populateDB), 13
popRATDB (populateDB), 13
populateDB, 13

popWORMCHIPDB (populateDB), 13
popWORMDB (populateDB), 13
popYEASTDB (populateDB), 13
popYEASTNCBIDB (populateDB), 13
popZEBRAFISHCHIPDB (populateDB), 13
popZEBRAFISHDB (populateDB), 13

18 INDEX

wrapBaseDBPackages, 15

	AnnDbPkg-maker
	available.db0pkgs
	createSimpleBimap
	generateSeqnames.db
	getProbeDataAffy
	getProbeData_1lq
	makeDBPackage
	makeOrgPackageFromNCBI
	makeProbePackage
	populateDB
	wrapBaseDBPackages
	Index

