
Generalized Boosted Models:

A guide to the gbm package

Greg Ridgeway

June 10, 2007

Boosting takes on various forms with different programs using different loss
functions, different base models, and different optimization schemes. The gbm
package takes the approach described in [2] and [3]. Some of the terminology
differs, mostly due to an effort to cast boosting terms into more standard sta-
tistical terminology (e.g. deviance). In addition, the gbm package implements
boosting for models commonly used in statistics but not commonly associated
with boosting. The Cox proportional hazard model, for example, is an incred-
ibly useful model and the boosting framework applies quite readily with only
slight modification [5]. Also some algorithms implemented in the gbm package
differ from the standard implementation. The AdaBoost algorithm [1] has a
particular loss function and a particular optimization algorithm associated with
it. The gbm implementation of AdaBoost adopts AdaBoost’s exponential loss
function (its bound on misclassification rate) but uses Friedman’s gradient de-
scent algorithm rather than the original one proposed. So the main purposes of
this document is to spell out in detail what the gbm package implements.

1 Gradient boosting

This section essentially presents the derivation of boosting described in [2]. The
gbm package also adopts the stochastic gradient boosting strategy, a small but
important tweak on the basic algorithm, described in [3].

1.1 Friedman’s gradient boosting machine

Friedman (2001) and the companion paper Friedman (2002) extended the work
of Friedman, Hastie, and Tibshirani (2000) and laid the ground work for a new
generation of boosting algorithms. Using the connection between boosting and
optimization, this new work proposes the Gradient Boosting Machine.

In any function estimation problem we wish to find a regression function,
f̂(x), that minimizes the expectation of some loss function, Ψ(y, f), as shown
in (4).

f̂(x) = arg min
f(x)

Ey,xΨ(y, f(x))

1

Initialize f̂(x) to be a constant, f̂(x) = arg minρ
∑N
i=1 Ψ(yi, ρ).

For t in 1, . . . , T do

1. Compute the negative gradient as the working response

zi = − ∂

∂f(xi)
Ψ(yi, f(xi))|

f(xi)=f̂(xi)
(1)

2. Fit a regression model, g(x), predicting zi from the covariates xi.

3. Choose a gradient descent step size as

ρ = arg min
ρ

N∑
i=1

Ψ(yi, f̂(xi) + ρg(xi)) (2)

4. Update the estimate of f(x) as

f̂(x)← f̂(x) + ρg(x) (3)

Figure 1: Friedman’s Gradient Boost algorithm

2

= arg min
f(x)

Ex
[
Ey|xΨ(y, f(x))

∣∣∣x] (4)

We will focus on finding estimates of f(x) such that

f̂(x) = arg min
f(x)

Ey|x [Ψ(y, f(x))|x] (5)

Parametric regression models assume that f(x) is a function with a finite number
of parameters, β, and estimates them by selecting those values that minimize a
loss function (e.g. squared error loss) over a training sample of N observations
on (y,x) pairs as in (6).

β̂ = arg min
β

N∑
i=1

Ψ(yi, f(xi;β)) (6)

When we wish to estimate f(x) non-parametrically the task becomes more dif-
ficult. Again we can proceed similarly to [4] and modify our current estimate
of f(x) by adding a new function f(x) in a greedy fashion. Letting fi = f(xi),
we see that we want to decrease the N dimensional function

J(f) =
N∑
i=1

Ψ(yi, f(xi))

=
N∑
i=1

Ψ(yi, Fi). (7)

The negative gradient of J(f) indicates the direction of the locally greatest
decrease in J(f). Gradient descent would then have us modify f as

f̂ ← f̂ − ρ∇J(f) (8)

where ρ is the size of the step along the direction of greatest descent. Clearly,
this step alone is far from our desired goal. First, it only fits f at values of
x for which we have observations. Second, it does not take into account that
observations with similar x are likely to have similar values of f(x). Both these
problems would have disastrous effects on generalization error. However, Fried-
man suggests selecting a class of functions that use the covariate information
to approximate the gradient, usually a regression tree. This line of reasoning
produces his Gradient Boosting algorithm shown in Figure 1. At each itera-
tion the algorithm determines the direction, the gradient, in which it needs to
improve the fit to the data and selects a particular model from the allowable
class of functions that is in most agreement with the direction. In the case of
squared-error loss, Ψ(yi, f(xi)) =

∑N
i=1(yi−f(xi))2, this algorithm corresponds

exactly to residual fitting.
There are various ways to extend and improve upon the basic framework

suggested in Figure 1. For example, Friedman (2001) substituted several choices

3

in for Ψ to develop new boosting algorithms for robust regression with least
absolute deviation and Huber loss functions. Friedman (2002) showed that
a simple subsampling trick can greatly improve predictive performance while
simultaneously reduce computation time. Section 2 discusses some of these
modifications.

2 Improving boosting methods using control of
the learning rate, sub-sampling, and a decom-
position for interpretation

This section explores the variations of the previous algorithms that have the
potential to improve their predictive performance and interpretability. In par-
ticular, by controlling the optimization speed or learning rate, introducing low-
variance regression methods, and applying ideas from robust regression we can
produce non-parametric regression procedures with many desirable properties.
As a by-product some of these modifications lead directly into implementations
for learning from massive datasets. All these methods take advantage of the
general form of boosting

f̂(x)← f̂(x) + E(z(y, f̂(x))|x). (9)

So far we have taken advantage of this form only by substituting in our favorite
regression procedure for Ew(z|x). I will discuss some modifications to estimating
Ew(z|x) that have the potential to improve our algorithm.

2.1 Decreasing the learning rate

As several authors have phrased slightly differently,“...boosting, whatever flavor,
seldom seems to overfit, no matter how many terms are included in the additive
expansion”. This is not true as the discussion to [4] points out.

In the update step of any boosting algorithm we can introduce a learning
rate to dampen the proposed move.

f̂(x)← f̂(x) + λE(z(y, f̂(x))|x). (10)

By multiplying the gradient step by λ as in equation 10 we have control on the
rate at which the boosting algorithm descends the error surface (or ascends the
likelihood surface). When λ = 1 we return to performing full gradient steps.
Friedman (2001) relates the learning rate to regularization through shrinkage.

The optimal number of iterations, T , and the learning rate, λ, depend on
each other. In practice I set λ to be as small as possible and then select T by
cross-validation. Performance is best when λ is as small as possible performance
with decreasing marginal utility for smaller and smaller λ. Slower learning rates
do not necessarily scale the number of optimal iterations. That is, if when
λ = 1.0 and the optimal T is 100 iterations, does not necessarily imply that
when λ = 0.1 the optimal T is 1000 iterations.

4

2.2 Variance reduction using subsampling

Friedman (2002) proposed the stochastic gradient boosting algorithm that sim-
ply samples uniformly without replacement from the dataset before estimating
the next gradient step. He found that this additional step greatly improved per-
formance. We estimate the regression E(z(y, f̂(x))|x) using a random subsample
of the dataset.

2.3 ANOVA decomposition

Certain function approximation methods are decomposable in terms of a “func-
tional ANOVA decomposition”. That is a function is decomposable as

f(x) =
∑
j

fj(xj) +
∑
jk

fjk(xj , xk) +
∑
jk`

fjk`(xj , xk, x`) + · · · . (11)

This applies to boosted trees. Regression stumps (one split decision trees) de-
pend on only one variable and fall into the first term of 11. Trees with two splits
fall into the second term of 11 and so on. By restricting the depth of the trees
produced on each boosting iteration we can control the order of approximation.
Often additive components are sufficient to approximate a multivariate function
well, generalized additive models, the näıve Bayes classifier, and boosted stumps
for example. When the approximation is restricted to a first order we can also
produce plots of xj versus fj(xj) to demonstrate how changes in xj might affect
changes in the response variable.

2.4 Relative influence

Friedman (2001) also develops an extension of a variable’s“relative influence” for
boosted estimates. For tree based methods the approximate relative influence
of a variable xj is

Ĵ2
j =

∑
splits on xj

I2
t (12)

where I2
t is the empirical improvement by splitting on xj at that point. Fried-

man’s extension to boosted models is to average the relative influence of variable
xj across all the trees generated by the boosting algorithm.

3 Common user options

This section discusses the options to gbm that most users will need to change
or tune.

3.1 Loss function

The first and foremost choice is distribution. This should be easily dictated
by the application. For most classification problems either bernoulli or ad-
aboost will be appropriate, the former being recommended. For continuous

5

Select

• a loss function (distribution)

• the number of iterations, T (n.trees)

• the depth of each tree, K (interaction.depth)

• the shrinkage (or learning rate) parameter, λ (shrinkage)

• the subsampling rate, p (bag.fraction)

Initialize f̂(x) to be a constant, f̂(x) = arg minρ
∑N
i=1 Ψ(yi, ρ)

For t in 1, . . . , T do

1. Compute the negative gradient as the working response

zi = − ∂

∂f(xi)
Ψ(yi, f(xi))|

f(xi)=f̂(xi)
(13)

2. Randomly select p×N cases from the dataset

3. Fit a regression tree with K terminal nodes, g(x) = E(z|x). This tree is
fit using only those randomly selected observations

4. Compute the optimal terminal node predictions, ρ1, . . . , ρK , as

ρk = arg min
ρ

∑
xi∈Sk

Ψ(yi, f̂(xi) + ρ) (14)

where Sk is the set of xs that define terminal node k.

5. Update f̂(x) as
f̂(x)← f̂(x) + λρk(x) (15)

where k(x) indicates the index of the terminal node into which an obser-
vation with features x would fall. Again this step uses only the randomly
selected observations

Figure 2: Boosting as implemented in gbm()

6

outcomes the choices are gaussian (for minimizing squared error) or laplace
(for minimizing absolute error). Censored survival outcomes should require
coxph. Count outcomes may use poisson although one might also consider
gaussian or laplace depending on the analytical goals.

3.2 The relationship between shrinkage and number of it-
erations

The issues that most new users of gbm struggle with are the choice of n.trees
and shrinkage. It is important to know that smaller values of shrinkage (al-
most) always give improved predictive performance. That is, setting shrink-
age=0.001 will almost certainly result in a model with better out-of-sample
predictive performance than setting shrinkage=0.01. However, there are com-
putational costs, both storage and CPU time, associated with setting shrink-
age to be low. The model with shrinkage=0.001 will likely require ten times
as many iterations as the model with shrinkage=0.01, increasing storage and
computation time by a factor of 10. Figure 3 shows the relationship between
predictive performance, the number of iterations, and the shrinkage parameter.
Note that the increase in the optimal number of iterations between two choices
for shrinkage is roughly equal to the ratio of the shrinkage parameters. It is
generally the case that for small shrinkage parameters, 0.001 for example, there
is a fairly long plateau in which predictive performance is at its best. My rule
of thumb is to set shrinkage as small as possible while still being able to fit
the model in a reasonable amount of time and storage. I usually aim for 3,000
to 10,000 iterations with shrinkage rates between 0.01 and 0.001.

3.3 Estimating the optimal number of iterations

gbm offers three methods for estimating the optimal number of iterations after
the gbm model has been fit, an independent test set (test), out-of-bag estima-
tion (OOB), and v-fold cross validation (cv). The function gbm.perf computes
the iteration estimate.

Like Friedman’s MART software, the independent test set method uses a sin-
gle holdout test set to select the optimal number of iterations. If train.fraction
is set to be less than 1, then only the first train.fraction×nrow(data) will
be used to fit the model. Note that if the data are sorted in a systematic way
(such as cases for which y = 1 come first), then the data should be shuffled
before running gbm. Those observations not used in the model fit can be used
to get an unbiased estimate of the optimal number of iterations. The down-
side of this method is that a considerable number of observations are used to
estimate the single regularization parameter (number of iterations) leaving a
reduced dataset for estimating the entire multivariate model structure. Use
gbm.perf(...,method="test") to obtain an estimate of the optimal number
of iterations using the held out test set.

If bag.fraction is set to be greater than 0 (0.5 is recommended), gbm
computes an out-of-bag estimate of the improvement in predictive performance.

7

0 2000 4000 6000 8000 10000

0.
19

0
0.

19
5

0.
20

0
0.

20
5

0.
21

0

Iterations

S
qu

ar
ed

 e
rr

or

0.1
0.05

0.010.005 0.001

Figure 3: Out-of-sample predictive performance by number of iterations and
shrinkage. Smaller values of the shrinkage parameter offer improved predictive
performance, but with decreasing marginal improvement.

It evaluates the reduction in deviance on those observations not used in se-
lecting the next regression tree. The out-of-bag estimator underestimates the
reduction in deviance. As a result, it almost always is too conservative in
its selection for the optimal number of iterations. The motivation behind
this method was to avoid having to set aside a large independent dataset,
which reduces the information available for learning the model structure. Use
gbm.perf(...,method="OOB") to obtain the OOB estimate.

Lastly, gbm offers v-fold cross validation for estimating the optimal num-
ber of iterations. If when fitting the gbm model, cv.folds=5 then gbm will
do 5-fold cross validation. gbm will fit five gbm models in order to compute
the cross validation error estimate and then will fit a sixth and final gbm
model with n.treesiterations using all of the data. The returned model ob-
ject will have a component labeled cv.error. Note that gbm.more will do
additional gbm iterations but will not add to the cv.error component. Use
gbm.perf(...,method="cv") to obtain the cross validation estimate.

Figure 4 compares the three methods for estimating the optimal number of

8

OOB Test 33% Test 20% 5-fold CV

0.
2

0.
4

0.
6

0.
8

1.
0

Method for selecting the number of iterations

P
er

fo
rm

an
ce

 o
ve

r 1
3

da
ta

se
ts

Figure 4: Out-of-sample predictive performance of four methods of selecting the
optimal number of iterations. The vertical axis plots performance relative the
best. The boxplots indicate relative performance across thirteen real datasets
from the UCI repository. See demo(OOB-reps).

iterations across 13 datasets. The boxplots show the methods performance rela-
tive to the best method on that dataset. For most datasets the method perform
similarly, however, 5-fold cross validation is consistently the best of them. OOB,
using a 33% test set, and using a 20% test set all have datasets for which the
perform considerably worse than the best method. My recommendation is to use
5- or 10-fold cross validation if you can afford the computing time. Otherwise
you may choose among the other options, knowing that OOB is conservative.

4 Available distributions

This section gives some of the mathematical detail for each of the distribution
options that gbm offers. The gbm engine written in C++ has access to a C++
class for each of these distributions. Each class contains methods for computing
the associated deviance, initial value, the gradient, and the constants to predict
in each terminal node.

In the equations shown below, for non-zero offset terms, replace f(xi) with
oi + f(xi).

9

4.1 Gaussian

Deviance
1∑
wi

∑
wi(yi − f(xi))2

Initial value f(x) =
∑
wi(yi − oi)∑

wi
Gradient zi = yi − f(xi)

Terminal node estimates
∑
wi(yi − f(xi))∑

wi

4.2 AdaBoost

Deviance
1∑
wi

∑
wi exp(−(2yi − 1)f(xi))

Initial value
1
2

log
∑
yiwie

−oi∑
(1− yi)wieoi

Gradient zi = −(2yi − 1) exp(−(2yi − 1)f(xi))

Terminal node estimates
∑

(2yi − 1)wi exp(−(2yi − 1)f(xi))∑
wi exp(−(2yi − 1)f(xi))

4.3 Bernoulli

Deviance −2
1∑
wi

∑
wi(yif(xi)− log(1 + exp(f(xi))))

Initial value log
∑
wiyi∑

wi(1− yi)
Gradient zi = yi −

1
1 + exp(−f(xi))

Terminal node estimates
∑
wi(yi − pi)∑
wipi(1− pi)

where pi =
1

1 + exp(−f(xi))
Notes:

• For non-zero offset terms, the computation of the initial value requires

Newton-Raphson. Initialize f0 = 0 and iterate f0 ← f0 +
∑
wi(yi − pi)∑
wipi(1− pi)

where pi =
1

1 + exp(−(oi + f0))
.

4.4 Laplace

Deviance 1∑
wi

∑
wi|yi − f(xi)|

Initial value medianw(y)
Gradient zi = sign(yi − f(xi))
Terminal node estimates medianw(z)

Notes:

10

• medianw(y) denotes the weighted median, defined as the solution to the

equation
∑

wiI(yi≤m)∑
wi

= 1
2

• gbm() currently does not implement the weighted median and issues a
warning when the user uses weighted data with distribution="laplace".

4.5 Cox Proportional Hazard

Deviance −2
∑
wi(δi(f(xi)− log(Ri/wi)))

Gradient zi = δi −
∑
j

δj
wjI(ti ≥ tj)ef(xi)∑
k wkI(tk ≥ tj)ef(xk)

Initial value 0
Terminal node estimates Newton-Raphson algorithm

1. Initialize the terminal node predictions to 0, ρ = 0

2. Let p(k)
i =

∑
j I(k(j) = k)I(tj ≥ ti)ef(xi)+ρk∑

j I(tj ≥ ti)ef(xi)+ρk

3. Let gk =
∑
wiδi

(
I(k(i) = k)− p(k)

i

)
4. Let H be a k × k matrix with diagonal elements

(a) Set diagonal elements Hmm =
∑
wiδip

(m)
i

(
1− p(m)

i

)
(b) Set off diagonal elements Hmn = −

∑
wiδip

(m)
i p

(n)
i

5. Newton-Raphson update ρ← ρ−H−1g

6. Return to step 2 until convergence

Notes:

• ti is the survival time and δi is the death indicator.

• Ri denotes the hazard for the risk set, Ri =
∑N
j=1 wjI(tj ≥ ti)ef(xi)

• k(i) indexes the terminal node of observation i

• For speed, gbm() does only one step of the Newton-Raphson algorithm
rather than iterating to convergence. No appreciable loss of accuracy
since the next boosting iteration will simply correct for the prior iterations
inadequacy.

• gbm() initially sorts the data by survival time. Doing this reduces the
computation of the risk set from O(n2) to O(n) at the cost of a single up
front sort on survival time. After the model is fit, the data are then put
back in their original order.

11

4.6 Poisson

Deviance -2 1∑
wi

∑
wi(yif(xi)− exp(f(xi)))

Initial value f(x) = log
(∑

wiyi∑
wieoi

)
Gradient zi = yi − exp(f(xi))

Terminal node estimates log
∑
wiyi∑

wi exp(xi)
The Poisson class includes special safeguards so that the most extreme pre-

dicted values are e−19 and e+19. This

References

[1] Y. Freund and R.E. Schapire (1997). “A decision-theoretic generalization of on-
line learning and an application to boosting,” Journal of Computer and System
Sciences, 55(1):119-139.

[2] J.H. Friedman (2001). “Greedy Function Approximation: A Gradient Boosting
Machine,” Annals of Statistics 29(5):1189-1232.

[3] J.H. Friedman (2002). “Stochastic Gradient Boosting,” Computational Statistics
and Data Analysis 38(4):367-378.

[4] J.H. Friedman, T. Hastie, R. Tibshirani (2000). “Additive Logistic Regression: a
Statistical View of Boosting,” Annals of Statistics 28(2):337-374.

[5] G. Ridgeway (1999). “The state of boosting,” Computing Science and Statistics
31:172-181.

12

